

Rolling Element Bearings

The Global Leader in Aerospace Bearings

Rolling Element Bearings

Aircraft Control Bearings

Ball Bearing Rod Ends

Needle Track Roller Bearings

Thin Section Ball Bearings

Gear Box and Engine Ball and Roller Bearings

www.rbcbearings.com

RBC Aerospace Bearings – Plain Bearings Catalog

RBC Aerospace Bearings also offers a catalog dedicated to our precision Plain Bearing products including spherical bearings, rod end bearings, journal bearings, links and assemblies. This catalog features detailed information regarding general features and technical product specifications, part drawings, complete engineering sections for each product category, and ordering information.

Also available on CD.

Please visit us online at www.rbcbearings.com

RBC Aerospace Bearings Locations

A.I.D. Company 250 Laurel Heights Drive P.O. Box 685 Clayton, GA 30525 Phone: 706.782.4245

Aircraft Products, Inc. 2788 Winsted Road Torrington, CT 06790 Phone: 860.626.7800

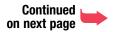
Allpower Manufacturing Company 13141 Molette Street Santa Fe Springs, CA 90670 Phone: 562.802.2640

Heim Bearings Company 60 Round Hill Road Fairfield, CT 06824 Phone: 203.255.1512 Industrial Tectonics Bearings Corporation 18301 South Santa Fe Avenue Rancho Dominguez, CA 90221 Phone: 310.537.3750

RBC West Trenton 400 Sullivan Way West Trenton, NJ 08628 Phone: 609.882.5050

Schaublin SA
Rue de la Blancherie 9
CH-2800
Delémont, Switzerland
Phone: 011.41.32.421.13.00

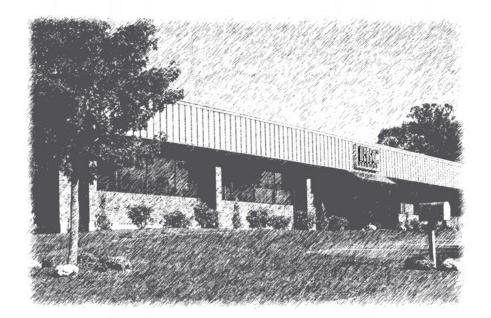
Southwest Products/US Bearing 5001 B Commerce Drive Baldwin Park, CA 91010 Phone: 626.358.0181


Transport Dynamics Corporation 3131 West Segerstrom Avenue Santa Ana, CA 92704

Phone: 714.546.3131

INTRODUCTION

Industrial Heritage and Know-How	3
• warranty	
Contact Information	6
AIDEDAME CONTROL AND DALL DEADING DOD ENDS	
AIRFRAME CONTROL AND BALL BEARING ROD ENDS	
• Engineering Section for Airframe Control and Ball Bearing Rod Ends	7–24
AIRFRAME CONTROL BALL BEARINGS	
Airframe Control Bearings: Section Header – Index	25
Product Nomenclature	26
Tables – Airframe Control Ball Bearings	
Single Row Ball Bearings	
• Standard Series	
Precision Series	
Double Row Ball Bearings	
• Standard Series	
Precision Series	
Single Row Roller Bearings	
BALL BEARING ROD ENDS	
Ball Bearing Rod Ends: Section Header – Index	55
Product Nomenclature	56
Tables – Ball Bearing Rod Ends	
External Threaded Series	
• AeroCres® Fracture-tough Airframe Products	
Internal Threaded Series	
Hollow Shank Series	
Solid Shank Series	
Tables – Roller Rod Ends	
RA/RR External Threaded Series	
PA/PR Internal Threaded Series	62


ROLLING ELEMENT BEARINGS TABLE OF CONTENTS

AIRFRAME CONTROL NEEDLE ROLLER BEARINGS

Airframe Control Needle Roller Bearings: Section Header – Index	64
Product Nomenclature	65
• Engineering Section for Needle Roller Bearings	66–71
Tables – Airframe Control Needle Roller Bearings and Stud-type Track Rollers	
Single/Double Row Sealed Series	
AeroCres® Reduced Maintenance Track Rollers	74–75
Single/Double Row, Heavy Loads, Slow Speeds Series	76–77
Single Row, Outer Supported by Housing Series	78–79
Single/Double Row Self-aligning Series	80–81
Single Row, Minimum Section Series	82–83
Stud-type Track Roller Series	84–85
AeroCres® Fracture-tough Airframe Products	86–87
Special Designs	
THIN SECTION BALL BEARINGS	
Thin Section Ball Bearings: Section Header – Index	89
Product Nomenclature	
• Engineering Section for Thin Section Ball Bearings	93–101
• Thin Section Ball Bearings Tolerance and Fits	102-104
Tables – Thin Section Ball Bearings	
SuperDuplex™ Series	105
Radial Contact, C-Type Series	106–111
Angular Contact, A-Type Series	112–117
4-Point Contact, X-Type Series	118–123
Sealed Radial Contact, C-Type Series	124–125
Sealed Radial Contact, X-Type Series	126–127
• Simplex™ Series	128–129
SAMPLE APPLICATIONS	
Thin Section Ball Bearings Sample Applications	120_1/2
Helicopter Applications	
Airframe Applications	
- All Italiic Applications	140-14/
CONVERSION TABLES	148–149

RBC Bearings Corporate Headquarters Oxford, Connecticut U.S.A.

INDUSTRIAL HERITAGE AND KNOW-HOW

RBC Bearings has a long and impressive history as an innovator in bearing technology — one that has been highlighted by patents for creative engineering design. Today, the company comprises a number of facilities throughout North America and Europe, with a global network of sales engineers, aerospace distributors, and authorized agents. Publicly held (Nasdaq: ROLL), RBC has grown steadily through strategic planning and acquisitions. Since the early nineties, these acquisitions have continued to expand the breadth of an extensive product line of bearings and related products that serve global industries — chief among them, aerospace.

Since its earliest days in West Trenton, New Jersey, the company has been at the forefront of bearing technology. **Roller Bearing Company of America,** founded in 1919, manufactured a variety of bearing products. In 1941, Roller Bearing Company became the sole source supplier for the landing gear bearings on military aircraft manufactured by Ford Motor Company. The RBC facility in West Trenton continues today to be a major supplier of helicopter main and tail rotor flight control bearings to, among others, the U.S. Government.

In 1990, RBC acquired **Industrial Tectonics Bearings (ITB).**Located in Rancho Dominguez, California, the division was founded in 1955. ITB manufactures a complete line of thin section ball bearings with capabilities up to 24 inches outside diameter. Typical aerospace applications include engine, gearbox and transmission bearings, helicopter swashplate bearings and electro-optical targeting pods. ITB specializes in the manufacturing of complex, high precision bearings, utilizing special materials and coatings, while serving the aerospace and defense markets.

Transport Dynamics (TDC), founded in 1955, and was acquired in 1992. Also located in southern California, Transport is one of RBC's main producers of plain bearings, manufacturing journal bearings (bushings), spherical plain, and rod end product with a focus on engine and helicopter applications. Plain bearings at TDC are constructed in metal-to-metal and as lined, self-lubricating product. Transport Dynamics offers over 30 different liner systems depending upon the loading, wear, and temperature conditions in the application (including the patented Fibriloid® and Fiberglide® liner technology). TDC manufactures plain bearing product in both conventional swaged configurations and as load slot entry bearings (Messerschmidt design). Transport Dynamics was actually the inventor of the lined spherical bearing, with the first application developed in 1957 for the Chevrolet Corvette suspension joint. Boeing adopted this new bearing design and soon it was used throughout the 727 model aircraft. TDC actually licensed this technology to all their competitors back in the 1960s.

Heim® Bearings, Fairfield, Connecticut, joined the RBC family in 1993. Founded by Louis Heim in 1942, the Heim® name has been known and respected for designing the first integral rod end bearing, specifically the Unibal® spherical bearing rod end. This bearing was originally designed to solve aircraft delivery delays due to critical shortages in rod ends and self-aligning bearings during the war effort. Heim® Bearings Company is also well known for inventing centerless grinding and for inventing the swaging process used in the manufacture of spherical plain bearings. In addition to rod end and spherical bearings, Heim® Bearings Company manufactures specialized radial ball bearings, such as a cobalt race hybrid bearing with silicon nitride balls for a hot bleed air valve application in aircraft auxiliary power units, suspension applications on

©2008 RBC Bearings Incorporated. All rights reserved.

Military land vehicles, elastomeric bearings and machinable liner systems. Heim® Bearings Company is also the world's largest provider of aerospace ball bearing rod ends, including manufacture with the corrosion-resistant AeroCres® material. Ball bearing rod ends can be found throughout aircraft in positioning and linkage assemblies, as well as on swaged tubes throughout the airframe.

In 2000, RBC acquired **Schaublin SA** based in Delémont, Switzerland. As a result, RBC added Schaublin's metric rod ends and metric spherical bearings to the family of global RBC products, and a base with which to service the European market. Within this 140,000 sq. ft. facility, RBC has established the company's European Distribution Center. In addition, Schaublin was licensed by Heim® Bearings to market Unibal® rod ends back in the 1950s. Schaublin specializes in light weight titanium bearing solutions, including next level assemblies utilizing integral split ball designs for the aerospace industry. RBC also acquired what is now called **RBC France** — a sales, engineering, marketing, and distribution arm for Schaublin product, located in Les Ulis, France.

In December, 2003, RBC acquired the business of the former Torrington "Standard" Plant — a long-established leader in airframe products. This facility, referred to as RBC Aircraft Products, Inc. (API) was founded in 1866. The Torrington name is synonymous with quality engineering and precision — and complements the RBC portfolio of aerospace product offerings. At the API plant, RBC produces aircraft needle track roller bearings, lined track rollers, cam followers, radial ball bearings, and is RBC's main facility for the production of 52100 cad plated, 440C stainless, and zinc nickel plate airframe control ball bearings. RBC has become the number one producer worldwide of airframe control product and has virtually every series and size Mil Spec approval along with an extensive list of European approvals.

RBC has made an additional aerospace business acquisition in each of the years 2004, 2005, and 2006; acquiring U.S.

Bearing, Chatsworth, California; Southwest Products Inc.,
Baldwin Park, California; and Allpower Manufacturing, Santa
Fe Springs, California, respectively. Southwest Products/US

Bearings has the capability to offer unique swaged bearing solutions (up to 11" OD), in addition to low friction liners and hard coat machining. The product offering has evolved to include split ball spherical and rod ends, large trunnion bearings, specialty rod ends and solid and welded links.

SWP/USB has played a major role in the design and support of plain bearings for commercial and military aircraft, helicopter,

power plant, satellite, military land vehicle and submarine applications. **Allpower Manufacturing,** a Boeing and Airbus approved supplier, produces a full line of precision bushings, spacers, sleeves, and specialty machined parts servicing the aerospace industry. Capable of offering specialized materials, All Power is proficient with stainless steel, carbon steel, beryllium copper, Inconel®, titanium, aluminum, aluminum bronze and colbalt raw materials, to name a few.

In December, 2008, RBC acquired **A.I.D. Corporation**, located in Clayton, Georgia. A.I.D. Corporation compliments the RBC product offering by producing tight tolerance, precision fabricated tubular and machined parts. With a primary focus on fixed-wing and rotary-wing aircraft, some typical applications include: control rods, push-pull rods, connecting links, torque tubes, rod assemblies, struts and cargo tie-downs. This is a vertically intergrated product line to the already broadest line of aerospace bearings offered by RBC in the industry.

Aerospace Segments Served

Aerospace segments served by RBC include commercial and military alike, fixed and rotary wing. RBC serves the world's major airframers (large transport, regional, and general aviation), engines and accessories, defense (land and marine vehicles, missile and bomb, optical targeting), space (vehicles and engine), major subsystem providers (landing gear, electrical generation, etc.), and smaller subsystem and component applications (primary and secondary flight control actuation, swaged tube bearing, and structural applications, etc.)

RBC's aerospace operations count among their customers a long list of prestigious names, including Airbus, Boeing, Lockheed Martin, SAAB, Northrop Grumman, BAE Systems, Bombardier, Embraer Aircraft, Spirit Aerosystems, NASA, Bell Helicopter, Sikorsky, Boeing Mesa and Rotocrafts, Rolls-Royce, GE Aircraft Engines, Snecma, Pratt & Whitney, Honeywell, ASCO, Goodrich Aerospace, Moog, Smiths Aerospace, Parker Aerospace, Messier-Dowty, Raytheon, Primus University Swage, LeFiell, and Tyee.

The RBC aerospace divisions are well versed in the many bearing materials, from the standard chrome 52100, to the CRES 440C and 15-5/17-4 stainless product, to the processing of exotic materials like ALTEMP® A286*, Stellite®**, titanium, Inconel®***, beryllium copper, Pyrowear®, and AeroCres®.

Combined revenue of the RBC aircraft divisions, is approximately 75% aerospace. The predominant non-aerospace markets include high-end industrial applications requiring the same stringent tolerances and high-quality precision product.

Pyrowear® is a registered trademark of Carpenter Technology Corporation.

©2008 RBC Bearings Incorporated. All rights reserved.

^{*}ALTEMP® A286 is a registered trademark of ATI Allegheny Ludlum.

^{**}Stellite® is a registered trademark of the Deloro Stellite Company, Inc.

^{***}Inconel® is a registered trademark of Alloys International, Inc. and The international Nickel Company, Inc.

Quality Statement

All of RBC's aerospace bearings divisions have a formal, documented, and aerospace-approved quality program/system in place. The company is approved to many OEM quality systems, including Airbus, Rolls-Royce, Pratt & Whitney, GE Aircraft Engines, Boeing Commercial Aircraft, Boeing Helicopter, Sikorsky, Lockheed Martin, Northrop Grumman, Snecma, Goodrich, BAE Systems, and the U.S. Government, among others. RBC is on a self-release program with many of these companies.

For example, Industrial Tectonic Bearings (ITB), Rancho Dominguez, California, was promoted to Gold Level Preferred Supplier status at Lockheed Martin Missiles and Fire Control, Orlando, Florida. At this point, RBC is the only Gold bearing supplier to the Lockheed organization. In a statement given by a senior manager for Lockheed Martin Missiles and Fire Control, "...the ITB facility is key in helping us create a world-class supply base." To assess ITB's supplier status, Lockheed Martin performed an on-site business system review, the team concluding that RBC demonstrated a dedication to continuous improvement and process improvement. The Gold status allows ITB to perform its own final inspection of hardware, facilitating a "dock-to-stock" receipt at Lockheed Martin's Orlando factory.

All aerospace divisions of RBC are ISO 9001:2000 and AS9100 certified. Additionally, they are NADCAP accredited inhouse for non-destructive testing, heat treat, and weld, or are using NADCAP accredited sourcing. The company is constantly audited by the many major aerospace customers in the world, as well as by the FAA. RBC is aware that material, specification, and/or processing changes are all critical. As such, the company has a traceability process for its manufacturing locations including a procedure for preserving the identity and origin of the bearing and all its components. RBC has the capability to isolate and recall suspect bearings from use and trace the cause of failure to a specific manufacturing lot, material process, or component.

Strategic Plan and Vision

RBC Bearings' strategic plan and vision is to continue down the path of profitability and growth — organic growth including market penetration and the addition of new products and

growth via acquisition to which RBC's uncompromising track record of aerospace acquisition attests. RBC has become the world's broadest supplier of aerospace bearing product, serving the industry with spherical, rod end, and journal plain bearings, ball bearings, cylindrical roller bearings, needle track roller bearings, cam follower bearings, tapered roller bearings, airframe control, thin section ball bearings, and ball bearing rod ends. RBC is focused on the aerospace industry and intends to continually complement its broad offering with new products, new technologies, and acquisitions.

RBC has a long tradition of engineering design excellence and innovation in creating solutions to problems, as our patents reflect. The company also strives to stay on the forefront of bearing material, plating, and design technology. Investing in qualified personnel, capital equipment, material and bearing testing is paramount. RBC also strives to continually refine its manufacturing processes, both to maintain the reputation for quality product and long life, and to remain the industry's cost leader.

A very important part of our strategic vision is to develop/expand on a current business partnership with targeted customers. RBC's goals, objectives, and investments support the aerospace market, while many companies are choosing to exit the industry. RBC believes that its objectives are soundly aligned with the needs of the aerospace industry, both short and long term. All of us at RBC look forward to supplying more of our aircraft offerings through all the RBC aerospace divisions participating in your business.

Warranty

RBC's sole warranty is against defects in materials or workmanship. The foregoing warranty is exclusive, and in lieu of all other warranties (whether written, oral or implied) including, but not limited to, the warranty of merchantability, and the warranty of fitness for a particular purpose. A no charge replacement will be made on any product manufactured by RBC, which upon examination by RBC, appears to be defective, provided it is returned to RBC, transportation prepaid, within ninety (90) days of date of sale, and further provided it has been properly installed or mounted and lubricated and not subject to abuse.

CONTACT US

Domestic

Corporate Headquarters

One Tribology Center 102 Willenbrock Road Oxford, CT 06478 Phone: 203.267.7001 Fax: 203.267.5012

A.I.D. Company

P.O. Box 685 Laurel Heights Drive Clayton, GA 30525 Phone: 706.782.4245 Fax: 706.782.2056

Aircraft Products, Inc

2788 Winsted Road Torrington, CT 06790 Phone: 860.626.7800 Fax: 860.626.7886

Allpower Manufacturing Company

13141 Molette Street Santa Fe Springs, CA 90670 Phone: 562.802.2640 Fax: 562.921.9933

Heim Bearings Company

60 Round Hill Road Fairfield, CT 06824 Phone: 203.255.1512 Fax: 203.319.7709

Industrial Tectonics Bearings Corporation

18301 South Santa Fe Avenue Rancho Dominguez, CA 90221 Phone: 310.537.3750 Fax: 310.537.2909

RBC West Trenton

400 Sullivan Way West Trenton, NJ 08628 Phone: 609.882.5050 Fax: 609.882.5533

Southwest Products Inc./US Bearing

5001 B Commerce Drive Baldwin Park, CA 91010 Phone: 626.358.0181 Fax: 626.303.6141

Transport Dynamics

3131 W. Segerstrom Ave., P.O. Box 1953 Santa Ana, CA 92704.9998 Phone: 714.546.3131

Fax: 714.545.9885

International

RBC France SAS

19, Avenue de Norvege ZA de Courtaboeuf 1 91953 Les Ulis Cedex France

Phone: 011.33.1.60.92.17.35 Fax: 011.33.1.69.86.12.84

Schaublin SA

Rue de la Blancherie 9 CH-2800 Delémont Switzerland

Phone: 011.41.32.421.13.00 Fax: 011.41.32.421.1301

INTRODUCTION

The first RBC bearings designed expressly for airframe controls were manufactured in 1929. As pioneers in this field, these early control bearings paved the way for later generations of RBC products which are recognized as design and performance standards by the global aircraft industry.

Over the years RBC has steadily expanded its aircraft line to meet the increasingly exacting demands imposed by newer, larger aircraft and airborne vehicles. This line now offers the widest range of types and sizes available to the aircraft industry. Many of these products have been specifically designed to meet the demands for elevated temperatures, low torque, closer tolerances, compactness, and greatest load capacity to bearing weight ratios.

Although most bearings listed on the following pages are designed primarily for the airframe industry, many have been used successfully in other fields in which the motion is mainly oscillatory. These bearings are manufactured with the high standards of precision and quality synonymous with RBC's reputation throughout the industry.

GENERAL INFORMATION

RBC airframe (or aircraft) control bearings and RBC ball bearing rod ends are manufactured in compliance to U.S. Government and Aerospace Industry Standards and Specifications.

Airframe control bearings and ball bearing rod ends are of lightweight design, corrosion protected, grease-lubricated, and typically sealed. Although designed and manufactured under demanding quality control requirements for airborne systems, these bearings have been successfully used in other fields of application, where motions are mainly oscillatory and/or with limited rotation.

PRECISION

RBC supplies airframe control bearings both in "Standard" and "Precision" series. The prefix "M" in a bearing number indicates that it is of a precision series. RBC supplies ball bearing rod ends as a Precision series.

MATERIAL

Rings and balls are made of hardened bearing alloy, AISI 52100. All exposed surfaces except bearing bore are cadmium or zinc nickel plated for corrosion protection, unless otherwise noted.

For improved corrosion protection, RBC also supplies bearings made of hardened stainless steel alloy, AISI 440C. This alloy may, in addition, be passivated, cadmium plated, or zinc nickel plated for enhanced corrosion protection.

On ball bearing rod ends the outer rod body is made of a selectively hardened AISI 8620 or RBC AeroCres® fracture-tough material. AeroCres fracture-tough airframe products use a specialized carburized stainless steel. RBC has developed and optimized the heat treatment process resulting in a homogeneous microstructure — delivering both corrosion protection and core fracture toughness.

PERFORMANCE

Please refer to the individual Engineering Section for specific useful information on bearing performance characteristics as for load rating, installation and application.

Tabulated performance data provided in this catalog are guidelines only. Rotational load ratings listed are calculated assuming intermittent slow rotation. When selecting bearings, the loads, motion modes of oscillation or rotation, and speeds must be taken into account.

We strongly recommend that you consult RBC before finalizing your selection, especially when considering a full complement airframe control or rod end bearing for continuous rotational application.

RBC airframe control and rod end bearings offer the following key design features

- Inch and metric sizes with final as-plated dimensions.
- Corrosion Resistance available with stainless steel and/or cadmium plated alloy steels on all exposed surfaces except bore and seals. RBC also offers other corrosion resistant plated materials, which include zinc nickel plated alloy steels and RBC AeroCres® fracture-tough airframe products.
- High load capacities in a compact, lightweight design.
- Inert polytetrafluoroethelene (PTFE) —Teflon® seals standard on most sizes.
- · Extended inner rings eliminate the need for spacers.
- Bearings with suffix FS428 are prepacked with lubricant conforming to specification MIL-PRF-23827 and BMS3-33 and are equipped with PTFE seals.

©2008 RBC Bearings Incorporated. All rights reserved.

Teflon® is a registered trademark of DuPont.

- Bearings with suffix FS464 are prepacked 80% to 100% with lubricant conforming to specification MIL-PRF-81322 and are equipped with PTFE seals.
- Most self-aligning designs permit up to 10° misalignment in either direction.
- RBC airframe control ball bearings conform to SAE-AS7949 (formerly MIL-B-7949) and all major OEM specifications.
- RBC ball bearing rod ends conform to SAE-AS6039 (formerly MIL-B-6039) and OEM specifications.
- NSA ball bearing rod ends.

U.S. GOVERNMENT SPECIFICATIONS

It should be noted that all bearings listed in this section, whether covered by military specification or not, are manufactured to the same high standards of quality and reliability. RBC's objective is to engineer and fabricate control bearings which will meet and exceed the customer's needs, however exacting they may be. By utilizing the latest technology in bearing design and manufacture, RBC surpasses standards set by military specifications. Keeping abreast of advances in the field is RBC's assurance that RBC bearings will be available to fill the most demanding performance requirements as flight vehicles of the future become reality.

SAE-AS7949 SPECIFICATIONS

The airframe control bearings listed on the following pages are manufactured in accordance with the U.S. Government standards as set forth under the appropriate military specifications. The government specification covering the largest number of bearings is SAE-AS7949. Standards applicable under this specification and the bearing series to which they apply are shown in Table 1 below.

SAE-AS6039 SPECIFICATIONS

The rod end bearings listed on the following pages are manufactured in accordance with the U.S. Government standards as set forth under the appropriate military specifications. The government specification covering the largest number of bearings is SAE-AS6039. Standards applicable under this specification and the bearing series to which they apply are shown below:

Solid Shank Rod End	REP-S	MS21150
Male Rod End	REP-M	MS21151
Hollow Shank Rod End	REP-H	MS21152
Female Rod End	REP-F	MS21153

Two additional groups of rod ends, referred to as the "Balanced Design" series, are manufactured to meet the National Aircraft Standards Specification NAS661. Under this specification Balanced Design rod ends conform to standards NAS659 and NAS660.

Table 1

RADIAL PLAY AND GREASE VARIATIONS FOR SAE-AS7949 BEARINGS

MS Series	RBC Series	Standard Radial Play MIL-PRF-81322 Grease		MIL-P	ed Radial Play RF-81322 rease	MIL-P	ard Radial Play RF-23827 rease	Reduced Radial Play MIL-PRF-23827 Grease		
		MS	RBC	MS	RBC	MS	RBC	MS	RBC	
		Suffix	Suffix	Suffix	Prefix/Suffix	Suffix	Suffix	Suffix	Prefix/Suffix	
27640	KP									
27641	KP-A	NONE	FS464	R	M/FS464	G	FS428	RG	M/FS428	
27643	DSP									
27645	KSP									
27644	DPP									
27646	B500DD									
27648	KP-BS	NONE	FS464	N⁄A	N/A	G	FS428	N⁄A	N/A	
27649	AW-AK									
21428	MB500DD									
27647	DW	NONE	FS464	R	M/FS464	L	M/FS464	RL	M/FS428	
27642	KP-B(1)			S ⁽¹⁾	FS464	G		SG ⁽¹⁾	FS428	

⁽¹⁾ MKP-B Series are used for MS27642 bearings with an S or SG suffix (MS27642-16S is RBC MKP16B FS464)

©2008 RBC Bearings Incorporated. All rights reserved.

AIRFRAME CONTROL & ROD END BEARINGS

Bearings listed herein are tabulated in two groups: (1) full complement bearings, which have no ball separators (retainers or cages); and, (2) bearings with ball-separators (ball retainers or ball cages). As noted before, the full complement bearings should be used in applications where the motion is mainly oscillatory; whereas, the bearings with ball separators may be used in applications where the motion may be continuous rotation or oscillatory under relatively light loads.

Airframe Control Full Complement (No Cage) Bearings

KP, MKP, AMKP Series

KP-A, MKP-A, AMKP-A Series

KSP, MKSP, AMKSP Series

KSP-A, MKSP-A, AMKSP-A Series

KP-B, MKP-B, AMKP-B Series

KP-BS, MKP-BS, AMKP-BS Series

DPP Series

DPP-W Series

DSP. MDSP Series

DSRP, GDSRP Series

DW (except DWK, DWK2 and MDW-K), AMDWK

Series

GDW (except GDW4K and GDW4K2)

B500DD, MB500DD, AMB500DD Series

B500. MB500. AMB500 Series

B5500WZZ Series

P8 Pulley Series

K Series, D Series

Rod End Full Complement (No Cage) Bearings

REP Series

RAP Series

RA Series (NAS659)

RR Series (NAS660)

Airframe Control Bearings with Ball Separators

AW-AK Series

DW4K and DW4K2 Series

GDW4K and GDW4K2 Series

P Series (except P8)

BCP Bell Crank Series

©2008 RBC Bearings Incorporated. All rights reserved.

STANDARDS OF QUALITY

All RBC bearings are manufactured to the same high standards of quality and reliability. RBC strives to engineer and utilize the latest available manufacturing technologies for producing bearings which meet and exceed all existing customer standards and expectations. This is RBC's assurance that its bearings will be available to fill the most demanding performance requirements in a variety of applications.

BEARING SELECTION, KEY CONSIDERATIONS

When selecting bearings, the primary focus should be on application requirements. Once the application requirements are clearly understood and specified, selecting bearing type and design is relatively straightforward. What are the main application requirements for bearings? Loads (radial, axial, moment, and magnitude), motion (oscillatory, rotating, or intermittent), speed (fast or slow), bearing life requirements (long or short), operating temperature (hot or cold), and operating medium (clean or contaminated air, water, vacuum, etc.) are among key application requirements. Depending on combination and severity of such factors, RBC engineering can offer guidance in selecting bearings for optimum service in the application.

As an aid in the preliminary stages of bearing selection, but not as a substitute for the services of a skilled bearing engineer, the following points are listed for the guidance of designers and inspectors:

- If the bearing is used for continuous rotation, or in a delicate instrument application, do not consider any of the control type series, such as KP, KP-A, KP-B, KSP, DPP, DSP, etc., but refer to standard radial bearings or other more specialized types listed in other RBC catalogs.
- 2. All control surface hinge bearings should be of the sealed type. The sealed type is recommended on installations exposed to salt water spray, aircraft cleaning solutions, and where subjected to severe dust or dirt. Bearings having no shields or seals should be completely enclosed by the housing in which they are mounted to provide protection against external contaminants from entering the bearing and prevent lubricant inside from migrating or escape out of the bearing.
- Airframe control self-aligning bearings of the KSP series are intended to compensate for misalignment due to initial setup and deflection in structure. They

- should not be used as rod end bearings in nonplanar linkages. For such applications, the DSP or DSRP series should be considered.
- 4. Bearing design intent and installation guidelines should be followed closely. Due consideration should be given to how a bearing would perform as installed and loaded in the next level assembly, as opposed to how it performs during free-state handling. Inspectors, therefore, should not reject KSP, DSP and DSRP series bearings because of tightness and/or roughness when the bearing is spun in a misaligned position. A study of the internal design will show that in pure misalignment (not accompanied by rotation) the balls do not roll, but skid across the ball raceway due to their wedging action. Any inspector's insistence that bearings be loosely fitted to ensure ease of misalignment would be unjustified and might cause flutter because of sloppy controls. A reasonable amount of tightness in self-aligning bearings (not excess binding) will ensure the desired rigidity in the control linkage system. Please adhere to instructions on shaft and housing fits provided in this catalog.
- 5. On applications in which a pair of bearings is assembled in a housing, such as on a bell crank pivot, for example, the following considerations are vital to satisfactory service:
 - a. Bearings should not be preloaded when the nut is tightened up on the bolt or shaft supporting the two bearings.
 - b. Ensure concentricity of bearing seats in the housing to avoid binding of bearing with respect to each other, when the bolt is passed through. As rule of thumb, to prevent premature bearing failures, the size and form precision of the supporting housing and shaft should be comparable to those of the bearing itself.

Questions concerning information in this section should be directed to the appropriate RBC Aerospace Bearings sales engineer.

LOAD RATINGS, LIMIT, AND STATIC RATINGS

The limit load ratings published in this catalog for airframe control bearings are the product of a special study undertaken jointly in 1949 by the Bureau of Aeronautics, the United States Air Force, the National Aircraft Standards Committee (NASC), and the American Bearing Manufacturers Association (ABMA). The purpose

of this study was to develop a system for rating airframe control bearings based on criteria that would simulate more closely conditions encountered in real flight.

The basic equation is:

Limit load rating = Knd²

where K = Load rating constant

n = Number of balls

d = Ball diameter

Typical K factors for radial limit load ratings are about 10,000 for deep groove bearings, 4800 for single row self-aligning bearings, 3800 for double row self-aligning bearings and 3200 for rod end bearings. In no case does the limit load rating exceed two-thirds of the bearing's minimum static fracture strength. That is, the minimum static fracture strength is 1.5 times the limit load rating.

OSCILLATING LOAD RATINGS

For bearing life and load calculations under oscillating conditions, consult the RBC Aerospace Engineering Department.

Full complement type bearings should not be used for rotating applications either intermittent or continuous. If it becomes necessary to consider these bearings in such applications, consult the RBC Aerospace Engineering Department prior to making selections.

An oscillating load rating system was accepted by AFBMA as an unpublished standard in 1959.

This standard permits selection of the smallest bearing that will operate under the normal loading for the desired life. This data is presented as tables of radial load ratings for 10,000 complete 90° oscillatory cycles. The 90° angle was selected as typical, a good value for test work, and conservative for bearing selection until more data is accumulated on the effect of various angles of oscillation. Rating are given for:

- Case I: where the load is fixed with respect to the outer race (inner ring oscillation)
- Case II: where the load is fixed with respect to the inner race. (outer ring oscillation)

Radial load ratings for any other number of oscillatory cycles may be readily obtained by multiplying the basic 10,000 cycle rating by a life factor obtained from a life factor curve.

The formulas for the ratings and life factors were derived from data accumulated by testing many bearings of different sizes and types under several different radial loads.

Briefly then, in selecting a bearing there are two steps:

- 1. Select a bearing that has a radial limit load rating equal to or in excess of application limit load.
- 2. Check the oscillatory rating of this bearing to ensure that the desired average life will be obtained under the normal loading.

In actual service, the load on any control position varies as the number of times the various loads are applied. Knowing the different loads and their duration, it is possible to calculate one equivalent load that would give the same number of cycles average life as the various loads. No one load may be greater than the limit load rating of the bearing. The equivalent load may be calculated from the formula:

$$P = [\sum K_i (P_i)^{3.6}]^{1/3.6}$$

where P = Equivalent load - Pounds or Newtons

P_i = Actual applied load - Pounds or Newtons

K_i = Proportion of service time that Pi is applied

For example, suppose a particular application carries a radial load of 500 lbs. for 15% of the total service time, 1000 lbs. for 75% and 2000 lbs. for 10%. Then the equivalent load on this bearing is:

$$P = [.15(500)^{3.6} + .75(1000)^{3.6} + .10(2000)^{3.6}]^{1/3.6}$$

= 1208 lbs.

The tabulated values shown in various load rating tables will give an average life of 10,000 complete oscillatory cycles for two conditions of operation. Case I values are for bearing capacities with the load fixed with respect to the outer race. Case II values are for loads fixed with respect to the inner race.

A Life Factor Chart is provided to determine bearing capacity for an average life greater than 10,000 cycles and is used with the load rating tables. The life factor for the required average life is taken from the chart. The Case I or Case II rating of the bearing is then multiplied by this life factor. This product is the load which the bearing can carry to give the required average life. For life requirements of less than 10,000 cycles, we advise using the 10,000 cycle rating. Beyond this point, the criteria that determined this graph do not remain constant.

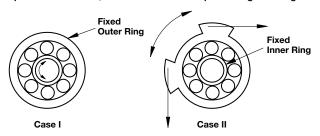
The proportionate amount of time that the various service loads are carried by a bearing can best be determined by the designer, who is familiar with the type of aircraft under consideration. With accumulated experience it is expected that shortcuts in using this method of bearing selection will be developed for each type of aircraft.

Following are typical examples of bearing selection based upon the procedure described previously.

Example 1

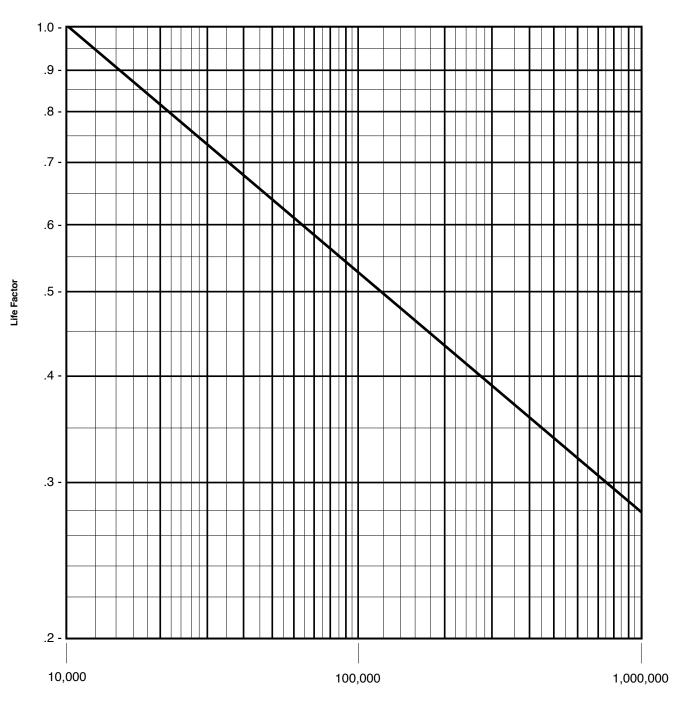
Taking the 1208 lb. equivalent load (above) in an application in which the heaviest of three radial loads is 2000 lbs., we can proceed through the KP and KP-A Series locating the smallest acceptable bearing as follows:

If there is no oscillatory life requirement stated and set-up of an overhaul period according to oscillatory life indicated, then proceed through the KP Series until the KP4 is reached, which is the first size having a radial limit load rating exceeding 2000 lbs. (2680 lbs.) and Case II rating 2030 lbs. Both of which exceed the 1208 lb. equivalent. The average oscillatory life for 1208 lbs. on a KP4 for Case I condition is 120,200 cycles for a Life Factor of 1208/2410 = .501. The average oscillatory life for 1208 lbs. on a KP4 for Case II condition is 64,700 cycles for a Life Factor of 1208/2030 = .595. The overhaul schedule can be set up for these average lives or on the basis of one-fifth of these lives for minimum life (90% survival).


Similar procedure in the KP-A Series shows KP5A as the smallest acceptable size with an average life of 43,700 cycles for Case I and 27,500 cycles for Case II. Minimum life is again one-fifth of these average life values.

Example 2

For another case, keep this 1208 lb. equivalent load and 2000 lb. maximum load and select a bearing which would have a Case I average life requirement of 690,000 cycles. The Life Factor to give this life is .309 or the Case I range must exceed 3910 (from 1208/.309). A KP5 or KP10A are the smallest bearing sizes in these series to satisfy this condition.


RATED RADIAL CAPACITIES

The rated radial capacities for complete rotation given in this catalog are based on AFBMA Standard Section 9, Method of Evaluating Load Ratings for Ball Bearings. The Life Basis is for 2500 hours average life at 100,300 and 500 rpm. For other Life Basis and/or speed conditions, consult RBC Aerospace Engineering.

LIFE FACTOR CHART

Average Life — Complete 90° Oscillatory Cycles

EXAMPLES OF BEARING SELECTION UNDER COMBINED LOADING CONDITIONS

Equivalent Limit Load – Combined Loading

When radial load, thrust load and moment load are encountered in combination (all three or any two) on a single bearing mounting, an equivalent thrust limit load is obtained and the customer can select an airframe bearing of a size having a thrust limit rating exceeding the equivalent thrust load. This is for static conditions and disregards life requirements under oscillation.

The formula for an individual size of bearing follows here and footnotes under various series tables give approximations for sizes within a series with applicable approximate ratios of ratings given:

Equiv. thrust load =

Thrust limit load rating

x Radial load

Radial limit load rating

+ Thrust load + Moment constant

x Moment in inch pounds

As an example on a KP6A bearing

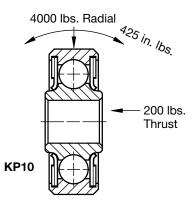
Equiv. thrust load = (1100/2500) x Radial load

+ Thrust load + 7.68 x Moment

Note that it is necessary to be dealing with a certain bearing size especially when moment is involved, and trial sizes are chosen having pure moment ratings larger than moment load involved to leave the capacity to be absorbed by radial and thrust components. If moment load is a big part of the loading, then it is necessary to select a bearing from a series having good moment ratings. When only radial and thrust loads are present, the problem is not so involved as any certain series has a fairly constant ratio of radial and thrust limit load ratings.

COMBINED LOADS INCLUDING MOMENT LOADS FOR SINGLE AND DOUBLE ROW BEARINGS

Note that the dynamic thrust load should not exceed 60% of the applied radial load for a full type bearing.


To illustrate the use of the moment constants given in the load rating tables, here are two typical calculations.

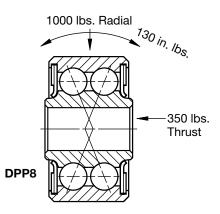
Using the safety factor formula:

Safety factor =
$$\frac{\text{Static thrust}}{\text{Equivalent thrust load}}$$

Problem 1

We want to figure the equivalent thrust load and the safety factor on a KP10 (single row) bearing in an application where the radial load imposed is 4000 lbs., the thrust load is 200 lbs., and the overturning moment load is 425 in. lbs.

Substituting in the formula:


Equivalent thrust load $= (.44 \times 4000 \text{ lbs.}) + 200 \text{ lbs.}$

 $+ (4.09 \times 425 \text{ in. lbs.}) = 3698 \text{ lbs.}$

Safety factor =(6200 lbs./3698 lbs.) = 1.68

Problem 2

Consider a DPP8 (double row) bearing in an application where the loads imposed are as follows: 1000 lbs. radial load, 350 lbs. thrust load and an overturning moment load of 130 in. lbs.

Substituting in the formula:

Equivalent thrust load = $(.3 \times 1000 \text{ lbs.}) + 350 \text{ lbs.}$

 $+ (13.2 \times 130 \text{ in. lbs.}) = 2366 \text{ lbs.}$

Safety factor = (7800 lbs./2366 lbs.) = 3.30

TORQUE

Torque in ball bearings can be conveniently classified under two headings: inherent torque and induced torque.

Inherent Torque

The first, inherent torque, is the cumulative effect of the following factors:

Geometry: Surface finish of mating parts, deviations from roundness in the races, ball sphericity, and tolerances between functional surfaces.

Internal fit-up: Race curvatures, contact angle, radial internal clearance, and number of balls.

Bearing type: Full complement, radial or angular contact, type of retainer, shields, and seals, if any.

Lubricant: Type and quantity.

The term "inherent torque" is used to emphasize the nature of the torque due to the above causes. While the amount of torque in inch-ounces or gram-centimeters varies according to the degree of precision exercised in the manufacture of a bearing, a certain mean value is attained for each set of conditions, and that level of torque cannot practically be further reduced. The actual no-load, slow-speed inherent torque is very small compared with the torque induced by external causes during operation. At best, inherent torque is a comparative quality for bearing evaluation. Therefore, it is often measured with only a few drops of oil in the bearing. It is controlled almost entirely by the manufacturer, rather than by the customer.

Induced Torque

The second category, induced torque, is the cumulative effect of the following factors, all of which are external in origin to the bearing:

Loads: Both the magnitude and direction of the loads.

Speeds: The variation of, and maximum rpm.

Fits: The shaft and housing fits, plus the alignment

of shaft and housing.

Temperature: The effect on fits and lubricant properties. **Contamination:** Both foreign matter that enters the bearing and by-products of lubricant breakdown within the bearing.

The term "Induced Torque" as used herein denotes torque resulting from the method of bearing operation and its environment. With the exception of very lightly loaded, slow-speed applications, induced torque far exceeds inherent torque in a ball bearing, by a factor of 50 or more. The customer, therefore, has the final control over how much torque the bearings he uses will exhibit. Reduction of induced torque is primarily the customer's responsibility.

Design Criteria

The designer or engineer who strives to achieve the lowest economical torque must begin this task before placing the order. The bearing manufacturer can furnish bearings with minimum inherent torque and the least potential for induced torque only if a complete description of the application is made available. Such description will include the following:

Speeds: Maximum; normal; acceleration, if it is rapid.

Loads: Radial, axial or moment loading; magnitude; and relation to speed when possible.

Temperature: Minimum; maximum; normal operating; duration at extremes; shut-down conditions if soakback is involved when the bearing is stationary; loads during high temperatures.

Lubrication: Whether grease or oil is required; if a circulating or splash-feed oil system is used, accurate determination of the quantity of oil available.

Materials: Specification of shaft and housing material and configurations (i.e., wall thickness, hollow, solid or splined shaft).

Environment: Specify if air, hot gases, fluids, dust, mud, etc. If a foreign substance, either a liquid or slurry, is present, indicate whether it is present continuously or only as a spray or occasional splashing.

Frequently, an inquiry for a ball bearing application includes most of the above, but no drawing accompanies the data. Both a drawing and a complete description as outlined above are required to properly specify the bearing to be used.

Shaft and Housing Fits

Once the bearings are ordered, the designer must ensure that the mating components are consistent with requirements. Housing and shaft fits must be held within specified limits while maintaining close control on roundness for these two dimensions. Interference fits directly affect the internal clearance in ball bearings — as much as 50% to 80% of the interference translates into reduced radial internal clearance, depending on the size of the bearing involved. Paralleling this situation, unequal heating of the inner and outer rings can have the same effect. Frequently, both conditions exist simultaneously: a press fit on the shaft, and higher shaft temperatures than housing temperatures. The result can be an increase in bearing torque or even complete failure due to damage caused by internal interference. Heat soak-back can also damage bearings due to thermal expansion occurring while the bearing is not rotating.

Effect of Low Temperature

Very low temperature conditions can also cause torque to increase sharply. The increase results from a change in housing fits due to thermal contraction and is very pronounced with dissimilar metals such as aluminum housings and steel bearings. There is also a marked increase in lubricant viscosity, particularly with greases. An example is found in aircraft control bearings, which are frequently mounted in aluminum housings and sealed with a quantity of grease enclosed. During ground handling and take-off, there is no detrimental torque in the bearings. However, during extended cruise at altitudes where the air temperature drops to -65°F (-54°C) or lower, the bearing may be literally frozen, due to interference and/or stiffened lubricant. After returning to more normal temperatures, the bearing may operate satisfactorily if only the stiff grease caused it to freeze; however, if the housing interference was excessive, and the races are brinnelled, subsequent operation will be rough and noisy.

Misalignment

Misalignment of the rotating member and the housing can cause high torque by applying a preload as the balls travel from one side of the race to the other during each revolution of the bearing. At sustained speeds, there is also a temperature rise, and the possibility of exceeding the load capacity of the lubricant. This condition, if self-sustaining, rapidly worsens to the point of bearing failure.

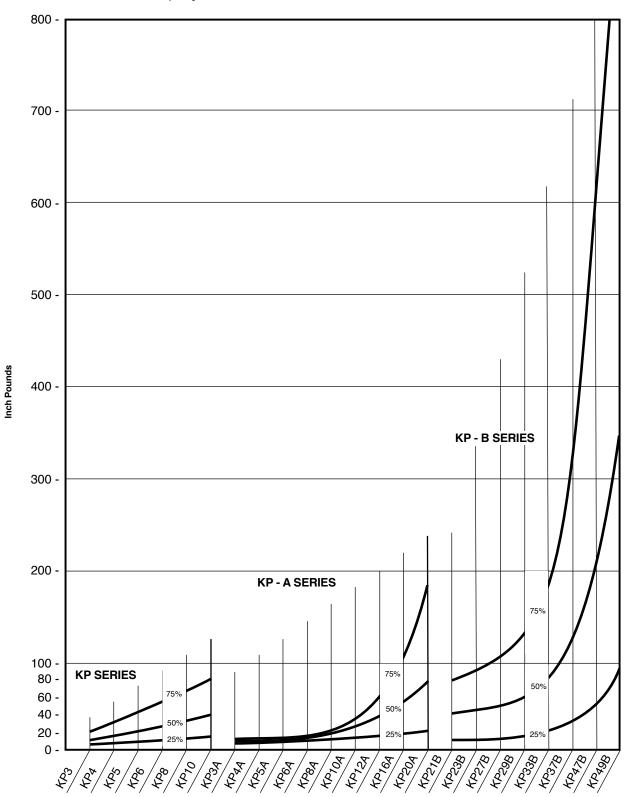
Loading

Torque in bearings increases directly as a function of load: either radial, axial, or a combination of the two. When loads are substantial, the designer should allow for the largest bearing possible, consistent with overall requirements early in the design stage. High torque due to loading cannot be significantly reduced for a given size bearing.

Seals

In applications where low speeds or oscillation are involved and where seals are needed to protect the bearing and retain lubricant, it is essential that information relative to contaminants be included with the description of the application. A variety of materials is available for seals; however, each one is unique in its ability to resist chemical attack by lubricants, hydraulic fluids, etc., and in its physical characteristics such as flexibility. For a particular condition of temperature, lubricant, and outside contamination, there is usually only one specific seal material that will best satisfy all requirements. The standard seal material used in the RBC airframe control and rod end bearings is PTFE.

STARTING TORQUE LEVELS


Proper interpretation of the graph on page 16 on starting torque levels under radial loads requires that the user keep the following limitations in mind. The values were obtained under laboratory conditions with controlled fits, pure radial loading, and at room temperature. Therefore, the torque values are probably lower than those expected in airframe installations. The numerous other external factors that contribute to induced torque, as previously discussed, are not accounted for in the chart. For example, the effect of low temperature on starting torque due to grease stiffness varies widely. A KP3A bearing may show a 100% increase in starting torque at -65°F (-54°C), whereas a KP47B may show only about 10% greater torque, when both bearings are radially loaded to 75% of their rated capacity. Interference fits in housings, differential thermal expansion and contraction of steel bearings and aluminum housings, thrust loads, moment loads, etc., will all add significantly to the chart values for starting torque.

For applications in which low torque is critical, consult RBC Aerospace Engineering for recommendations, giving full particulars of the application.

STARTING TORQUE CHART

Note: This chart is intended only as a guide.

Representative Starting Torque Levels at 25%-50% and 75% of Radial Limit Load: KP, KP-A, and KP-B Series

©2008 RBC Bearings Incorporated. All rights reserved.

SHAFT AND HOUSING FITS FOR AIRFRAME BEARINGS

It is essential for proper operation that small, heavily loaded bearings in oscillating service be mounted in housings with a light, but positive, interference (press) fit. Staking or spinning of the housing over the outer ring chamfer is recommended to secure the bearing axially. In some applications involving considerable thrust load, a housing shoulder is desirable.

Minimum and Maximum Fits

The minimum and maximum press fits shown in the following tables represent a compromise condition. Actually, the optimum press fit is approximately .0005 in., .013mm for steel and approximately .0007 in., .018mm for aluminum or magnesium. However, since the bearing outside diameter tolerance is .0005 in., .013mm and a housing bore tolerance of .0005 in., 013mm is the least which can be maintained by usual manufacturing practice. a total possible range of fit of .0010 in., .025mm results. The average outside diameter pressed into the average housing bore results in a press fit range of approximately .0006 in., .015mm; namely, for steel .0002 in. - .0008 in., .005mm - .020mm and for aluminum or magnesium .0005 in. - .0010 in., .010mm - .025mm. Housing bores should not be allowed to run consistently to the low side of the tolerance, as this will obviously increase the average interference and raise the percentage of extreme fits.

Radial Clearance

In all but specially assembled aircraft bearings, a small amount (less than .0010 in., .025mm) of radial clearance is provided between balls and races. When the outer ring is press-fitted into a housing, a portion of

the interference is absorbed by contraction of the outer ring, the balance by the expansion of the housing – the proportions, depending on the relative sections, and the modulus of elasticity of the material.

When the press fit becomes too heavy, the initial radial clearance in the bearing may be removed, resulting in a radially preloaded bearing. Such preloading lessens the capacity of the bearing for applied loads. Hence, excessive press fits should be carefully avoided.

Mean Fits (Tight or Loose)

The expected mean fits listed in the tables result when bearings are mounted on shafts and in housings having the recommended diameters. In the manufacture of ball bearings, most of the bores and outside diameters are near the mean diameter of the tolerance. Similarly, the majority of shafts and housings are held to diameters near the mean of the recommended tolerances. Experience has shown that when standard bearings are mounted on shafts and in housings, the diameters of which are held to recommended tolerances, 85% to 90% of the assemblies will be close to the mean expected fits, and less than 2% will be near the extremes for tightness and looseness.

Although selective assembly is not feasible in most aircraft plants, when extreme fits are encountered, as evidenced by pronounced drag in bearing rotation after mounting, it is recommended that the bearing be removed and fitted to a slightly larger housing bore. This is seldom necessary with rigid type bearings, but may be desirable with self-aligning bearings.

SHAFT AND HOUSING FITS FOR OSCILLATORY SERVICE AW-AK, KP, KP-A, KSP, KSP-A, DPP, DPP-W, DSP, DSRP, GDSRP, DW, GDW, P SERIES

Housing Fits	Standar	d Series							
Bear 0.I		Hou	eel sing ore	Me Fi Tig	it	or Mag	ninum Inesium 1g Bore	Me Fi Tig	it
in.	mm	in.	mm	in.	mm	in.	mm	in.	mm
0.6250	15.875	0.6245	15.862	0.0005	0.013	0.6243	15.857	0.0007	0.018
0.6245	15.862	0.6240	15.849			0.6238	15.844		
0.7500	19.050	0.7495	19.037	0.0005	0.013	0.7493	19.032	0.0007	0.018
0.7495	19.037	0.7490	19.024			0.7488	19.019		
0.7774	19.746	0.7769	19.733	0.0005	0.013	0.7767	19.728	0.0007	0.018
0.7769	19.733	0.7764	19.720			0.7762	19.715		
0.8125	20.638	0.8120	20.625	0.0005	0.013	0.8118	20.620	0.0007	0.018
0.8120	20.625	0.8115	20.612			0.8113	20.607		
0.8750	22.225	0.8745	22.212	0.0005	0.013	0.8743	22.207	0.0007	0.018
0.8745	22.212	0.8740	22.199			0.8738	22.194		
0.9014	22.896	0.9009	22.883	0.0005	0.013	0.9007	22.878	0.0007	0.018
0.9009	22.883	0.9004	22.870			0.9002	22.865		
0.9375	23.812	0.9370	23.800	0.0005	0.013	0.9368	23.795	0.0007	0.018
0.9370	23.800	0.9365	23.787			0.9363	23.782		
1.0625	26.988	1.0620	26.975	0.0005	0.013	1.0618	26.970	0.0007	0.018
1.0620	26.975	1.0615	26.962			1.0613	26.957		
1.1250	28.575	1.1245	28.562	0.0005	0.013	1.1243	28.557	0.0007	0.018
1.1245	28.562	1.1240	28.546			1.1238	28.544		
1.1875	30.162	1.1870	30.149	0.0005	0.013	1.1868	30.145	0.0007	0.018
1.1870	30.149	1.1865	30.136			1.1863	30.132		
1.2500	31.750	1.2495	31.737	0.0005	0.013	1.2493	31.732	0.0007	0.018
1.2495	31.737	1.2490	31.724			1.2488	31.719		
1.3750	34.925	1.3745	34.912	0.0005	0.013	1.3743	34.907	0.0007	0.018
1.3745	34.912	1.3740	34.899			1.3738	34.894		
1.4375	36.512	1.4370	36.499	0.0005	0.013	1.4368	36.495	0.0007	0.018
1.4370	36.499	1.4365	36.486			1.4363	36.482		
1.6250	41.275	1.6245	41.262	0.0005	0.013	1.6243	41.257	0.0007	0.018
1.6245	41.262	1.6240	41.249			1.6238	41.244		
1.6875	42.862	1.6870	42.849	0.0005	0.013	1.6868	42.845	0.0007	0.018
1.6870	42.849	1.6865	42.836			1.6863	42.832		
1.9375	49.212	1.9370	49.199	0.0005	0.013	1.9368	49.195	0.0007	0.018
1.9370	49.199	1.9365	42.186			1.9363	49.182		
2.0000	50.800	1.9995	50.787	0.0005	0.013	1.9993	50.782	0.0007	0.018
1.9995	50.787	1.9990	50.774			1.9988	50.769		
2.2500	57.150	2.2495	50.137	0.0005	0.013	2.2493	57.132	0.0007	0.018
2.2495	57.137	2.2490	57.124			2.2488	57.119	1	

Shaft Fits - Standard Series

For oscillating service in which bearings are not mounted on standard aircraft bolts, and are not clamped axially on shafts, it is recommended that shaft diameters from nominal bearing bore size -.0005 in. (-.013mm) to nominal bearing bore size -.0010 in. (.025mm) be used.

SHAFT AND HOUSING FITS FOR OSCILLATORY SERVICE MKP, MKP-A, MKSP, MKSP-A, MDPP, MDSP, MDW(K) SERIES

_		St	eel	Me	an	Alum	ninum	Me	an	
Bear 0.0			sing	F	it	or Mag	jnesium	Fit		
0.2	•	В	ore	Tiç	jht	Housir	ng Bore	Tiç	jht	
in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	
0.6250	15.875	0.6246	15.865	0.00045	0.0115	0.6244	15.860	0.00065	0.0165	
0.6246	15.865	0.6241	15.852			0.6239	15.847			
0.7500	19.050	0.7496	19.040	0.00045	0.0115	0.7494	19.035	0.00065	0.0165	
0.7496	19.040	0.7491	19.027			0.7489	19.072			
0.7774	19.746	0.7770	19.736	0.00045	0.0115	0.7768	19.731	0.00065	0.0165	
0.7770	19.736	0.7765	19.723			0.7763	19.718			
0.8125	20.638	0.8121	20.628	0.00045	0.0115	0.8119	20.622	0.00065	0.0165	
0.8121	20.628	0.8116	20.615			0.8114	20.609			
0.8750	22.225	0.8746	22.215	0.00045	0.0115	0.8744	22.210	0.00065	0.0165	
0.8746	22.215	0.8741	22.202			0.8739	22.197			
0.9014	22.896	0.9010	22.886	0.00045	0.0115	0.9008	22.880	0.00065	0.0165	
0.9010	22.886	0.9005	22.873			0.9003	22.867			
1.0625	26.988	1.0621	26.978	0.00045	0.0115	1.0619	26.972	0.00065	0.0165	
1.0621	26.978	1.0616	26.965			1.0614	26.959			
1.1250	28.575	1.1246	28.565	0.00045	0.0115	1.1244	28.560	0.00065	0.0165	
1.1246	28.565	1.1241	28.552			1.1239	28.547			
1.2500	31.750	1.2496	31.740	0.00045	0.0115	1.2494	31.735	0.00065	0.0165	
1.2496	31.740	1.2491	31.727			1.2489	31.722			
1.3750	34.925	1.3746	34.915	0.00045	0.0115	1.3744	34.910	0.00065	0.0165	
1.3746	34.915	1.3741	34.902			1.3739	34.897			
1.4375	36.512	1.4371	36.502	0.00045	0.0115	1.4369	36.497	0.00065	0.0165	
1.4371	36.502	1.4366	36.489			1.4364	36.484			
1.6250	41.275	1.6246	41.265	0.00045	0.0115	1.6244	41.260	0.00065	0.0165	
1.6246	41.265	1.6241	41.252			1.6239	41.247			
1.6875	42.862	1.6871	42.852	0.00045	0.0115	1.6869	42.847	0.00065	0.0165	
1.6871	42.852	1.6866	42.839			1.6864	42.834			
1.9375	49.212	1.9371	49.202	0.00045	0.0115	1.9369	49.197	0.00065	0.0165	
1.9371	49.202	1.9366	49.189			1.9364	49.184			
2.0000	50.800	1.9996	50.790	0.00045	0.0115	1.9994	50.785	0.00065	0.0165	
1.9996	50.790	1.9991	50.777			1.9889	50.782			
2.2500	57.150	2.2496	57.140	0.00045	0.0115	2.2494	57.135	0.00065	0.0165	
2.2496	57.140	2.2491	57.127			2.2489	57.122			

Shaft Fits - Precision M Series

For oscillating service in which bearings are not mounted on standard aircraft bolts, and are not clamped axially on shafts, it is recommended that shaft diameters from nominal bearing bore size -.0003 in. (-.008mm) to nominal bearing bore size -.0008 in. (.020mm) be used.

COMPARISON OF INSPECTION LIMITS - STANDARD SERIES VERSUS PRECISION SERIES

Bearing Series		Standard KP, KP-A, KSP ⁽²⁾ , KSP-A ⁽²⁾ , DPP, DSP, DW, DSRP, GDSRP		Precision MKP, MKP-A, MKSP, MKSP-A, MDPP, MDSP, MDW, MDSRP		Standard KP-B and KP-BS		Precision MKP-B and MKP-BS		Standard B538(DD) thru B543(DD)		Precision MB538(DD) thru MB543(DD)		Standard B544(DD) and up		Precision MB544(DD) and up	
			mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm
bore:	mean	+0.0000	+0.000	+0.0000	+0.000	+0.0000(1)	+0.000	+0.0000	+0.000	+0.0007	+0.018	+0.0000	+0.000	+0.0010	+0.025	+0.0000	+0.000
	diameter	-0.0005	-0.013	-0.0003	-0.008	-0.0010 ⁽¹⁾	-0.025	-0.0005	-0.013	-0.0007	-0.018	-0.0005	-0.013	-0.0010	-0.025	-0.0008	-0.020
0.D.:	mean	+0.0000	+0.000	+0.0000	+0.000	+0.0000	+0.000	+0.0000	+0.000	+0.0000	+0.000	+0.0000	+0.000	+0.0000	+0.000	+0.0000	+0.000
	diameter	-0.0005	-0.013	-0.0004	-0.010	-0.0010	-0.025	-0.0010	-0.025	-0.0010	-0.025	-0.0005	-0.013	-0.0015	-0.038	-0.0007	-0.018
width:	inner	+0.0000	+0.000	+0.0000	+0.000	+0.0000	+0.000	+0.0000	+0.000	+0.0000	+0.000	+0.0000	+0.000	+0.0000	+0.000	+0.0000	+0.000
		-0.0050	-0.130	-0.0025	-0.064	-0.0050	-0.130	-0.0025	-0.064	-0.0050	-0.130	-0.0025	-0.064	-0.0050	-0.130	-0.0025	-0.064
width:	outer	+0.0000	+0.000	+0.0000	+0.000	+0.0000	+0.000	+0.0000	+0.000	+0.0000	+0.000	+0.0000	+0.000	+0.0000	+0.000	+0.0000	+0.000
		-0.0050	-0.130	-0.0050	-0.130	-0.0050	-0.130	-0.0050	-0.130	-0.0050	-0.130	-0.0050	-0.130	-0.0050	-0.130	-0.0050	-0.130
parallelism:	inner	0.0008	0.020	0.0005	0.013	0.0008	0.020	0.0004	0.010	0.0008	0.020	0.0004	0.010	0.0008	0.020	0.0004	0.010
	outer	0.0008	0.020	0.0005	0.013	0.0008	0.020	0.0004	0.010	0.0008	0.020	0.0004	0.010	0.0008	0.020	0.0004	0.010
squareness:	inner	0.0010	0.025	0.0005	0.013	0.0010	0.025	0.0005	0.013	0.0010	0.025	0.0005	0.013	0.0010	0.025	0.0005	0.013
	outer	0.0010	0.025	0.0005	0.013	0.0010	0.025	0.0005	0.013	0.0010	0.025	0.0005	0.013	0.0010	0.025	0.0005	0.013
radial eccentricity:	inner	0.0010	0.025	0.0005	0.013	0.0010	0.025	0.0008	0.020	0.0020	0.050	0.0008	0.020	0.0020	0.050	0.0008	0.020
	outer	0.0016	0.040	0.0008	0.020	0.0016	0.040	0.0008	0.020	0.0016	0.040	0.0008	0.020	0.0016	0.040	0.0008	0.020
face runout:	inner	0.0010	0.025	0.0007	0.018	0.0010	0.025	0.0008	0.020	0.0020	0.050	0.0008	0.020	0.0020	0.050	0.0008	0.020
	outer	0.0016	0.040	0.0010	0.025	0.0016	0.040	0.0010	0.025	0.0016	0.040	0.0008	0.020	0.0016	0.040	0.0008	0.020

⁽¹⁾ All bore and 0.D. tolerances including those for MKP-B are referred to the nominal fractional dimensions except the bores of the KP-B and KP-BS series whose "nominal" dimensions are .0005 in., .013mm above the nominal fractional dimension.

(2) Radial play for KSP and KSP-A series is .000 in. / .0010 in..

(3) Not applicable to self-aligning bearings.

Note: These tolerances conform to those shown in ANSI\ABMA standard 16.2

INTERNAL CLEARANCES

Bear	ing Sizes						
Standard	Precision M Series	Radial Play ⁽²⁾					
		ir		mm			
KP, KP-A ⁽¹⁾		0.0004	0.0010	0.010	0.025		
	MKP, MKP-A	0.0002	0.0005	0.005	0.013		
KSP, KSP-A		0.0000	0.0010	0.000	0.025		
	MKSP, MKSP-A	0.0001	0.0005	0.003	0.013		
	MKP-B(S)	0.0001	0.0005	0.003	0.013		
DSRP, GDSRP	MDSRP	0.0004	0.0008	0.010	0.020		
KP16B(S)-KP49B(S)		0.0003	0.0010	0.008	0.025		
KP52B(S) and up		0.0003	0.0015	0.008	0.038		
B538(DD)-B546(DD)		0.0008	0.0018	0.020	0.046		
	MB538(DD)- MB546(DD)	0.0001	0.0005	0.003	0.013		
DW, DPP ⁽¹⁾		0.0010	0.0030	0.025	0.076		
DSP ⁽¹⁾	MDSP	0.0035	0.0055	0.089	0.140		
	MDW, MDPP	0.0010	0.0020	0.025	0.051		

⁽¹⁾ For reduced radial play of .0002 in.\.0005 in., .005mm\.013mm.

⁽²⁾ Under 5.5 lb. (2.49kg) gage load.

SHAFT AND HOUSING FITS FOR OSCILLATORY SERVICE (M)*KP-B, (M)*KP-BS SERIES

				Shaf	t Fits			Housing Fits									
Bearing I	Number		Bearing Bore		uminum nesium aft	Me Fi Loo	t	KP-		ng O.D. KP	-BS	KP-	or Magnesi	luminum ium Housii KP-	•	Mea Fi Loo	t
		in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm
KP16B	KP16BS	1.0000	25.400	0.9995	25.387	0.0005	0.013	1.7500	44.450	1.9375	49.212	1.7510	44.475	1.9385	49.238	0.0010	0.025
		0.9995	25.387	0.9990	25.375			1.7490	44.425	1.9365	49.187	1.7500	44.450	1.9375	49.213		
KP21B	KP21BS	1.3130	33.350	1.3120	33.325	0.0010	0.025	2.0625	52.388	2.2500	57.150	2.0635	52.413	2.2510	57.175	0.0010	0.025
		1.3120	33.325	1.3110	33.299			2.0615	52.362	2.2490	57.125	2.0625	52.388	2.2500	57.150		
KP23B	KP23BS	1.4380	36.525	1.4370	36.500	0.0010	0.025	2.1875	55.562	2.3750	60.325	2.1885	55.588	2.3760	60.350	0.0010	0.025
		1.4370	36.500	1.4360	36.474			2.1865	55.537	2.3740	60.300	2.1875	55.562	2.3750	60.325		
KP25B	KP25BS	1.5630	39.700	1.5620	39.675	0.0010	0.025	2.3125	58.738	2.5000	63.500	2.3135	58.763	2.5010	63.525	0.0010	0.025
		1.5620	39.675	1.5610	39.649			2.3115	58.712	2.4990	63.475	2.3125	58.738	2.5000	63.500		
KP29B	KP29BS	1.8130	46.050	1.8120	46.025	0.0010	0.025	2.5625	65.088	2.7500	69.850	2.5635	65.113	2.7510	69.875	0.0010	0.025
		1.8120	46.025	1.8110	45.999			2.5615	65.062	2.7490	69.825	2.5625	65.088	2.7500	69.850		
КР33В	KP33BS	2.0630	52.400	2.0620	52.375	0.0010	0.025	2.8125	71.438	3.0000	76.200	2.8135	71.463	3.0010	76.225	0.0010	0.025
		2.0620	52.375	2.0610	52.349			2.8115	71.412	2.9990	76.175	2.8125	71.438	3.0000	76.200		
КР37В	KP37BS	2.3130	58.750	2.3120	58.725	0.0010	0.025	3.0625	77.788	3.2500	82.550	3.0635	77.813	3.2510	82.575	0.0010	0.025
		2.3120	58.725	2.3110	58.699			3.0615	77.762	3.2490	82.525	3.0625	77.788	3.2500	82.550		
KP47B	KP47BS	2.9380	74.625	2.9370	74.600	0.0010	0.025	3.8750	98.425	4.1250	104.775	3.8760	98.450	4.1260	104.800	0.0010	0.025
		2.9370	74.600	2.9360	74.574			3.8740	98.400	4.1240	104.750	3.8750	98.425	4.1250	104.775		
_	KP48BS	3.0000	76.200	2.9990	76.175	0.0010	0.025	_	_	4.2500	107.950	_	_	4.2510	107.975	0.0010	0.025
		2.9990	76.175	2.9980	76.149			—	_	4.2490	107.925	_	_	4.2500	107.950		
KP49B	KP49BS	3.0630	77.800	3.0620	77.775	0.0010	0.025	4.0000	101.600	4.2500	107.950	4.0010	101.625	4.2510	107.975	0.0010	0.025
		3.0620	77.775	3.0610	77.749			3.9990	101.575	4.2490	107.925	4.0000	101.600	4.2500	107.950		
KP52B	_	3.2500	82.550	3.2490	82.525	0.0010	0.025	4.1875	106.363	_	_	4.1885	106.388	_	_	0.0010	0.025
		3.2490	82.525	3.2480	82.499			4.1865	106.337	_	_	4.1875	106.363	_	_		
KP56B	_	3.5000	88.900	3.4990	88.875	0.0010	0.025	4.4375	112.713	_	_	4.4385	112.738	_	_	0.0010	0.025
		3.4990	88.875	3.4980	88.849			4.4365	112.687	_	_	4.4375	112.713	_	_		
KP60B	_	3.7500	95.250	3.7490	92.225	0.0010	0.025	4.6875	119.063	_	_	4.6885	119.088	_	_	0.0010	0.025
		3.7490	95.225	3.7480	95.199			4.6865	119.037	l _	_	4.6875	119.063	_	_		

 $^{^{\}star}$ For precision (M) series, KP-B and KP-BS, 16–49, use the same shaft outside diameter and housing bore diameter.

SHAFT AND HOUSING FITS FOR OSCILLATORY SERVICE (M)*B500 AND (M)*B500DD SERIES

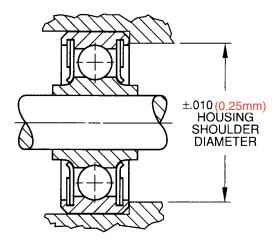
			Shaft	Fits			Housing Fits						
Bearing Number	Bear Bo			uminum nesium aft	Mean Fit Loose		Bearing O.D.		Steel, Aluminum or Magnesium Housing		Mean Fit Loose		
	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	
B538, B538DD	0.6257	15.893	0.6243	15.857	0.0012	0.030	1.0625	26.988	1.0635	27.013	0.0010	0.025	
	0.6243	15.857	0.6233	15.832			1.0615	26.962	1.0625	26.988			
B539, B539DD	0.7507	19.068	0.7493	19.032	0.0012	0.030	1.1875	30.162	1.1885	30.187	0.0010	0.025	
	0.7493	19.032	0.7483	19.007			1.1865	30.137	1.1875	30.162			
B540, B540DD	0.8757	20.243	0.8743	22.207	0.0012	0.030	1.3125	33.338	1.3135	33.363	0.0010	0.025	
	0.8743	22.207	0.8733	22.182			1.3115	33.313	1.3125	33.338			
B541, B541DD	1.0632	27.005	1.0618	26.970	0.0012	0.030	1.5000	38.100	1.5010	38.125	0.0010	0.025	
	1.0618	26.970	1.0608	26.944			1.4990	38.075	1.5000	38.100			
B542, B542DD	1.3132	33.355	1.3118	33.320	0.0012	0.030	1.7500	44.450	1.7510	44.475	0.0010	0.025	
	1.3118	33.320	1.3108	33.294			1.7490	44.425	1.7500	44.450			
B543, B543DD	1.5632	39.705	1.5618	39.670	0.0012	0.030	2.0000	50.800	2.0010	50.825	0.0010	0.025	
	1.5618	39.670	1.5608	39.644			1.9990	50.775	2.0000	50.800			
B544, B544DD	1.8135	46.063	1.8115	46.012	0.0015	0.038	2.2500	57.150	2.2510	57.175	0.0012	0.030	
	1.8115	46.012	1.8105	45.987			2.2485	57.112	2.2500	57.150			
B545, B545DD	2.0635	52.413	2.0615	52.362	0.0015	0.038	2.6250	66.675	2.6260	66.700	0.0012	0.030	
	2.0615	52.362	2.0605	52.337			2.6235	66.637	2.6250	66.675			
B546, B546DD	2.3135	58.763	2.3115	58.712	0.0015	0.038	2.8750	73.025	2.8760	73.050	0.0012	0.030	
	2.3115	58.712	2.3105	58.687			2.8735	72.987	2.8750	73.025			

^{*} For precision (M) series, B500 and B500DD, 538-546, use the same shaft outside diameter and housing bore diameter.

SHAFT AND HOUSING FITS FOR OSCILLATORY SERVICE B500WZZ SERIES

			Shaft	Fits			Housing Fits					
Bearing Number		Bearing Bore		Steel, Aluminum or Magnesium Shaft		an t se	Bearing O.D.		Steel, Aluminum or Magnesium Housing		Mean Fit Loose	
	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm
B5538WZZ	0.6250	15.875	0.6245	15.862	0.0005	0.013	1.0625	26.988	1.0625	26.988	LINE	
	0.6245	15.862	0.6240	15.849			1.0620	26.975	1.0620	26.975		
B5539WZZ	0.7500	19.050	0.7495	19.037	0.0005	0.013	1.1875	30.162	1.1875	30.163		
	0.7495	19.037	0.7490	19.024			1.1870	30.150	1.1870	30.150	_	
B5540WZZ	0.8750	22.225	0.8745	22.212	0.0005	0.013	1.3125	33.338	1.3125	33.338		
	0.8745	22.212	0.8740	22.199			1.3120	33.325	1.3120	33.325	_	
B5541WZZ	1.0625	26.988	1.0620	26.975	0.0005	0.013	1.5000	38.100	1.5000	38.100		
	1.0620	26.975	1.0615	26.962			1.4995	38.087	1.4995	38.087	_	
B5542WZZ	1.3125	33.338	1.3120	33.325	0.0005	0.013	1.7500	44.450	1.7500	44.450		
	1.3120	33.325	1.3115	33.312			1.7495	44.437	1.7495	44.437	_	
B5543WZZ	1.5625	39.688	1.5620	39.675	0.0005	0.013	2.0000	50.800	2.0000	50.800	LINE	
	1.5620	39.675	1.5615	39.662			1.9995	50.787	1.9995	50.787		
B5544WZZ	1.8125	46.038	1.8117	46.018	0.0007	0.016	2.2500	57.150	2.2500	57.150	0.0001	0.003
	1.8117	46.018	1.8112	46.005			2.2493	57.132	2.2495	57.137		
B5545WZZ	2.0625	52.388	2.0617	52.368	0.0007	0.016	2.6250	66.675	2.6250	66.675	0.0001	0.003
	2.0617	52.368	2.0612	52.355			2.6243	66.657	2.6245	66.662		
B5546WZZ	2.3125	58.738	2.3117	58.718	0.0007	0.016	2.8750	73.025	2.8750	73.025	0.0001	0.003
	2.3117	58.718	2.3112	58.705			2.8743	73.007	2.8745	73.012		

Shaft diameter = Same dimensions as bearing bore.


 $\label{eq:maximum bousing bore = Maximum bearing 0.D. plus the 0.D. tolerance.}$

 $\label{eq:minimum bousing bore = Maximum bearing 0.D.} \label{eq:minimum bousing bore = Maximum bearing 0.D.}$

The ideal fit for these series is "line-to-line". Therefore, wherever possible, selective assembly should be used.

HOUSING SHOULDER DIAMETERS

Bearing Number	Hous Shou Dian	ılder
	in.	mm
KP3L	0.564	14.30
KP3	0.622	15.80
KP4	0.732	18.60
KP5	1.014	25.80
KP6	1.234	31.30
KP8	1.454	36.90
KP10	1.646	41.80
КРЗА	0.520	13.20
KP4A	0.620	15.70
KP5A	0.684	17.40
KP6A	0.754	19.20
KP8A	0.976	24.80
KP10A	1.214	30.80
KP12A	1.464	37.20
KP16A	1.764	44.80
KP20A	2.026	51.50
KSP3L	0.564	14.30
KSP4A	0.661	16.80
KSP5A	0.717	18.20
KSP6A	0.786	20.00
KSP3	0.656	16.70
KSP4	0.798	20.30
KSP5	1.058	26.90
KSP6	1.202	30.50
KSP8	1.532	38.90
KSP10	1.608	40.80

Bearing Number	Sho	sing ulder neter
	in.	mm
KP16B	1.593	40.50
KP21B	1.894	48.10
KP23B	2.016	51.20
KP25B	2.132	54.20
KP29B	2.372	60.20
КР33В	2.672	67.90
КР37В	2.910	73.90
KP47B	3.600	91.40
KP49B	3.768	95.70
KP52B	3.928	99.80
KP56B	4.188	106.40
KP60B	4.448	113.00
KP21BS	2.028	51.50
KP23BS	2.155	54.70
KP25BS	2.282	58.00
KP29BS	2.535	64.40
KP33BS	2.787	70.80
KP37BS	3.039	77.20
KP47BS	3.846	97.70
KP48BS	3.972	100.90
KP49BS	3.972	100.90

Bearing Number		sing ulder neter
	in.	mm
DPP3	0.634	16.10
DPP3W	0.634	16.10
DPP4	0.718	18.20
DPP4W	0.718	18.20
DPP5	1.078	27.40
DPP5W	1.078	27.40
DPP6	1.248	31.70
DPP6W	1.248	31.70
DPP	1.468	37.30
DPP8W	1.468	37.30
DPP10	1.638	41.60
DPP10W	1.638	41.60
DSP3	0.610	15.50
DSP4	0.714	18.10
DSP5	0.974	24.70
DSP6	1.168	29.70
DSP8	1.400	35.60
DSP10	1.638	41.60
DSRP4	0.714	18.10
DSRP5	0.974	24.70
DSRP6	1.168	29.70
DSRP8	1.400	35.60
DSRP10	1.638	41.60
DSRP12	1.850	47.00

Bearing Number		sing ılder neter
	in.	mm
B538	0.924	23.50
B539	1.042	26.50
B540	1.162	29.50
B541	1.360	34.50
B542	1.598	40.60
B543	1.838	46.70
B544	2.116	53.70
B545	2.434	61.80
B546	2.678	68.00
DW4K2	0.530	13.50
DW4K	0.644	16.40
DW4	0.644	16.40
DW5	0.758	19.30
DW6	0.938	23.80
DW8	1.232	31.30
BCP4W10	0.634	16.10
BCP5W11	0.758	19.30
P4K	0.728	18.50
P5K	0.724	18.40
PD5K	0.768	19.50
P8(FT)	1.454	36.90
P10K	1.022	26.00

RBC Airframe Control Ball Bearings

	OMENCLATURE	MS27642-S	MKP-B Series: Torque Tube, Light Duty, Precision
Standard Se	ries		MKP-BS Series: External Self-aligning, Extra Light, Precision
MS27640 MS27641 MS27649 MS27645	KP Series: Radial, Heavy Duty	MS21428	MB500 Series: Extra Light Torque Tube, Not Plated, No Seals, Precision
MS27642	KP-B Series: Torque Tube, Light Duty	DOUBLE RO	W BALL BEARINGS
MS27648	KP-BS Series: External Self-aligning,	Standard Se	
	Extra Light	MS27644	DPP,DPP-W Series: Light and Heavy Series 45
	B500 Series: Extra Light Torque Tube, Not Plated, No Seals	MS27643	DSP Series: Self-aligning, Heavy Duty
MS27646	B500DD Series: Extra Light Torque Tube, Sealed	MS27647	DW,GDW Series: Extra Wide, Medium Duty
	K Series:		D Series
	P Series: Heavy Duty		G, BCP Series50
	Pulley Series: For MIL-P-7034 Pulleys	Precision Se	
Precision Se	ries		MPP Series: Light and Heavy Duty, Precision 51
MS27640-R MS27641-R	MKP Series: Radial, Heavy Duty, Precision	MS27643-R	MDSP Series: Self-aligning, Heavy Duty, Precision
WI327041-II	Medium Duty, Precision	MS27647-R	MDW Series: Medium Duty, Precision 53
MS27645-R	MKSP, MKSP-A Series: Self-aligning Light and	SINGLE ROV	N ROLLER BEARINGS
	Heavy Duty, Precision 40		DSRP, GDSRP Series: Roller, Heavy Duty54

GENERAL FEATURES AND TECHNICAL SPECIFICATIONS

Inner and Outer Rings

Rings are made from thru-hardened 52100 or CRES 440C to accommodate the application's need. The external ring surfaces are plated with cadmium or zinc nickel to provide protection from galvanic corrosion.

Seals and Retaining Caps

These bearings are equipped with PTFE seals and held in place by corrosion resistance retaining caps.

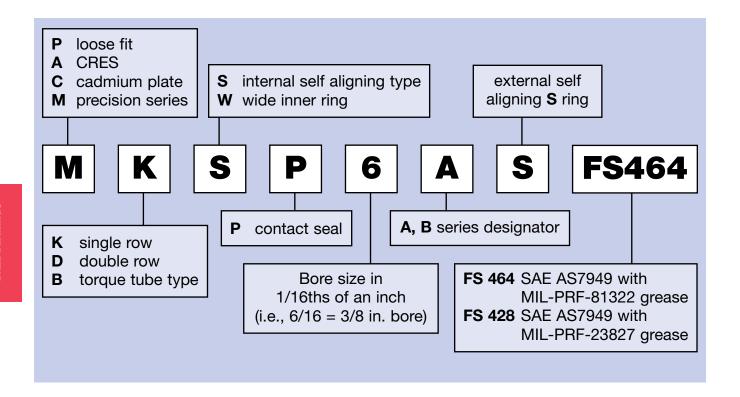
Load Capabilities

Airframe Ball bearings are designed with a full complement of balls to maximize load carrying capacity.

Lubrication

Bearings are 80 to 100% filled with greases in compliance with MIL-PRF-81322, MIL-PRF-23827, or Boeing's BMS3-33.

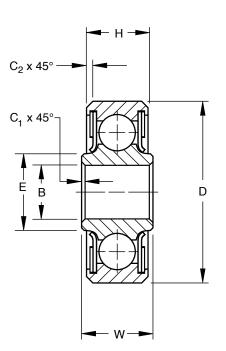
Construction


Available in single and double row construction to accommodate different load requirements. Self-aligning constructions are also available to accommodate misalignment needs.

©2008 RBC Bearings Incorporated. All rights reserved.

Nomenclature

AIRFRAME CONTROL BALL BEARINGS



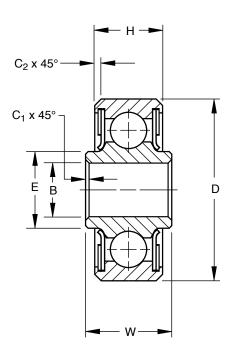
MS27640 • SAE-AS7949

- Single row, ball, heavy duty
- PTFE seals and CRES sealcaps
- Exposed surfaces except bore, caps, and seals are cadmium plated
- Prelubricated for life
- Also offered with CRES 440C material and/or zinc nickel plating per OEM specifications

SPECIFICATIONS AND ORDERING INFORMATION

TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example KP3L FS464)

Bearing Number	MS 27640 Dash No.	+0.0000, +0.000,	-0.0005	Outs Diam E +0.0000, +0.000,	neter) -0.0005	+0.000	Wi N , -0.005), -0.13	+0.000	H 0, -0.005 0, -0.13		E prox.	+0.015, +0.38,	, -0.000	+0.015, +0.38	, -0.000		Vt. orox.	Li Lo	dial mit oad ting	Lir Lo	rust mit oad ting
		in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kg	lbf.	N	lbf.	N
KP3L ⁽¹⁾	-3A	0.1900	4.826	0.6250	15.875	0.245	6.22	0.203	5.16	0.285	7.24	0.005	0.13	0.010	0.25	0.01	0.005	1560	6950	700	3100
KP3	-3	0.1900	4.826	0.7774	19.746	0.297	7.54	0.270	6.86	0.336	8.53	0.005	0.13	0.022	0.56	0.03	0.014	1880	8400	900	4000
KP4	-4	0.2500	6.350	0.9014	22.896	0.484	12.29	0.335	8.51	0.395	10.03	0.005	0.13	0.032	0.81	0.04	0.018	2680	12000	1200	5300
KP5	-5	0.3125	7.938	1.2500	31.750	0.558	14.17	0.375	9.53	0.474	12.04	0.015	0.38	0.032	0.81	0.09	0.041	5620	25000	2500	11200
KP6	-6	0.3750	9.525	1.4375	36.513	0.620	15.75	0.469	11.91	0.596	15.14	0.015	0.38	0.032	0.81	0.15	0.068	7910	35500	3500	15600
KP8	-8	0.5000	12.700	1.6875	42.863	0.620	15.75	0.500	12.70	0.773	19.63	0.015	0.38	0.044	1.12	0.21	0.095	11800	52500	5200	23200
KP10	-10	0.6250	15.875	1.9375	49.213	0.620	15.75	0.500	12.70	0.855	21.72	0.015	0.38	0.044	1.12	0.28	0.127	14100	62800	6200	27600


⁽¹⁾ Bonded PTFE Seals.

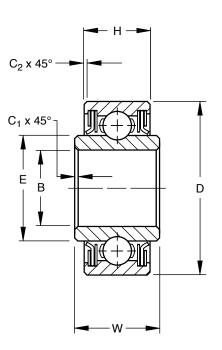
MS27641 • SAE-AS7949

- Single row, ball, deep groove, medium duty
- PTFE seals and CRES sealcaps
- Exposed surfaces except bore, caps, and seals are cadmium plated
- Prelubricated for life
- Also offered with CRES 440C material and/or zinc nickel plating per OEM specifications

SPECIFICATIONS AND ORDERING INFORMATION

TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example KP3AL FS464)

Bearing Number	MS 27641 Dash No.	+0.0000, +0.000,	-0.0005	Outs Diam E +0.0000, +0.000,	neter) -0.0005	+0.000	Wi W 0, -0.005 0, -0.13	+0.000	H 0, -0.005 0, -0.13		E prox.	+0.015, +0.38,	, -0.000	+0.015, +0.38,	, -0.000		Vt. orox.	Li Lo	dial mit aad ting	Liı Lo	rust mit oad ting
		in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kg	lbf.	N	lbf.	N
KP3AL(1)	-	0.1900	4.826	0.5000	12.700	0.237	6.02	0.196	4.98	0.261	6.63	0.005	0.13	0.012	0.30	0.01	0.005	970	4350	430	1950
KP3A	-3	0.1900	4.826	0.6250	15.875	0.297	7.54	0.234	5.94	0.302	7.67	0.005	0.13	0.016	0.41	0.01	0.005	1560	6950	700	3150
KP4A	-4	0.2500	6.350	0.7500	19.050	0.281	7.14	0.219	5.56	0.385	9.78	0.005	0.13	0.016	0.41	0.02	0.009	1880	8400	900	4000
KP5A	-5	0.3125	7.938	0.8125	20.638	0.297	7.54	0.234	5.94	0.433	11.00	0.015	0.38	0.016	0.41	0.02	0.009	2190	9800	1000	4500
KP6A	-6	0.3750	9.525	0.8750	22.225	0.313	7.95	0.250	6.35	0.512	13.00	0.015	0.38	0.016	0.41	0.03	0.014	2500	11200	1100	4900
KP8A	-8	0.5000	12.700	1.1250	28.575	0.375	9.53	0.313	7.95	0.638	16.21	0.015	0.38	0.016	0.41	0.05	0.023	3910	17400	1700	7600
KP10A	-10	0.6250	15.875	1.3750	34.925	0.406	10.31	0.344	8.74	0.773	19.63	0.015	0.38	0.032	0.81	0.08	0.036	6700	30000	3000	13400
KP12A	-12	0.7500	19.050	1.6250	41.275	0.437	11.10	0.375	9.53	0.967	24.56	0.015	0.38	0.032	0.81	0.13	0.059	8790	39100	3900	17400
KP16A	-16	1.0000	25.400	2.0000	50.800	0.500	12.70	0.438	11.13	1.268	32.21	0.015	0.38	0.032	0.81	0.22	0.100	11900	53000	5200	23200
KP20A	-20	1.2500	31.750	2.2500	57.150	0.500	12.70	0.438	11.13	1.503	38.18	0.015	0.38	0.032	0.81	0.26	0.118	13800	61400	6100	27200


⁽¹⁾ KP3AL not MS27641.

MS27649 • SAE-AS7949

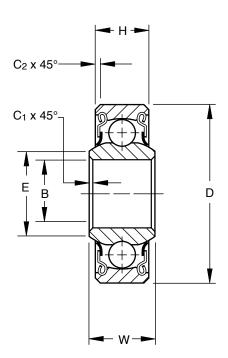
- Single row, ball, deep groove
- Rings and balls are made of CRES 440C (not cadmium plated)
- PTFE seals and CRES sealcaps
- · Prelubricated for life
- Bores and outside diameters of this series are the same as for corresponding sizes of the KP-A Series on page 28, but rings are wider for retainers and seals, and offsets between inner and outer ring faces are greater, providing increased bracket clearance at mounting

SPECIFICATIONS AND ORDERING INFORMATION

TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example AW3AK FS464)

		1		1		1						1		1		1	•	1		1	
Bearing Number	MS 27649 Dash No.	+0.0000		Dian I +0.0000	side 1eter) , -0.0005 , -0.013	+0.0000	W	+0.000	H 0, -0.005 00.13	Δn	E prox.	+0.015 +0.38	, -0.000	+0.015			Vt. orox.	Li Lo	dial mit oad ting	Lir Lo	rust mit oad ting
		+0.000	, -0.010	+0.000	, -0.013	+0.000	7, 0.004	τυ.υ	0, 0.10	Λþ	piox.	+0.00	-0.00	+0.00	, -0.00	741	JIUA.				
		in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kg	lbf.	N	lbf.	N
*AW3AK	-3	0.1900	4.826	0.6250	15.875	0.4060	10.310	0.312	7.92	0.317	8.05	0.005	0.13	0.016	0.41	0.018	0.008	750	3350	350	1560
*AW4AK	-4	0.2500	6.350	0.7500	19.050	0.4380	11.130	0.312	7.92	0.415	10.54	0.005	0.13	0.016	0.41	0.028	0.013	880	3900	410	1830
*AW5AK	-5	0.3125	7.938	0.8125	20.638	0.4690	11.910	0.344	8.74	0.462	11.73	0.015	0.38	0.016	0.41	0.033	0.015	1370	6100	640	2850
*AW6AK	-6	0.3750	9.525	0.8750	22.225	0.4690	11.910	0.344	8.74	0.520	13.21	0.015	0.38	0.016	0.41	0.034	0.015	1370	6100	640	2850
*AW8AK	-8	0.5000	12.700	1.1250	28.575	0.5620	14.270	0.438	11.13	0.681	17.30	0.015	0.38	0.016	0.41	0.075	0.034	2250	10000	1050	4650
*AW10AK (1)	-10	0.6250	15.875	1.3750	34.925	0.5940	15.090	0.469	11.91	0.848	21.54	0.015	0.38	0.032	0.81	0.119	0.054	3060	13600	1430	6400
*AW12AK (1)	-12	0.7500	19.050	1.6250	41.275	0.6560	16.660	0.531	13.49	1.052	26.72	0.015	0.38	0.032	0.81	0.189	0.086	4000	17800	1870	8300
*AW16AK (1)	-16	1.0000	25.400	2.0000	50.800	0.6880	17.480	0.562	14.27	1.334	33.88	0.015	0.38	0.032	0.81	0.296	0.134	5000	22300	2340	10400
*AW20AK (1)	-20	1.2500	31.750	2.2500	57.150	0.6880	17.480	0.562	14.27	1.615	41.02	0.015	0.38	0.032	0.81	0.355	0.161	6000	26700	2800	12500

⁽¹⁾ Not in production. Will be produced as requirements justify tooling.


^{*} Check for availability.

MS27645 • SAE-AS7949

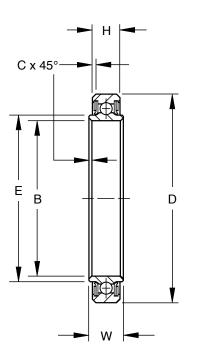
- Single row, ball, self-aligning, light and heavy duty
- Bonded PTFE seals
- Exposed surfaces except bore, caps, and seals are cadmium plated
- Prelubricated for life
- Also offered with CRES 440C material and/or zinc nickel plating per OEM specifications

SPECIFICATIONS AND ORDERING INFORMATION

TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example KSP3L FS464)

Bearing Number ⁽¹⁾	MS 27645 Dash No.	+0.0000, +0.000,	-0.0005	Outs Diam E +0.0000, +0.000,	eter) -0.0005	+0.000	Wi 0, -0.005 0, -0.13	+0.000	H 0, -0.005 0, -0.13	Apı	E orox.	+0.015 +0.38	, -0.000	+0.015, +0.38	, -0.000		Vt. orox.	Li Lo	dial mit oad ting	Lir Lo	rust mit pad ting
		in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kg	lbf.	N	lbf.	N
KSP3L	-3A	0.1900	4.826	0.6250	15.875	0.245	6.22	0.203	5.16	0.256	6.50	0.005	0.13	0.016	0.41	0.01	0.005	550	2450	100	450
KSP4A(1)	-4A	0.2500	6.350	0.7500	19.050	0.281	7.14	0.219	5.56	0.328	8.33	0.005	0.13	0.016	0.41	0.02	0.009	900	4000	200	900
KSP5A ⁽¹⁾	-5A	0.3125	7.938	0.8125	20.638	0.297	7.54	0.234	5.94	0.389	9.88	0.015	0.38	0.016	0.41	0.02	0.009	1000	4400	200	900
KSP6A(1)	-6A	0.3750	9.525	0.8750	22.225	0.313	7.95	0.250	6.35	0.462	11.73	0.016	0.41	0.016	0.41	0.03	0.014	1120	5000	200	900
KSP3	-3	0.1900	4.826	0.7774	19.746	0.297	7.54	0.270	6.86	0.297	7.54	0.005	0.13	0.022	0.56	0.03	0.014	900	4000	200	900
KSP4	-4	0.2500	6.350	0.9014	22.896	0.484	12.29	0.335	8.51	0.396	10.06	0.005	0.13	0.032	0.81	0.04	0.018	1410	6300	300	1340
KSP5	-5	0.3125	7.938	1.2500	31.750	0.558	14.17	0.375	9.52	0.567	14.40	0.015	0.38	0.032	0.81	0.10	0.045	2190	9800	300	1340
KSP6	-6	0.3750	9.525	1.4375	36.512	0.620	15.75	0.469	11.91	0.612	15.54	0.015	0.38	0.032	0.81	0.15	0.068	2980	13200	400	1780
KSP8	-8	0.5000	12.700	1.6875	42.862	0.620	15.75	0.500	12.70	0.796	20.22	0.015	0.38	0.044	1.12	0.23	0.104	3670	16300	500	2230
KSP10	-10	0.6250	15.875	1.9375	49.212	0.813	20.65	0.625	15.88	0.922	23.42	0.015	0.38	0.044	1.12	0.37	0.168	5320	23600	600	2670

⁽¹⁾ These bearings are self-aligning for 10° in either direction except KSP4A, KSP5A and KSP6A which are self aligning for 8° in either direction.



MS27642 • SAE-AS7949

- Single row, ball, light duty
- PTFE seals and CRES sealcaps
- Exposed surfaces except bore, caps, and seals are cadmium plated
- Prelubricated for life

 Also offered with CRES 440C material and/or zinc nickel plating per OEM specifications

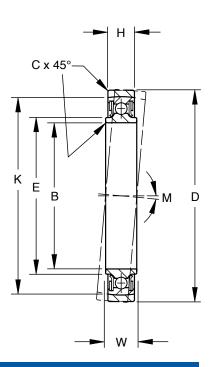
SPECIFICATIONS AND ORDERING INFORMATION

TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example KP16B FS464)

Bearing Number	MS 27642 Dash		ore B	Outs Diam D	eter				E		С		v	/t.	Rac Lin	nit	Thr Lin	nit	
	No.), -0.0010), - <mark>0.025</mark>	+0.0000, +0.000,						Аррі	ox.	+0.015, +0.38,		App	orox.	Lo: Rat		Lo Rat	
		in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kg	lbf.	N	lbf.	N
KP16B	-16	1.0000(1)	25.400 ⁽¹⁾	1.7500	44.450	0.437	11.10	0.375	9.53	1.150	29.21	0.024	0.61	0.14	0.064	8085	36000	3600	16000
KP21B	-21	1.3130	33.350	2.0625	52.388	0.437	11.10	0.375	9.53	1.465	37.21	0.024	0.61	0.16	0.073	9840	43800	4400	19600
KP23B	-23	1.4380	36.525	2.1875	55.563	0.437	11.10	0.375	9.53	1.585	40.26	0.024	0.61	0.17	0.077	10500	46700	4700	20900
KP25B	-25	1.5630	39.700	2.3125	58.738	0.437	11.10	0.375	9.53	1.700	43.18	0.024	0.61	0.19	0.086	11300	50300	5000	22300
KP29B	-29	1.8130	46.050	2.5625	65.088	0.437	11.10	0.375	9.53	1.940	49.28	0.024	0.61	0.21	0.095	12700	56500	5600	25000
KP33B	-33	2.0630	52.400	2.8125	71.438	0.437	11.10	0.375	9.53	2.234	56.74	0.024	0.61	0.23	0.104	14400	64000	6400	28600
KP37B	-37	2.3130	58.750	3.0625	77.788	0.437	11.10	0.375	9.53	2.475	62.87	0.024	0.61	0.26	0.118	15800	70300	7000	31100
KP47B	-47	2.9380	74.625	3.8750	98.425	0.531	13.49	0.469	11.91	3.105	78.87	0.039	0.99	0.49	0.222	24700	110000	10900	48500
KP49B	-49	3.0630	77.800	4.0000	101.600	0.531	13.49	0.469	11.91	3.230	82.04	0.039	0.99	0.53	0.240	27500	122500	12100	54000
*KP52B	-52	3.2500	82.550	4.1875	106.363	0.531	13.49	0.469	11.91	3.460	87.88	0.039	0.99	0.55	0.249	28700	127700	12600	56000
*KP56B	-56	3.5000	88.900	4.4375	112.713	0.531	13.49	0.469	11.91	3.734	94.84	0.039	0.99	0.61	0.277	31200	140000	13700	61000
*KP60B	-60	3.7500	95.250	4.6875	119.063	0.531	13.49	0.469	11.91	3.972	100.89	0.039	0.99	0.64	0.290	33100	147300	14600	65000
*KP64B	-64	4.0000	101.600	4.9375	125.413	0.531	13.49	0.469	11.91	4.217	107.11	0.039	0.99	0.64	0.290	35500	157900	15400	68500
*KP68B	-68	4.2500	107.950	5.3125	134.938	0.593	15.06	0.531	13.49	4.478	113.74	0.039	0.99	0.73	0.331	41900	186400	18400	81800
*KP72B	-72	4.5000	114.300	5.5625	142.875	0.593	15.06	0.531	13.49	4.736	120.29	0.039	0.99	0.76	0.345	44300	197000	19500	86700

^{(1) +0.0000, -0.0005} in.; +0.000, -0.013mm.

^{*}Check for availability.


AIRFRAME CONTROL BALL BEARINGS — KP-BS SERIES SELF-ALIGNING TORQUE TUBE

MS27648 • SAE-AS7949

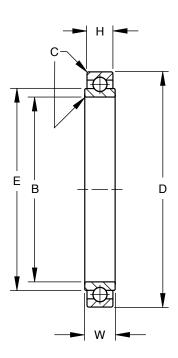
- Single row, ball, external self aligning, extra light duty
- PTFE seals and CRES sealcaps
- Exposed surfaces except bore, caps, and seals are cadmium plated
- · Prelubricated for life
- Series is internally identical to the KP-B series. Self-alignment is provided by an external self-aligning ring whose internal spherically-ground surface is accurately matched to the external spherically-ground surface of the outer ring. These bearings are designed to compensate for initial misalignment
- Also offered with CRES 440C material and/or zinc nickel plating per OEM specifications

SPECIFICATIONS AND ORDERING INFORMATION

TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example KP16BS FS464)

Bearing	MS	В	ore	Out	side		Wid	iths		E		C			K	M	V	۷t.				
Number	27648 Dash No.		B), -0.0010		neter D)0.0010		v)0.005		0.005			.0.015	0.000	Sh	o arp ner	Mis- alignment Either Direction			Li Lo	dial mit oad	Lir Lo	rust mit ad
), -0.025), -0.0010), -0.025), -0.13		, -0.005), -0.13	Appr	ox.	+0.015, +0.38,		(R	ef.)	(Ref.)	Арр	orox.	na	ting	nai	ting
		in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm		lbs.	kg	lbf.	N	lbf.	N
KP16BS	-16	1.0000(1)	25.400(1)	1.9375	49.213	0.437	11.10	0.375	9.53	1.150	29.21	0.024	0.61	1.709	43.41	7°25'	0.18	0.082	8085	36000	1600	7100
KP21BS	-21	1.3130	33.350	2.2500	57.150	0.437	11.10	0.375	9.53	1.465	37.21	0.024	0.61	2.028	51.51	6°30'	0.20	0.091	9840	43800	2000	9000
KP23BS	-23	1.4380	36.525	2.3750	60.325	0.437	11.10	0.375	9.53	1.585	40.26	0.024	0.61	2.155	54.74	6°	0.22	0.100	10500	46700	2200	9800
KP25BS	-25	1.5630	39.700	2.5000	63.500	0.437	11.10	0.375	9.53	1.700	43.18	0.024	0.61	2.282	57.96	5°45'	0.25	0.113	11300	50300	2300	10200
KP29BS	-29	1.8130	46.050	2.7500	69.850	0.437	11.10	0.375	9.53	1.940	49.28	0.024	0.61	2.535	64.39	5°	0.27	0.122	12700	56500	2600	11600
KP33BS	-33	2.0630	52.400	3.0000	76.200	0.437	11.10	0.375	9.53	2.234	56.74	0.024	0.61	2.787	70.79	5°	0.30	0.136	14400	64000	2900	12900
KP37BS	-37	2.3130	58.750	3.2500	82.550	0.437	11.10	0.375	9.53	2.475	62.87	0.024	0.61	3.039	77.19	4°30'	0.33	0.150	15800	70300	3200	14300
KP47BS	-47	2.9380	74.625	4.1250	104.775	0.531	13.49	0.469	11.91	3.105	78.87	0.039	0.99	3.846	97.69	4°30'	0.64	0.290	24700	110000	5000	22300
*KP48BS	-48	3.0000	76.200	4.2500	107.950	0.531	13.49	0.469	11.91	3.230	82.04	0.039	0.99	3.972	100.89	4°	0.69	0.313	27500	122000	5500	24500
KP49BS	-49	3.0625	77.788	4.2500	107.950	0.531	13.49	0.469	11.91	3.230	82.04	0.039	0.99	3.972	100.89	4°	0.69	0.313	27500	122000	5500	24500
(1) 0 0000		١ ٥ ٥ ٥ ٥	-: /040	V																		

^{(1) +0.0000} in. (.000mm), -0.0005 in. (.013mm)


^{*} Check for availability.

B500 Series

- Extra light duty
- Single row, ball
- This series is made of bearing quality chromium-alloy, high carbon steel, and is not cadmium plated
- Open type no seals or shields (unsealed version of B500DD)
- Packaged/shipped with preservative oil
- Also offered with CRES 440C material per OEM specifications

SPECIFICATIONS AND ORDERING INFORMATION

TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example B538 FS464)

Bearing Number	+0.0007, +0.018,	, -0.0007	+0.0000	tside meter D O, -0.0010 O, -0.025	+0.000, +0.00,	-0.005	+0.000, - +0.000, -		Аррі		+0.015, +0.38, -		_	Vt. orox.	Rac Lin Lo: Rat	nit ad	Thro Lin Loa Rati	nit nd
	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kg	lbf.	N	lbf.	N
B538	0.6250	15.875	1.0625	26.988	0.281	7.14	0.250	6.35	0.781	19.84	0.015	0.38	0.02	0.009	3280	14600	1500	6700
B539	0.7500	19.050	1.1875	30.163	0.281	7.14	0.250	6.35	0.898	22.81	0.015	0.38	0.03	0.014	3750	16700	1700	7600
B540	0.8750	22.225	1.3125	33.338	0.281	7.14	0.250	6.35	1.019	25.88	0.015	0.38	0.04	0.018	4220	18800	1900	8500
B541	1.0625	26.988	1.5000	38.100	0.281	7.14	0.250	6.35	1.219	30.96	0.015	0.38	0.05	0.023	5000	22300	2200	9800
B542	1.3125	33.338	1.7500	44.450	0.281	7.14	0.250	6.35	1.454	36.93	0.015	0.38	0.07	0.032	5950	26500	2700	12000
B543	1.5625	39.688	2.0000	50.800	0.281	7.14	0.250	6.35	1.706	43.33	0.015	0.38	0.08	0.036	6880	30600	3200	14300
B544	1.8125 ⁽¹⁾	46.038 ⁽¹⁾	2.2500 ⁽²⁾	57.150 ⁽²⁾	0.281	7.14	0.250	6.35	1.974	50.14	0.015	0.38	0.09	0.041	7980	35500	3600	16000
B545	2.0625(1)	52.388(1)	2.6250 ⁽²⁾	66.675(2)	0.281	7.14	0.250	6.35	2.291	58.19	0.015	0.38	0.13	0.059	9220	41000	4000	17800
B546	2.3125(1)	58.738 ⁽¹⁾	2.8750 ⁽²⁾	73.025(2)	0.281	7.14	0.250	6.35	2.531	64.29	0.015	0.38	0.15	0.068	10150	45200	4400	19600

^{(1) +0.0010} in. (+0.025mm), -0.0010 in. (-0.025mm).

^{(2) +0.0000} in. (+0.000mm), -0.0015 in. (-0.038mm).

AIRFRAME CONTROL BALL BEARINGS — B500DD SERIES EXTRA LIGHT TORQUE TUBE

MS27646 • SAE-AS7949

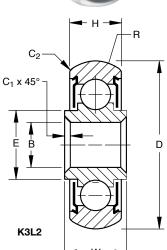
- Extra light duty
- Single row, ball
- PTFE seals
- Exposed surfaces except bore and seals are cadmium plated
- Prelubricated for life
- This series is dimensionally interchangeable with the unsealed B500 series
- Also offered with CRES 440C material and/or zinc nickel plating per OEM specifications

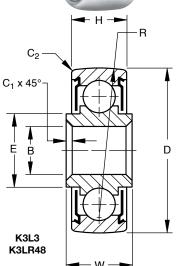
SPECIFICATIONS AND ORDERING INFORMATION

TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example B538DD FS464)

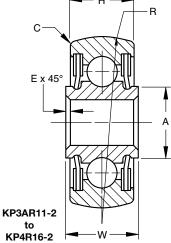
Bearing	MS	Bore		Outs	side		W	idths			E	(;	١ ١	Vt.				
Number	27646 Dash No.	+0.0007, -0.00 +0.018, -0.018	07	+0.0000, +0.0000,	-0.0010	+0.000, +0.00,	-0.005		, -0.005 -0.13	Ap	prox.	+0.015 +0.38	i-0.000 ,-0.00	Api	prox.	Li Li	dial mit oad ting	Thro Lin Loa Rati	nit ad
		in. mr		in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kg	lbf.	N	lbf.	N
B538DD	-38	0.6250 15.8	5	1.0625	26.988	0.281	7.14	0.250	6.35	0.781	19.84	0.015	0.38	0.03	0.014	3280	14600	1500	6700
B539DD	-39	0.7500 19.0	0	1.1875	30.163	0.281	7.14	0.250	6.35	0.898	22.81	0.015	0.38	0.04	0.018	3750	16700	1700	7600
B540DD	-40	0.8750 22.2	5	1.3125	33.338	0.281	7.14	0.250	6.35	1.019	25.88	0.015	0.38	0.05	0.023	4220	18800	1900	8500
B541DD	-41	1.0625 26.9	8	1.5000	38.100	0.281	7.14	0.250	6.35	1.219	30.96	0.015	0.38	0.06	0.027	5000	22300	2200	9800
B542DD	-42	1.3125 33.3	8	1.7500	44.450	0.281	7.14	0.250	6.35	1.454	36.93	0.015	0.38	0.09	0.041	5950	26500	2700	12000
B543DD	-43	1.5625 39.6	8	2.0000	50.800	0.281	7.14	0.250	6.35	1.706	43.33	0.015	0.38	0.10	0.045	6880	30600	3200	14300
B544DD	-44	1.8125 ⁽¹⁾ 46.03	3(1)	2.2500(2)	57.150 ⁽²⁾	0.281	7.14	0.250	6.35	1.974	50.14	0.015	0.38	0.11	0.050	7980	35500	3600	16000
B545DD	-45	2.0625 ⁽¹⁾ 52.38	3 ⁽¹⁾	2.6250 ⁽²⁾	66.675 ⁽²⁾	0.281	7.14	0.250	6.35	2.291	58.19	0.015	0.38	0.15	0.068	9220	41000	4000	17800
B546DD	-46	2.3125 ⁽¹⁾ 58.73	g(1)	2.8750(2)	73.025(2)	0.281	7.14	0.250	6.35	2.531	64.29	0.015	0.38	0.17	0.077	10150	45200	4400	19600

^{(1) +0.0010} in. (+0.025mm), -0.0010 in. (-0.025mm).


 $^{^{(2)}}$ +0.0000 in. (+0.000mm), -0.0015 in. (-0.038mm).


K Series

- Single row, ball
- Exposed surfaces except bore and shields are cadmium plated
- PTFE seals or CRES shields
- Also offered with CRES 440C material and/or zinc nickel plating per OEM specifications



SPECIFICATIONS AND ORDERING INFORMATION

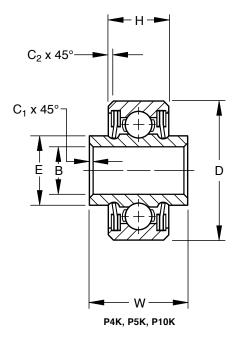
TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example K3L2 FS464)

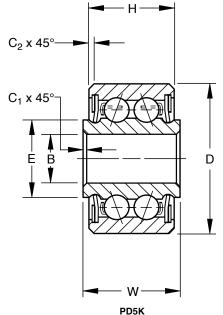
Bearing Number	Bo E	ore 3		side neter)	v		dths H	I		E	C	? 1	C ₂			R	S Wo	lax. afe rking	w	/t.
	+0.0000,	, -0.0005 - <mark>0.013</mark>			+0.000		+0.000, +0.000		Арі	prox.		, -0.000 , - <mark>0.00</mark>	(Ref	.)				oad lial ⁽¹⁾	App	orox.
	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbf.	N	lbs.	kg
*K3L2 ⁽²⁾	0.1900	4.826	0.687	17.45	0.245	6.22	0.203	5.16	0.275	6.98	0.005	0.13	0.020R	0.51	0.187	4.75	200	880	0.01	0.005
			0.685	17.40											0.182	4.62				
*K3L3 ⁽²⁾	0.1900	4.826	0.635	16.13	0.245	6.22	0.203	5.16	0.275	6.98	0.005	0.13	0.020R	0.51	0.550	13.97	200	880	0.01	0.005
			0.632	16.05											0.500	12.70				
K3LR48	0.1900	4.826	0.687	17.45	0.245	6.22	0.203	5.16	0.275	6.98	0.005	0.13	0.020R	0.51	3.015	76.58	200	880	0.02	0.009
			0.685	17.40											2.985	75.82				
KP3AR11-2	0.1900	4.826	0.718	18.24	0.297	7.54	0.265	6.73	0.297	7.54	0.005	0.13	0.015R	0.38	0.359	9.12	300	1330	0.02	0.009
			0.716	18.19											0.358	9.09				
KP4AR13	0.2500	6.350	0.800	20.32	0.281	7.14	0.219	7.39	0.375	9.53	0.005	0.13	0.015 x 45°	0.38	0.812	20.62	400	1780	0.02	0.009
			0.798	20.27											0.802	20.37				
KP4R16	0.2500	6.350	0.901	22.89	0.484	12.29	0.335	8.51	0.390	9.91	0.005	0.13	0.015 x 45°	0.38	1.000	25.40	400	1780	0.04	0.018
			0.899	22.83											0.990	25.15				
KP4R16-2	0.2500	6.350	1.000	25.40	0.390	9.91	0.335	8.51	0.390	9.91	0.005	0.13	0.015 x 45°	0.38	1.000	25.40	500	2220	0.06	0.027
			0.998	25.35											0.990	25.15				

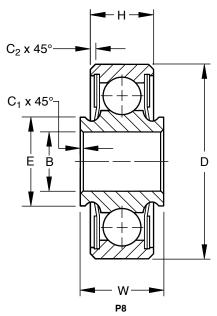
⁽¹⁾ The maximum working radial load to obtain 100,000 ft. (30,500m) peripheral travel life.

⁽²⁾ Prepacked with lubricant conforming to MIL-PRF-23827. Equipped with CRES shields.

^{*}Check for availability.


P Series


- PTFE seals and CRES sealcaps
- Exposed surfaces except bore, caps, and seals are cadmium plated
- Prelubricated for life
- Retainer type (except P8)
- For MIL-P-7034 pulleys

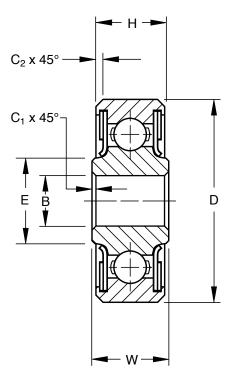


SPECIFICATIONS AND ORDERING INFORMATION

TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example P4K FS464)

Bearing Number	+0.0000	, -0.0005 , -0.013	+0.0000	tside meter D), -0.0005), -0.013	+0.000	Wi 0, -0.005 0, -0.13	+0.000	H 0, -0.005 0, -0.13	Арі	E prox.	+0.015, +0.38,	-0.000	+0.015, +0.38,	-0.000		Vt. prox.	Liı Lo	dial mit ad ting	Lir Lo	rust mit ad ting
	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kg	lbf.	N	lbf.	N
P4K	0.2500	6.350	0.8750	22.225	0.438	11.13	0.375	9.52	0.423	10.74	0.005	0.13	0.022	0.56	0.04	0.018	1710	7600	800	3550
P5K	0.3125	7.938	0.8750	22.225	0.625	15.88	0.375	9.52	0.455	11.56	0.005	0.13	0.022	0.56	0.04	0.018	1710	7600	800	3550
PD5K	0.3125	7.938	0.9375	23.812	0.625	15.88	0.563	14.30	0.455	11.56	0.005	0.13	0.022	0.56	0.07	0.032	3420	15200	1030	4600
P8 ⁽¹⁾	0.5000	12.700	1.6875	42.862	0.750	19.05	0.563	14.30	0.768	19.51	0.005	0.13	0.032	0.81	0.24	0.109	11800	52500	5200	23200
P10K	0.6250	15.875	1.1875	30.162	0.438	11.13	0.375	9.52	0.769	19.53	0.005	0.13	0.022	0.56	0.06	0.027	2440	10800	1100	4900

⁽¹⁾ Full type — No retainer.


Note: Although the P Series bearings are designed for use in pulleys, they are well suited for use in other airframe applications.

Pulley Series

- · Single row, ball, heavy duty
- PTFE seals and CRES sealcaps
- Exposed surfaces except bore, caps, and seals are cadmium plated
- Prelubricated for life
- · Retainer type
- For MIL-P-7034 pulleys
- Also offered with CRES 440C material and/or zinc nickel plating per OEM specifications

SPECIFICATIONS AND ORDERING INFORMATION

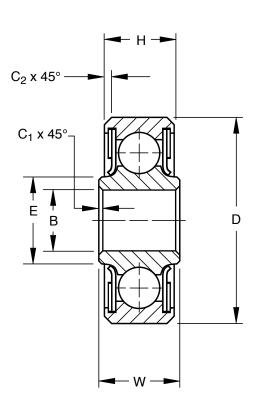
TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example KP3K FS464)

Bearing Number	+0.0000	, -0.0005 , -0.013	+0.0000	tside meter D), -0.0005), -0.013	+0.000	Wi , -0.005 , -0.13	+0.000	H 0, -0.005 0, -0.13	Арр	E orox.	+0.015, +0.38,	-0.000	+0.015, +0.38,	-0.000		rt.	Rad Lir Lo Rat	nit ad	Thr Lin Lo: Rat	nit ad
	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kg	lbf.	N	lbf.	N
*KP3K	0.1900	4.826	0.7774	19.746	0.297	7.54	0.270	6.86	0.332	8.43	0.005	0.13	0.024	0.61	0.02	0.009	1090	4800	600	2650
*KP3AK	0.1900	4.826	0.6250	15.875	0.297	7.54	0.234	5.94	0.297	7.54	0.005	0.13	0.016	0.41	0.01	0.005	705	3150	385	1700
*KP3AK-2(1)	0.1900	4.826	0.6250	15.875	0.625	15.88	0.234	5.94	0.297	7.54	0.005	0.13	0.016	0.41	0.02	0.009	705	3150	385	1700
*W4AK	0.2500	6.350	0.7500	19.050	0.438	11.13	0.312	7.92	0.372	9.45	0.005	0.13	0.016	0.41	0.03	0.014	1090	4800	600	2650
*KP4K	0.2500	6.350	0.9014	22.896	0.484	12.29	0.335	8.51	0.390	9.91	0.005	0.13	0.034	0.86	0.04	0.018	1710	7600	800	3550

⁽¹⁾ Not used in MIL-P-7034 pulleys.

Note: Although the P Series bearings are designed for use in pulleys, they are well suited for use in other airframe applications.

^{*}Check for availability.


AIRFRAME CONTROL BALL BEARINGS — MKP PRECISION SERIES, RADIAL

MS27640-R • SAE-AS7949

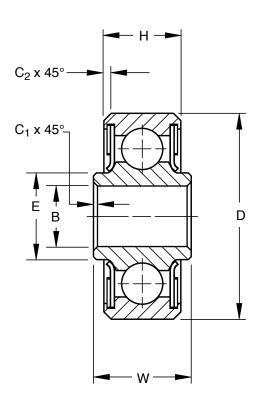
- · Single row, ball, heavy duty
- PTFE seals and CRES sealcaps
- Exposed surfaces except bore, caps, and seals are cadmium plated
- Prelubricated for life
- Also offered with CRES 440C material and/or zinc nickel plating per OEM specifications

SPECIFICATIONS AND ORDERING INFORMATION

TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example MKP3L FS464)

																	. /				,
Bearing Number 52100†	MS 27640 Dash No.	+0.0000	, -0.0003	+0.0000	side neter D 1, -0.0004	+0.0000	Wi W , -0.0025	+0.000	H 0, -0.005 00.13	An	E prox.	+0.015, +0.38	, -0.000		, -0.000 , -0.00		Vt. prox.	Li Lo	dial mit oad ting	Liı Lo	rust mit oad ting
		+0.000	, -0.000	+0.000	1, -0.010	+0.000	1, -0.004	+0.00	0,-0.10	Αþ	piux.	T0.30,	, -0.00	+0.30	, -0.00	App	JIUA.				
		in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kg	lbf.	N	lbf.	N
MKP3L ⁽¹⁾	-3AR	0.1900	4.826	0.6250	15.875	0.2450	6.225	0.203	5.16	0.285	7.24	0.005	0.13	0.010	0.25	0.01	0.005	1560	6900	700	3100
МКР3	-3R	0.1900	4.826	0.7774	19.746	0.2970	7.540	0.270	6.86	0.336	8.53	0.005	0.13	0.022	0.56	0.03	0.014	1880	8400	900	4000
MKP4	-4R	0.2500	6.350	0.9014	22.896	0.4840	12.290	0.335	8.51	0.395	10.03	0.005	0.13	0.032	0.81	0.04	0.018	2680	12000	1200	5300
MKP5	-5R	0.3125	7.938	1.2500	31.750	0.5580	14.170	0.375	9.53	0.474	12.04	0.015	0.38	0.032	0.81	0.09	0.041	5620	25000	2500	11200
МКР6	-6R	0.3750	9.525	1.4375	36.513	0.6200	15.750	0.469	11.91	0.596	15.14	0.015	0.38	0.032	0.81	0.15	0.068	7910	35500	3500	15600
МКР8	-8R	0.5000	12.700	1.6875	42.863	0.6200	15.750	0.500	12.70	0.773	19.63	0.015	0.38	0.044	1.12	0.21	0.095	11800	52500	5200	23200
MKP10	-10R	0.6250	15.875	1.9375	49.213	0.6200	15.750	0.500	12.70	0.855	21.72	0.015	0.38	0.044	1.12	0.28	0.127	14100	62800	6200	27600

⁽¹⁾ Bonded PTFE Seals


 $^{^{\}dagger}\text{For CRES}$ 440C material prefix "A" in part number; e.g., AMKP3L

MS27641-R • SAE-AS7949

- Single row, ball, deep groove, medium duty
- PTFE seals and CRES sealcaps
- Exposed surfaces except bore, caps, and seals are cadmium plated
- Prelubricated for life
- Also offered with CRES 440C material and/or zinc nickel plating per OEM specifications

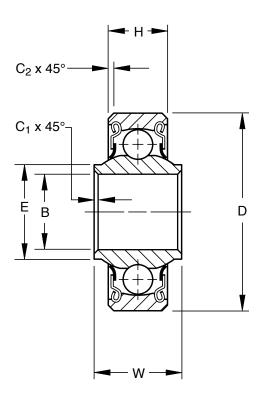
SPECIFICATIONS AND ORDERING INFORMATION

TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example MKP3AL FS464)

Bearing Number 52100†	MS 27641 Dash No.	+0.0000, +0.000,	-0.0003	Dian I +0.0000	side neter) , -0.0004 , -0.010	+0.0000	Widths H 0.0000, -0.0025 +0.000, -0.005 +0.000, -0.064 +0.00, -0.13 in. mm in. mm			Ap	E prox.	+0.015, +0.38,	, -0.000		, -0.000 , -0.00		/t. orox.	Lii Lo	dial mit oad ting	Lir Lo	rust mit oad ting
		in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kg	lbf.	N	lbf.	N
MKP3AL ⁽¹⁾	_	0.1900	4.826	0.5000	12.700	0.2370	6.020	0.196	4.98	0.261	6.63	0.005	0.13	0.012	0.30	0.01	0.005	970	4350	430	1950
МКРЗА	-3R	0.1900	4.826	0.6250	15.875	0.2970	7.540	0.234	5.94	0.302	7.67	0.005	0.13	0.016	0.41	0.01	0.005	1560	6950	700	3150
MKP4A	-4R	0.2500	6.350	0.7500	19.050	0.2810	7.140	0.219	5.56	0.385	9.78	0.005	0.13	0.016	0.41	0.02	0.009	1880	8400	900	4000
MKP5A	-5R	0.3125	7.938	0.8125	20.638	0.2970	7.540	0.234	5.94	0.433	11.00	0.015	0.38	0.016	0.41	0.02	0.009	2190	9800	1000	4500
MKP6A	-6R	0.3750	9.525	0.8750	22.225	0.3130	7.950	0.250	6.35	0.512	13.00	0.015	0.38	0.016	0.41	0.03	0.014	2500	11200	1100	4900
MKP8A	-8R	0.5000	12.700	1.1250	28.575	0.3750	9.530	0.313	7.95	0.638	16.21	0.015	0.38	0.016	0.41	0.05	0.023	3910	17400	1700	7600
MKP10A	-10R	0.6250	15.875	1.3750	34.925	0.4060	10.310	0.344	8.74	0.773	19.63	0.015	0.38	0.032	0.81	0.08	0.036	6700	30000	3000	13400
MKP12A	-12R	0.7500	19.050	1.6250	41.275	0.4370	11.100	0.375	9.53	0.967	24.56	0.015	0.38	0.032	0.81	0.13	0.059	8790	39100	3900	17400
MKP16A	-16R	1.0000	25.400	2.0000	50.800	0.5000	12.700	0.438	11.13	1.268	32.21	0.015	0.38	0.032	0.81	0.22	0.100	11900	53000	5200	23200
MKP20A	-20R	1.2500	31.750	2.2500	57.150	0.5000	12.700	0.438	11.13	1.503	38.18	0.015	0.38	0.032	0.81	0.26	0.118	13800	61400	6100	27200

⁽¹⁾ MKP3AL is not an MS27641 size.

[†] For CRES 440C material prefix "A" in part number; e.g., AMKP3L


AIRFRAME CONTROL BALL BEARINGS — MKSP, MKSP-A PRECISION SERIES, SELF-ALIGNING

MS27645-R • SAE-AS7949

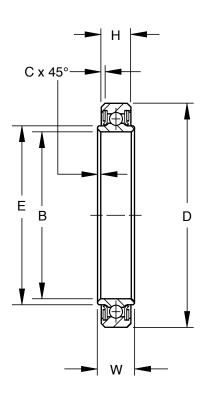
- Single row, ball, self-aligning light and heavy duty
- PTFE seals and CRES sealcaps
- Exposed surfaces except bore, caps, and seals are cadmium plated
- Prelubricated for life
- Also offered with CRES 440C material and/or zinc nickel plating per OEM specifications

SPECIFICATIONS AND ORDERING INFORMATION

TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example MKSP3L FS464)

Bearing Number ⁽¹⁾	MS 27645 Dash No.	+0.0000, +0.000,	-0.0003	Dian I +0.0000	side neter D , -0.0004 , -0.010	+0.0000	V	+0.000	H 0, -0.005 0, -0.13	Apı	E prox.	+0.015 +0.38	-0.000	+0.015 +0.38	i-0.000	_	/t. orox.	Lii Lo	dial mit ad ting	Lir Lo	rust mit oad ting
		in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kg	lbf.	N	lbf.	N
MKSP3L	-3AR	0.1900	4.826	0.6250	15.875	0.2450	6.220	0.203	5.16	0.256	6.50	0.005	0.13	0.016	0.41	0.01	0.005	550	2450	100	450
MKSP4A	-4AR	0.2500	6.350	0.7500	19.050	0.2810	7.140	0.219	5.56	0.328	8.33	0.005	0.13	0.016	0.41	0.02	0.009	900	4000	200	900
MKSP5A	-5AR	0.3125	7.938	0.8125	20.638	0.2970	7.540	0.234	5.94	0.389	9.88	0.015	0.38	0.016	0.41	0.02	0.009	1000	4400	200	900
MKSP6A	-6AR	0.3750	9.525	0.8750	22.225	0.3130	7.950	0.250	6.35	0.462	11.73	0.016	0.41	0.016	0.41	0.03	0.014	1120	5000	200	900
MKSP3	-3R	0.1900	4.826	0.7774	19.746	0.2970	7.540	0.270	6.86	0.297	7.54	0.005	0.13	0.022	0.56	0.03	0.014	900	4000	200	900
MKSP4	-4R	0.2500	6.350	0.9014	22.896	0.4840	12.290	0.335	8.51	0.396	10.06	0.005	0.13	0.032	0.81	0.04	0.018	1410	6300	300	1340
MKSP5	-5R	0.3125	7.938	1.2500	31.750	0.5580	14.170	0.375	9.52	0.567	14.40	0.015	0.38	0.032	0.81	0.10	0.045	2190	9800	300	1340
MKSP6	-6R	0.3750	9.525	1.4375	36.512	0.6200	15.750	0.469	11.91	0.612	15.54	0.015	0.38	0.032	0.81	0.15	0.068	2980	13200	400	1780
*MKSP8	-8R	0.5000	12.700	1.6875	42.862	0.6200	15.750	0.500	12.70	0.796	20.22	0.015	0.38	0.044	1.12	0.23	0.104	3670	16300	500	2230
*MKSP10	-10R	0.6250	15.875	1.9375	49.212	0.8130	20.650	0.625	15.88	0.922	23.42	0.015	0.38	0.044	1.12	0.37	0.168	5320	23600	600	2670

⁽¹⁾ These bearings are self-aligning for 10° in either direction except MKSP4A, MKSP5A and MKSP6A which are self-aligning for 8° in either direction.


^{*} Check for availability.

MS27642-S

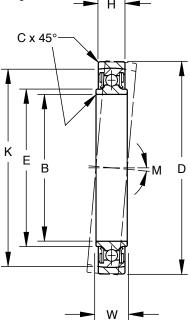
- Single row, ball, deep groove, light duty
- PTFE seals and CRES sealcaps
- Exposed surfaces except bore, caps, and seals are cadmium plated
- Prelubricated for life
- Also offered with CRES 440C material and/or zinc nickel plating per OEM specifications

SPECIFICATIONS AND ORDERING INFORMATION

TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example MKP16B)

Bearing Number 52100†	MS 27642 Dash No.	Bore B +0.0000, -0.0005 +0.000, -0.013	Outside Diameter D +0.0000, -0.0010 +0.000, -0.025		H 000, -0.005 0.00, -0.13	E Approx.	+0.015, -0.000 +0.38, -0.00	Wt. Approx.	Radial Limit Load Rating	Thrust Limit Load Rating
-		in. mm	in. mm	in. mm i	n. mm	in. mm	in. mm	lbs. kg	lbf. N	lbf. N
MKP16B	-16S	1.0000 25.400	1.7500 44.450	0.4370 11.100 0.3	375 9.53	1.150 29.21	0.024 0.61	0.14 0.064	8090 36000	3600 16000
MKP21B	-21\$	1.3125 33.338	2.0625 52.388	0.4370 11.100 0.	375 9.53	1.465 37.21	0.024 0.61	0.16 0.073	9840 43800	4400 19600
MKP23B	-23S	1.4375 36.512	2.1875 55.563	0.4370 11.100 0.	375 9.53	1.585 40.26	0.024 0.61	0.17 0.077	10500 46700	4700 20900
MKP25B	-25S	1.5625 39.688	2.3125 58.738	0.4370 11.100 0.	375 9.53	1.700 43.18	0.024 0.61	0.19 0.086	11300 50300	5000 22300
MKP29B	-29S	1.8125 46.038	2.5625 65.088	0.4370 11.100 0.	375 9.53	1.940 49.28	0.024 0.61	0.21 0.095	12700 56500	5600 25000
МКР33В	-33S	2.0625 52.388	2.8125 71.438	0.4370 11.100 0.	375 9.53	2.234 56.74	0.024 0.61	0.23 0.104	14400 64000	6400 28600
МКР37В	-37S	2.3125 58.738	3.0625 77.788	0.4370 11.100 0.	375 9.53	2.475 62.87	0.024 0.61	0.26 0.118	15800 70300	7000 31100
MKP47B	-47S	2.9375 74.612	3.8750 98.425	0.5310 13.490 0.	469 11.91	3.105 78.87	0.039 0.99	0.49 0.222	24700 110000	10900 48500
MKP49B	-49S	3.0625 77.788	4.0000 101.600	0.5310 13.490 0.	469 11.91	3.230 82.04	0.039 0.99	0.53 0.240	27500 122500	12100 54000
MKP52B	-52S	3.2500 85.550	4.1875 106.363	0.5310 13.490 0.	469 11.91	3.460 87.88	0.039 0.99	0.55 0.249	28700 12770	12600 56000
MKP56B	-56S	3.5000 88.900	4.4375 112.713	0.5310 13.490 0.	469 11.91	3.734 94.84	0.039 0.99	0.59 0.268	31200 140000	13700 61000
MKP60B	-60S	3.7500 95.250	4.6875 119.063	0.5310 13.490 0.	469 11.91	3.972 100.89	0.039 0.99	0.61 0.277	33100 147300	14600 65000
MKP64B	-64S	4.0000 101.600	4.9375 125.413	0.5310 13.490 0.	469 11.91	4.217 107.11	0.039 0.99	0.64 0.290	35500 157900	15400 68500
MKP68B	-68S	4.2500 107.950	5.3125 134.938	0.5930 15.060 0.	531 13.49	4.478 113.74	0.039 0.99	0.73 0.331	41900 186400	18400 81800
MKP72B	-72\$	4.5000 114.300	5.5625 142.875	0.5930 15.060 0.	531 13.49	4.736 120.29	0.039 0.99	0.76 0.345	44300 197000	19500 86700

 $^{^\}dagger$ For CRES 440C material prefix "A" in part number; e.g., AMKP21B @2008 RBC Bearings Incorporated. All rights reserved.


AIRFRAME CONTROL BALL BEARINGS — MKP-BS PRECISION SERIES SELF-ALIGNING

MKP-BS Precision Series

- Single row, ball, externally self-aligning, extra light duty
- PTFE seals and CRES sealcaps
- Exposed surfaces except bore, caps, and seals are cadmium plated
- · Prelubricated for life
- This series is internally identical to the MKP-B series. Self-alignment is
 provided by an external self-aligning ring whose internal spherical-ground
 surface is accurately matched to the external spherical-ground surface of the
 outer ring. These bearings are designed to compensate for initial misalignment
- Also offered with CRES 440C material and/or zinc nickel plating per OEM specifications

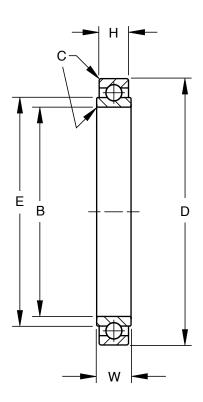
SPECIFICATIONS AND ORDERING INFORMATION

TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example MKP16BS FS464)

Bearing Number 52100 [†]	+0.0000	, -0.0005 , -0.013	Dian I +0.0000	side neter D 0, -0.0010 1, -0.025	+0.0000, +0.000,	-0.0025	+0.000, +0.00,	-0.005	Ар	E prox.	+0.015	, -0.000 , -0.00	Sh Co	K To arp rner ef.)	M Mis- alignment Either Direction (Ref.)		/t. orox.	Li Lo	dial mit oad ting	Lin Lo	ust nit ad ing
	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm		lbs.	kg	lbf.	N	lbf.	N
MKP16BS	1.0000	25.400	1.9375	49.213	0.4370	11.100	0.375	9.53	1.150	29.21	0.024	0.61	1.709	43.41	7°25'	0.18	0.082	8085	36000	1600	7100
MKP21BS	1.3125	33.338	2.2500	57.150	0.4370	11.100	0.375	9.53	1.465	37.21	0.024	0.61	2.028	51.51	6°30'	0.20	0.091	9840	43800	2000	9000
*MKP23BS	1.4375	36.612	2.3750	60.325	0.4370	11.100	0.375	9.53	1.585	40.26	0.024	0.61	2.155	54.74	6°	0.22	0.100	10500	46700	2200	9800
MKP25BS	1.5625	39.688	2.5000	63.500	0.4370	11.100	0.375	9.53	1.700	43.18	0.024	0.61	2.282	57.96	5°45'	0.25	0.113	11300	50300	2300	10200
MKP29BS	1.8125	46.038	2.7500	69.850	0.4370	11.100	0.375	9.53	1.940	49.28	0.024	0.61	2.535	64.39	5°	0.27	0.122	12700	56500	2600	11600
*MKP33BS	2.0625	52.388	3.0000	76.200	0.4370	11.100	0.375	9.53	2.234	56.74	0.024	0.61	2.787	70.79	5°	0.30	0.136	14400	64000	2900	12900
*MKP37BS	2.3125	58.738	3.2500	82.550	0.4370	11.100	0.375	9.53	2.475	62.87	0.024	0.61	3.039	77.19	4°30'	0.33	0.150	15800	70300	3200	14300
*MKP47BS	2.9375	74.612	4.1250	104.775	0.5310	13.490	0.469	11.91	3.105	78.87	0.039	0.99	3.846	97.69	4°30'	0.64	0.290	24700	110000	5000	22300
MKP48BS	3.0000	76.200	4.2500	107.950	0.5310	13.490	0.469	11.91	3.230	82.04	0.039	0.99	3.972	100.89	4°	0.69	0.313	27500	122000	5500	24500
MKP49BS	3.0625	77.788	4.2500	107.950	0.5310	13.490	0.469	11.91	3.230	82.04	0.039	0.99	3.972	100.89	4°	0.69	0.313	27500	122000	5500	24500

^{*} Check for availability

[†] For CRES 440C material prefix "A" in part number; e.g., AMKP16BS



MB500 Precision Series

- Extra light duty
- Single row, ball
- This series is made of bearing quality chromium alloy, high carbon steel, and is not cadmium plated
- Open type no seals or shields (unsealed version of MB500DD)
- Package/shipped with preservative oil

Also offered with CRES 440C material per OEM specification

SPECIFICATIONS AND ORDERING INFORMATION

TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example MB538 FS464)

Bearing Number 52100†	+0.0000,	Bore B -0.0005 +0.000, -0.013	Dian I +0.0000, -0)	+0.0000, -(+0.000, -(0.0025	+0.000, -0 +0.000, -0.		Аррі		+0.015, +0.38,	-0.000		/t. orox.	Lii Lo	dial mit ad ting	Liı Lo	rust mit pad ting
	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kg	lbf.	N	lbf.	N
MB538	0.6250	15.875	1.0625	26.988	0.2810	7.140	0.250	6.35	0.781	19.84	0.015	0.38	0.02	0.009	3280	14600	1500	6700
MB539	0.7500	19.050	1.1875	30.163	0.2810	7.140	0.250	6.35	0.898	22.81	0.015	0.38	0.03	0.014	3750	16700	1700	7600
MB540	0.8750	22.225	1.3125	33.338	0.2810	7.140	0.250	6.35	1.019	25.88	0.015	0.38	0.04	0.018	4220	18800	1900	8500
MB541	1.0625	26.988	1.5000	38.100	0.2810	7.140	0.250	6.35	1.219	30.96	0.015	0.38	0.05	0.023	5000	22300	2200	9800
MB542	1.3125	33.338	1.7500	44.450	0.2810	7.140	0.250	6.35	1.454	36.93	0.015	0.38	0.07	0.032	5950	26500	2700	12000
MB543	1.5625	39.688	2.0000	50.800	0.2810	7.140	0.250	6.35	1.706	43.33	0.015	0.38	0.08	0.036	6880	30600	3200	14300
MB544	1.8125(1)	46.038 ⁽¹⁾	2.2500(2)	57.150 ⁽²⁾	0.2810	7.140	0.250	6.35	1.974	50.14	0.015	0.38	0.09	0.041	7980	35500	3600	16000
MB545	2.0625(1)	52.388 ⁽¹⁾	2.6250(2)	66.675(2)	0.2810	7.140	0.250	6.35	2.291	58.19	0.015	0.38	0.13	0.059	9220	41000	4000	17800
*MB546	2.3125(1)	58.738 ⁽¹⁾	2.8750 ⁽²⁾	73.025(2)	0.2810	7.140	0.250	6.35	2.531	64.29	0.015	0.38	0.15	0.068	10150	45200	4400	19600

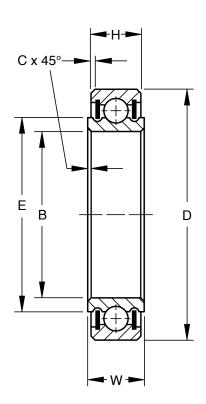
⁽¹⁾ +.0000 in. (+.000mm), -.0008 in. (-.020mm).

 $^{^{(2)}}$ +.0000 in. (+.000mm), -.0007 in. (-.018mm).

^{*} Check for availability.

 $^{^{\}dagger}$ For CRES 440C material prefix "A" in part number; e.g., AMB538

AIRFRAME CONTROL BALL BEARINGS — MB500DD PRECISION SERIES TORQUE TUBE



MS21428 • SAE-AS7949

- Extra light duty
- Single row, ball, torque tube type
- PTFE seals
- Exposed surfaces except bore and seals are cadmium plated
- Prelubricated for life
- This series is dimensionally interchangeable with the unsealed MB500 series

 Also offered with CRES 440C material and/or zinc nickel plating per OEM specifications

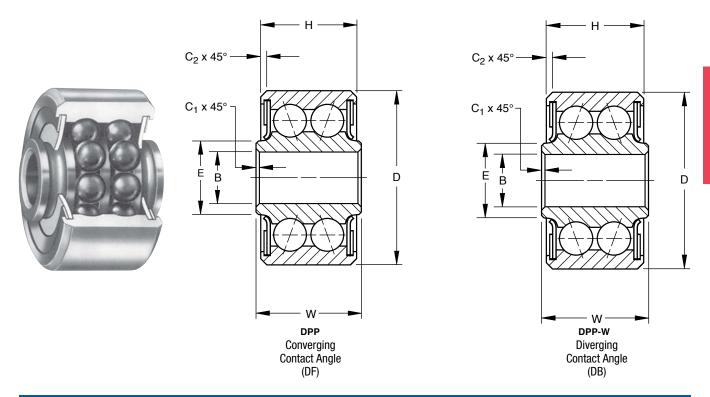
SPECIFICATIONS AND ORDERING INFORMATION

TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example MB538DD FS464)

Bearing Number 52100 [†]	MS 21428 Dash No.	Bore B +0.0000, -0.0005 +0.000, -0.013	Outside Diameter D +0.0000, -0.0005 +0.000, -0.013	Widths W H +0.0000, -0.0025 +0.000, -0.005 +0.000, -0.064 +0.00, -0.13	E Approx.	+0.015-0.000 +0.38-0.00	Wt. Approx.	Radial Limit Load Rating	Thrust Limit Load Rating
		in. mm	in. mm	in. mm in. mm	in. mm	in. mm	lbs. kg	lbf. N	lbf. N
MB538DD	-38	0.6250 15.875	1.0625 26.988	0.2810 7.140 0.250 6.35	0.781 19.84	0.015 0.38	0.03 0.014	3280 14600	1500 6700
MB539DD	-39	0.7500 19.050	1.1875 30.163	0.2810 7.140 0.250 6.35	0.898 22.81	0.015 0.38	0.04 0.018	3750 16700	1700 7600
MB540DD	-40	0.8750 22.225	1.3125 33.338	0.2810 7.140 0.250 6.35	1.019 25.88	0.015 0.38	0.05 0.023	4220 18800	1900 8500
MB541DD	-41	1.0625 26.988	1.5000 38.100	0.2810 7.140 0.250 6.35	1.219 30.96	0.015 0.38	0.06 0.027	5000 22300	2200 9800
MB542DD	-42	1.3125 33.338	1.7500 44.450	0.2810 7.140 0.250 6.35	1.454 36.93	0.015 0.38	0.09 0.041	5950 26500	2700 12000
MB543DD	-43	1.5625 39.688	2.0000 50.800	0.2810 7.140 0.250 6.35	1.706 43.33	0.015 0.38	0.1 0.045	6880 30600	3200 14300
MB544DD	-44	1.8125 ⁽¹⁾ 46.038 ⁽¹⁾	2.2500 ⁽²⁾ 57.150 ⁽²⁾	0.2810 7.140 0.250 6.35	1.974 50.14	0.015 0.38	0.11 0.05	7980 35500	3600 16000
MB545DD	-45	2.0625(1) 52.388(1)	2.6250 ⁽²⁾ 66.675 ⁽²⁾	0.2810 7.140 0.250 6.35	2.291 58.19	0.015 0.38	0.15 0.068	9220 41000	4000 17800
MB546DD	-46	2.3125 ⁽¹⁾ 58.738 ⁽¹⁾	2.8750 ⁽²⁾ 73.025 ⁽²⁾	0.2810 7.140 0.250 6.35	2.531 64.29	0.015 0.38	0.17 0.077	10150 45200	4400 19600

(1) +.0000 in. (+.000mm), -.0008 in. (-.020mm).

(2) +.0000 in. (+.000mm), -.0007 in. (-.018mm).


*Check for availability.

†For CRES 440C material prefix "A" in part number; e.g., AMB538DD

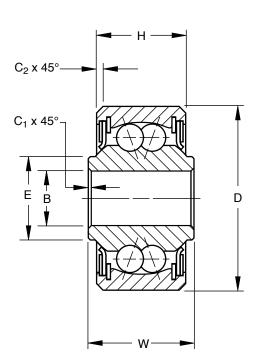
MS27644 • SAE-AS7949 (DPP Series only)

- · Double row, ball, light and heavy duty
- PTFE seals and CRES sealcaps
- Exposed surfaces except bore, caps and seals are cadmium plated
- · Prelubricated for life
- For use where high moment rigidity is required, DPP-W series only
- Also offered with CRES 440C material and/or zinc nickel plating per OEM specifications

SPECIFICATIONS AND ORDERING INFORMATION

TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example DPP3 FS464)

Bearing	MS	Bo	re	Outs	side		Widths				E	C	1	c	2	W	lt.				
Number	27644 Dash No.	E	3	Diam C	neter)	'	W		H +0.000, -0.005									Lii	dial mit ad	Lir	rust mit oad
	-	+0.0000, +0.000,		+0.0000,			0, -0.005 0, -0.13		0, -0.005 0, -0.13	Арј	prox.	+0.015, +0.38,		+0.015. +0.38		Арр	rox.	Ra	ting	Rat	ting
		in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kg	lbf.	N	lbf.	N
DPP3	-3	0.1900	4.826	0.7774	19.746	0.495	12.57	0.473	12.01	0.302	7.67	0.005	0.13	0.018	0.46	0.04	0.018	2950	13200	1700	7500
DPP4	-4	0.2500	6.350	0.9014	22.896	0.620	15.75	0.491	12.47	0.410	10.41	0.005	0.13	0.032	0.81	0.06	0.027	5370	24000	1800	8000
DPP5	-5	0.3125	7.938	1.2500	31.750	0.745	18.92	0.687	17.45	0.524	13.31	0.015	0.38	0.032	0.81	0.17	0.077	11000	49000	4000	17800
DPP6	-6	0.3750	9.525	1.4375	36.512	0.870	22.10	0.794	20.17	0.610	15.49	0.015	0.38	0.032	0.81	0.26	0.118	15760	70000	5300	23600
DPP8	-8	0.5000	12.700	1.6875	42.862	0.932	23.67	0.856	21.74	0.735	18.67	0.015	0.38	0.044	1.12	0.38	0.172	23600	105000	7800	34700
*DPP10	-10	0.6250	15.875	1.9375	49.212	0.995	25.27	0.920	23.37	0.890	22.61	0.015	0.38	0.044	1.12	0.53	0.240	28400	126000	9400	41800
*DPP3W	-	0.1900	4.826	0.7774	19.746	0.495	12.57	0.473	12.01	0.297	7.54	0.005	0.13	0.018	0.46	0.04	0.018	2950	13200	1450	6400
DPP4W	-	0.2500	6.350	0.9014	22.896	0.620	15.75	0.491	12.47	0.405	10.29	0.005	0.13	0.032	0.81	0.06	0.027	5370	24000	1800	8000
DPP5W	-	0.3125	7.938	1.2500	31.750	0.745	18.92	0.687	17.45	0.548	13.92	0.015	0.38	0.032	0.81	0.17	0.077	11000	49000	4000	17800
DPP6W	-	0.3750	9.525	1.4375	36.512	0.870	22.10	0.794	20.17	0.610	15.49	0.015	0.38	0.032	0.81	0.26	0.118	15760	70000	5300	23600
DPP8W	-	0.5000	12.700	1.6875	42.862	0.932	23.67	0.856	21.74	0.730	18.54	0.015	0.38	0.044	1.12	0.38	0.172	23600	105000	7800	34700
*DPP10W	-	0.6250	15.875	1.9375	49.212	0.995	25.27	0.920	23.37	0.945	24.00	0.015	0.38	0.044	1.12	0.53	0.240	28400	126000	9400	41800


^{*} Check for availability.

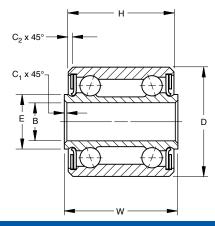
MS27643 • SAE-AS7949

- Double row, ball, self-aligning, heavy duty
- PTFE seals and CRES sealcaps
- Exposed surfaces except bore, caps, and seals are cadmium plated
- Prelubricated for life
- Also offered with CRES 440C material and/or zinc nickel plating per OEM specifications

SPECIFICATIONS AND ORDERING INFORMATION

TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example DSP3 FS464)

No. +0.0000, -0.0005 +0.000, -0.0005 +0.000, -0.005 +0.000, -0.13 +0.00, -0.13 +0.00, -0.13 Approx. +0.38, -0.00 +0.38, -0.00 Approx.	Rating
in. mm lbs. kg bt. N	lbf. N
DSP3 -3 0.1900 4.826 0.7774 19.746 0.500 12.70 0.392 9.96 0.304 7.72 0.005 0.13 0.022 0.56 0.04 0.018 1420 6300	200 900
DSP4 -4 0.2500 6.350 0.9014 22.896 0.687 17.45 0.464 11.79 0.430 10.92 0.005 0.13 0.032 0.81 0.06 0.027 1780 7900	300 1340
DSP5 -5 0.3125 7.938 1.2500 31.750 0.812 20.62 0.656 16.66 0.515 13.08 0.015 0.38 0.032 0.81 0.16 0.073 3740 16600	600 2650
DSP6 -6 0.3750 9.525 1.4375 36.512 0.937 23.80 0.750 19.05 0.564 14.33 0.015 0.38 0.032 0.81 0.24 0.109 5100 22700	800 3550
DSP8 -8 0.5000 12.700 1.6875 42.862 1.000 25.40 0.812 20.62 0.775 19.68 0.015 0.38 0.044 1.12 0.36 0.163 7120 31700	1000 4400
DSP10 -10 0.6250 15.875 1.9375 49.212 1.125 28.58 0.937 23.80 0.869 22.07 0.015 0.38 0.044 1.12 0.53 0.240 9000 40000	1300 5800

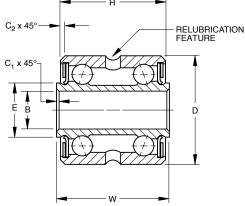

 $^{^{(1)}}$ These bearings are self-aligning for 10° in either direction .

MS27647 • SAE-AS7949 (DW Series)

- Extra wide, double row, ball, medium duty
- PTFE seals and CRES sealcaps
- Exposed surfaces except bore, caps, and seals are cadmium plated
- Prelubricated for life
- Also offered with CRES 440C material and/or zinc nickel plating per OEM specifications

SPECIFICATIONS AND ORDERING INFORMATION

TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example DW4K2 FS464)


Bearing Number	MS 27647 Dash No.	+0.0000, +0.000,	-0.0005	Dian I +0.0000	side neter D , -0.0005 , -0.013	+0.000	Wi W 0, -0.005 0, -0.13	+0.000	H 0, -0.005 0, -0.13	Арі	E orox.	+0.015, +0.38,	-0.000	+0.015, +0.38	, -0.000		/t. orox.	Li Lo	dial mit oad ting	Lir	rust nit ad ting
		in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kg	lbf.	N	lbf.	N
DW4K2 ⁽¹⁾	-4A	0.2500	6.350	0.6250	15.875	0.562	14.27	0.500	12.70	0.339	8.61	0.005	0.13	0.016	0.41	0.025	0.011	1400	6200	500	2240
DW4K ⁽¹⁾	-4	0.2500	6.350	0.7500	19.050	0.875	22.22	0.750	19.05	0.380	9.65	0.005	0.13	0.016	0.41	0.04	0.018	2770	12200	900	4000
DW4	1	0.2500	6.350	0.7500	19.050	0.875	22.22	0.750	19.05	0.375	9.52	0.005	0.13	0.016	0.41	0.06	0.027	3750	16600	1240	5500
DW5	-5	0.3125	7.938	0.8750	22.225	0.938	23.83	0.813	20.65	0.469	11.91	0.005	0.13	0.016	0.41	0.07	0.032	5140	22800	1600	7100
DW6	-6	0.3750	9.525	1.0625	26.988	1.188	30.18	1.063	27.00	0.573	14.55	0.005	0.13	0.016	0.41	0.12	0.054	8440	37500	2600	11600
DW8	-8	0.5000	12.700	1.4375	36.512	1.500	38.10	1.375	34.92	0.712	18.08	0.005	0.13	0.032	0.81	0.29	0.132	15520	69500	4700	20800

⁽¹⁾ Retainer type.

MS27647 • SAE-AS7949 (GDW Series)

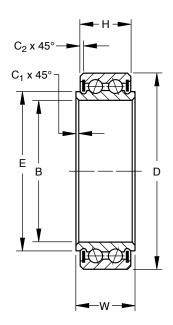
- Extra wide, double row, ball, medium duty
- PTFE, seals and CRES sealcaps
- Exposed surfaces except bore, caps, and seals are cadmium plated
- Dimensionally interchangeable with the DW series, the GDW series is relubricable through holes and a groove in the outer ring
- Prelubricated for life
- Also offered with CRES 440C material and/or zinc nickel plating per OEM specifications

SPECIFICATIONS AND ORDERING INFORMATION

TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example GDW4K2 FS464)

	,				_	_															
Bearing Number	MS 27647 Dash No.	Bo E			side neter D		Wi W	dths	Н		E	С	1	C	2	W	lt.	Li	dial mit oad	Liı	rust mit add
		+0.0000,			, -0.0005 , - <mark>0.013</mark>		0, -0.005 0, -0.13		0, -0.005 0, -0.13	Apı	prox.	+0.015, +0.38,		+0.015 +0.38	, -0.000 , -0.00	Арр	rox.		ting		ting
		in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kg	lbf.	N	lbf.	N
GDW4K2 ⁽¹⁾	-4AG	0.2500	6.350	0.6250	15.875	0.562	14.27	0.500	12.70	0.339	8.61	0.005	0.13	0.016	0.41	0.025	0.011	1400	6200	500	2240
GDW4K(1)	-4G	0.2500	6.350	0.7500	19.050	0.875	22.22	0.750	19.05	0.380	9.65	0.005	0.13	0.016	0.41	0.04	0.018	2770	12200	900	4000
GDW4	-	0.2500	6.350	0.7500	19.050	0.875	22.22	0.750	19.05	0.375	9.52	0.005	0.13	0.016	0.41	0.06	0.027	3750	16600	1240	5500
GDW5	-5G	0.3125	7.938	0.8750	22.225	0.938	23.83	0.813	20.65	0.469	11.91	0.005	0.13	0.016	0.41	0.07	0.032	5140	22800	1600	7100
GDW6	-6G	0.3750	9.525	1.0625	26.988	1.188	30.18	1.063	27.00	0.573	14.55	0.005	0.13	0.016	0.41	0.12	0.054	8440	37500	2600	11600
GDW8	-8G	0.5000	12.700	1.4375	36.512	1.500	38.10	1.375	34.92	0.712	18.08	0.005	0.13	0.032	0.81	0.29	0.132	15520	69500	4700	20800

⁽¹⁾ Retainer type.


AIRFRAME CONTROL BALL BEARINGS — B5500WZZ SERIES DOUBLE ROW TORQUE TUBE

B5500WZZ Series

- Extra light duty
- Double row, ball
- Torque tube type
- PTFE seals
- Exposed surfaces except bore, and seals are cadmium plated
- Prelubricated for life
- Also offered with CRES 440C material and/or zinc nickel plating per OEM specifications

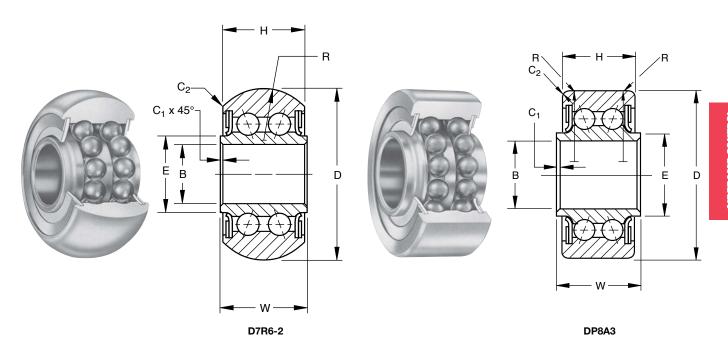
SPECIFICATIONS AND ORDERING INFORMATION

TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example B5538WZZ FS464)

	Bo	re	Out:	side		Wi	dths			E	C,	(3)	C,	(3)	V	/t.				
Bearing Number	+0.0000.		ı	neter D 0.0005		w 00.005		H)0.005			,						Lii Lo	dial mit oad ting	Thr Lin Lo: Rat	nit ad
	+0.000,			, -0.013		0, -0.13		0, -0.13	Арј	orox.					Арр	rox.		9		9
	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kg	lbf.	N	lbf.	N
B5538WZZ	0.6250	15.875	1.0625	26.988	0.562	14.27	0.500	12.70	0.745	18.92	0.015	0.38	0.015	0.38	0.04	0.018	6250	28000	2060	9150
B5539WZZ	0.7500	19.050	1.1875	30.162	0.562	14.27	0.500	12.70	0.865	21.97	0.015	0.38	0.015	0.38	0.06	0.027	7190	32000	2370	10600
B5540WZZ	0.8750	22.225	1.3125	33.338	0.562	14.27	0.500	12.70	0.989	25.12	0.015	0.38	0.015	0.38	0.08	0.036	8120	36000	2680	12000
B5541WZZ	1.0625	26.988	1.5000	38.100	0.562	14.27	0.500	12.70	1.190	30.23	0.015	0.38	0.015	0.38	0.10	0.045	9690	43000	3200	14300
B5542WZZ	1.3125	33.338	1.7500	44.450	0.562	14.27	0.500	12.70	1.430	36.32	0.015	0.38	0.015	0.38	0.14	0.064	11600	52000	3820	17000
B5543WZZ	1.5625	39.688	2.0000	50.800	0.562	14.27	0.500	12.70	1.665	42.29	0.015	0.38	0.015	0.38	0.16	0.073	13400	60000	4430	19700
B5544WZZ	1.8125(1)	46.038(1)	2.2500 ⁽²⁾	57.150 ⁽²⁾	0.562	14.27	0.500	12.70	1.935	49.15	0.015	0.38	0.015	0.38	0.18	0.082	15600	69500	5160	23000
B5545WZZ	2.0625(1)	52.388(1)	2.6250(2)	66.675(2)	0.562	14.27	0.500	12.70	2.265	57.53	0.015	0.38	0.015	0.38	0.26	0.118	18100	80500	5980	26600
*B5546WZZ	2.3125(1)	58.738 ⁽¹⁾	2.8750 ⁽²⁾	73.025(2)	0.562	14.27	0.500	12.70	2.505	63.63	0.015	0.38	0.015	0.38	0.30	0.136	20000	89000	6600	29400

 $^{^{(1)}}$ +0.0000 in. (+0.000mm), -0.0008 in. (-0.020mm).

 $^{^{(2)}}$ +0.0000 in. (+0.000mm), -0.0007 in. (-0.018mm).


 $[\]ensuremath{^{(3)}}$ Maximum shaft or housing fillet radius which bearing corners will clear.

^{*} Check for availability.

D Series

- · Double row, ball
- PTFE seals and CRES sealcaps
- Exposed surfaces except bore, caps, and seals are cadmium plated
- Prelubricated for life with MIL-PRF-23827 grease

SPECIFICATIONS AND ORDERING INFORMATION

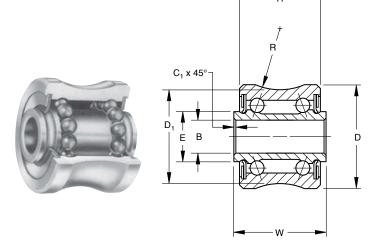
TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION PER BELOW. (Example D7R6-2 FS160)

Bearing Number		ore B		tside meter D		Wi W 1, -0.005		H), -0.005		E	+0.015		(Ç ₂	ı	R	Sa Wor	ad	w	t.
	+0.000	, -0.013			+0.00), -0.13	+0.00	0, -0.13	Ap	prox.	+0.38,	-0.00	(R	ef.)			каа	ai ···	App	rox.
	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbf.	N	lbs.	kg
D7R6-2 FS160	0.4375	11.112	1.250	31.75	0.625	15.88	0.600	15.24	0.566	14.38	0.005(2)	0.13(2)	0.05	1.27	0.375	9.52	1000	4400	0.12	.055
			1.240	31.50			0.590	14.99							0.365	9.27				
DP8A3 FS160	0.5000	12.70	1.225	31.12	0.625	15.88	0.527	13.39	0.610	15.49	0.005(2)	0.13(2)	.050	1.27	.515 ⁽³⁾	13.08	1000	4400	0.11	0.050
			1.220	30.99									.030	0.76	.485(3)	12.32				

⁽¹⁾ The maximum working radial load to obtain 100,000 ft. (30,500m) peripheral travel life.

^{(2) +.010} in. (+.25mm) -.000 in. (-.00mm).

⁽³⁾ Centerline of radius located .090 in. (2.29mm) to .120 in. (3.05mm) from faces of outer ring.


^{*} Check for availability.

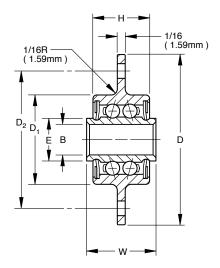
AIRFRAME CONTROL BALL BEARINGS — G & BCP SERIES

G Series

- Single and double row
- Equipped with molded rubber seals or CRES shields
- Exposed surfaces except bore, caps, and seals are cadmium plated
- Prelubricated for life

SPECIFICATIONS AND ORDERING INFORMATION

TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION PER BELOW. (Example GD5M28 FS160)


	Bearing Number	Boi B	re	+0.000	tside meter D 0 -0.010 0 -0.25	+0.000	W 0 -0.005 0 -0.13	+0.000	H 0 -0.005 0 -0.13	Ap	E prox.	+0.015, +0.38,	, -0.000	ı	D ₁		R	Sa Wor Lo	ax. afe king oad lial ⁽¹⁾	W App	
_		in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbf.	N	lbs.	kg
_	*GD5M28 FS160	0.3125	7.938	1.015	25.78	0.9375	23.81	0.812	20.62	0.472	11.99	0.005	0.13	0.901	22.89	0.895	22.73	600	2650	0.10	0.045
		0.3120	7.925											0.900	22.86	0.905	22.99				

⁽¹⁾ The maximum safe working load is that radial load to obtain 100,000 ft. (30,500 M) peripheral travel life.

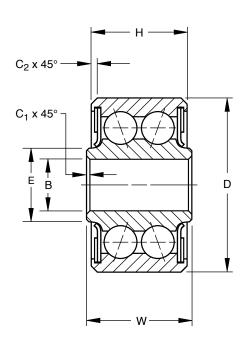
BCP Series

- · Double row, ball
- Equipped with molded rubber seals
- Exposed surfaces except bore, caps, and seals are cadmium plated
- Prepacked with lubricant conforming to MIL-PRF-23827

SPECIFICATIONS AND ORDERING INFORMATION

TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION PER BELOW. (Example BCP4W10 FS302)

Bearing Number ⁽¹⁾	+0.0000 +0.000	-0.0005	Diar ±.	tside neter D 010 0.25	+0.000	Wi W -0.005 0 -0.13	±	H .005 0.13	Apı	E prox.		010 0.25		005 .13	W App		Liı Lo	dial mit ad ting	Thre Lin Loa Rati	nit ad
	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kg	lbf.	N	lbf.	N
BCP4W10 FS302	0.25	6.350	1.625	41.28	0.625	15.88	0.500	12.70	0.404	10.26	0.750	19.05	1.312	33.32	0.06	0.027	2770	12300	700	3100
BCP5W11 FS302	0.3125	7.938	1.687	42.85	0.687	17.45	0.562	14.27	0.453	11.51	0.875	22.22	1.375	34.92	0.08	0.036	3280	14600	900	4000


 $^{^{(1)}}$ Both sizes are furnished with 12 equally spaced holes in the flange. Holes are .140 in. (+.005, -.000) in diameter.

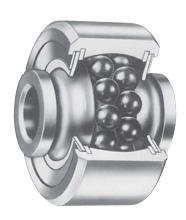
MDPP Precision Series

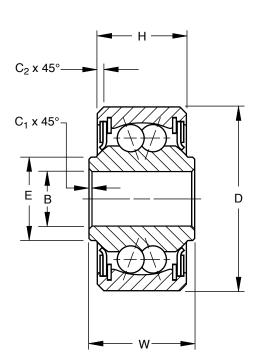
- Double row, ball, light and heavy duty
- PTFE seals and CRES sealcaps
- Exposed surfaces except bore, caps and seals are cadmium plated
- Prelubricated for life
- Also offered with CRES 440C material and/or zinc nickel plating per OEM specifications

SPECIFICATIONS AND ORDERING INFORMATION

TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example MDPP3 FS464)

Beari	ing	Bo	re	Out	side		Wi	dths			E	C	,	C	9	W	/t.				
Numb	ber	E		1	neter O		N		Н						-			Li Lo	dial mit oad	Lir Lo	ust nit ad
		+0.0000, +0.000,		+0.0000	, -0.0004 , - <mark>0.010</mark>		, -0.0025 , -0.064		0, -0.005 0, -0.13	Ар	prox.	+0.015 +0.38		+0.015 +0.38		Арр	orox.	Ra	ting	Rat	ing
		in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kg	lbf.	N	lbf.	N
*MDPP3	_	0.1900	4.826	0.7774	19.746	0.4950	12.570	0.473	12.01	0.302	7.67	0.005	0.13	0.018	0.46	0.04	0.018	2950	13200	1700	7500
MDPP4	_	0.2500	6.350	0.9014	22.896	0.6200	15.750	0.491	12.47	0.410	10.41	0.005	0.13	0.032	0.81	0.06	0.027	5370	24000	1800	8000
MDPP5	_	0.3125	7.938	1.2500	31.750	0.7450	18.920	0.687	17.45	0.469	11.91	0.015	0.38	0.032	0.81	0.17	0.077	11000	49000	4000	17800
*MDPP6	_	0.3750	9.525	1.4375	36.512	0.8700	22.100	0.794	20.17	0.551	14.00	0.015	0.38	0.032	0.81	0.26	0.118	15760	70000	5300	23600
*MDPP8	_	0.5000	12.700	1.6875	42.862	0.9320	23.670	0.856	21.74	0.735	18.67	0.015	0.38	0.044	1.12	0.38	0.172	23600	105000	7800	34700
*MDPP10	_	0.6250	15.875	1.9375	49.212	0.9950	25.270	0.920	23.37	0.890	22.61	0.015	0.38	0.044	1.12	0.53	0.240	28400	126000	9400	41800


^{*} Check for availability.


AIRFRAME CONTROL BALL BEARINGS — MDSP PRECISION SERIES SELF-ALIGNING, DOUBLE ROW

MS27643-R • SAE-AS7949

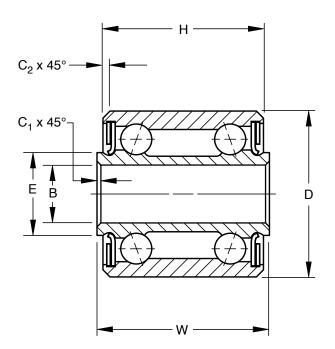
- Double row, ball, self-aligning, heavy duty
- PTFE seals and CRES sealcaps
- Exposed surfaces except bore, caps, and seals are cadmium plated
- Prelubricated for life
- Also offered with CRES 440C material and/or zinc nickel plating per OEM specifications

SPECIFICATIONS AND ORDERING INFORMATION

TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example MDSP3 FS464)

Bearing Number	MS 27643 Dash No.	+0.0000, +0.000,	-0.0003	+0.0000	side neter D , -0.0004 , -0.010	+0.0000	N	+0.000	H 0, -0.005 0, -0.13	Apı	E prox.	+0.015 +0.38	5-0.000	+0.015 +0.38	-0.000		rox.	Lii Lo	dial mit pad ting	Thr Lin Lo: Rat	nit ad
		in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kg	lbf.	N	lbf.	N
MDSP3(1)	-3R	0.1900	4.826	0.7774	19.746	0.5000	12.700	0.392	9.96	0.304	7.72	0.005	0.13	0.022	0.56	0.04	0.018	1420	6300	200	900
MDSP4(1)	-4R	0.2500	6.350	0.9014	22.896	0.6870	17.450	0.464	11.79	0.430	10.92	0.005	0.13	0.032	0.81	0.06	0.027	1780	7900	300	1340
MDSP5(1)	-5R	0.3125	7.938	1.2500	31.750	0.8120	20.620	0.656	16.66	0.515	13.08	0.015	0.38	0.032	0.81	0.16	0.073	3740	16600	600	2650
MDSP6(1)	-6R	0.3750	9.525	1.4375	36.512	0.9370	23.800	0.750	19.05	0.564	14.33	0.015	0.38	0.032	0.81	0.24	0.109	5100	22700	800	3550
*MDSP8(1)	-8R	0.5000	12.700	1.6875	42.862	1.0000	25.400	0.812	20.62	0.775	19.68	0.015	0.38	0.044	1.12	0.36	0.163	7120	31700	1000	4400
*MDSP10 ⁽¹⁾	-10R	0.6250	15.875	1.9375	49.212	1.1250	28.580	0.937	23.80	0.869	22.07	0.015	0.38	0.044	1.12	0.53	0.240	9000	40000	1300	5800

⁽¹⁾ These bearings are self-aligning for 10° in either direction


^{*} Check for availability.

MS27647-R • SAE-AS7949

- Extra wide, double row, ball, medium duty
- PTFE seals and CRES sealcaps
- Exposed surfaces except bore, caps, and seals are cadmium plated
- Prelubricated for life
- Also offered with CRES 440C material and/or zinc nickel plating per OEM specifications

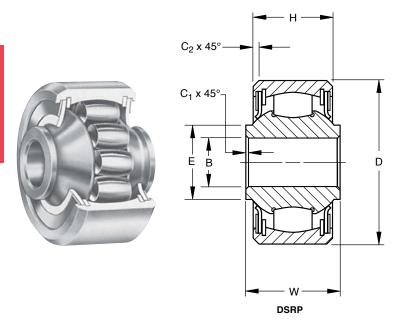
SPECIFICATIONS AND ORDERING INFORMATION

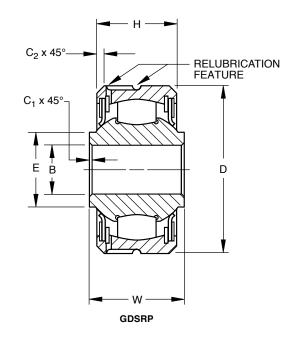
TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example MDW4K2 FS464)

Bearing Number	MS 27647 Dash No.	+0.0000, +0.000,	, -0.0003	+0.0000	side neter D , -0.0004 , -0.010	+0.0000	N		H 0, -0.005 0, -0.13	Apį	E orox.	+0.015 +0.38	5-0.000	+0.015 +0.38	-0.000	App		Lii Lo	dial nit ad ting	Thr Lin Lo: Rat	nit ad
		in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kg	lbf.	N	lbf.	N
MDW4K2 ⁽¹⁾	-4AR	0.2500	6.350	0.6250	15.875	0.5620	14.275	0.500	12.70	0.339	8.61	0.005	0.13	0.016	0.41	0.025	0.011	1400	6200	500	2240
*MDW4K ⁽¹⁾	-4R	0.2500	6.350	0.7500	19.050	0.8750	22.225	0.750	19.05	0.380	9.65	0.005	0.13	0.016	0.41	0.04	0.018	2770	12200	900	4000
*MDW4	_	0.2500	6.350	0.7500	19.050	0.8750	22.225	0.750	19.05	0.375	9.52	0.005	0.13	0.016	0.41	0.06	0.027	3750	16600	1240	5500
MDW5	-5R	0.3125	7.938	0.8750	22.225	0.9380	23.825	0.813	20.65	0.469	11.91	0.005	0.13	0.016	0.41	0.07	0.032	5140	22800	1600	7100
MDW6	-6R	0.3750	9.525	1.0625	26.988	1.1880	30.175	1.063	27.00	0.573	14.55	0.005	0.13	0.016	0.41	0.12	0.054	8440	37500	2600	11600
MDW8	-8R	0.5000	12.700	1.4375	36.512	1.5000	38.100	1.375	34.92	0.712	18.08	0.005	0.13	0.032	0.81	0.29	0.132	15520	69500	4700	20800

⁽¹⁾ Retainer type.

^{*} Check for availability.


AIRFRAME CONTROL BALL BEARINGS — DSRP, GDSRP SERIES SELF-ALIGNING ROLLER



DSRP, GDSRP Series

- · Self-aligning roller, heavy duty
- Exposed surfaces except bore, caps, and seals are cadmium plated
- Prelubricated for life
- The DSRP series is dimensionally interchangeable with the DSP series except the DSRP4 inner ring width and shoulder

- PTFE seals and CRES sealcaps
- The GDSRP series is dimensionally interchangeable with the DSRP series; however, it is relubricable through grooves and holes drilled outside of the bearing load zone, which permits access of lubricant to rollers and raceways
- Also offered with CRES 440C material and/or zinc nickel plating per OEM specifications

SPECIFICATIONS AND ORDERING INFORMATION

TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example DSRP4 FS464)

	earing mber ⁽¹⁾		ore B	Dia	tside neter D	v		idths H			E	(C ₁	() ₂	١	Wt.	Li	ndial imit	Lir	
DSRP Series	GDSRP Series	+0.0000, -0.0005 +0.000, -0.013 in. mm			0, -0.0005 0, -0.013	+0.000	0, -0.005 - <mark>0.13</mark>	+0.000, +0.00,			rox.		5, -0.000 B, -0.00		, -0.000 , -0.00	Ар	prox.		oad ing ⁽¹⁾	Rat	ad ting
		in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kg	lbf.	N	lbf.	N
DSRP4	GDSRP4	0.2500	6.350	0.9014	22.896	0.625	15.88	0.464	11.78	0.404	10.26	0.005	0.13	0.032	0.81	0.06	0.027	3025	13400	908	4040
DSRP5	GDSRP5	0.3125	7.938	1.2500	31.750	0.812	20.62	0.656	16.66	0.515	13.08	0.015	0.38	0.032	0.81	0.16	0.073	7350	32700	2200	9800
DSRP6	GDSRP6	0.3750	9.525	1.4375	36.512	0.937	23.80	0.750	19.05	0.564	14.33	0.015	0.38	0.032	0.81	0.24	0.109	9600	42700	2880	12800
DSRP8	GDSRP8	0.5000	12.700	1.6875	42.862	1.000	25.40	0.812	20.62	0.775	19.68	0.015	0.38	0.044	1.12	0.36	0.163	12500	55600	3750	16700
*DSRP10	GDSRP10 ⁽²⁾	0.6250	15.875	1.9375	49.212	1.125	28.58	0.937	23.80	0.869	22.07	0.015	0.38	0.044	1.12	0.55	0.249	17700	78700	5310	23600
*DSRP12	GDSRP12(2)	0.7500	19.050	2.3750	60.325	1.312	33.32	1.125	28.58	1.150	29.21	0.015	0.38	0.044	1.12	1.05	0.476	26900	120000	8070	35900

⁽¹⁾ These bearings are self-aligning for 10° in either direction.

⁽²⁾ Will be made as demand justifies tooling.

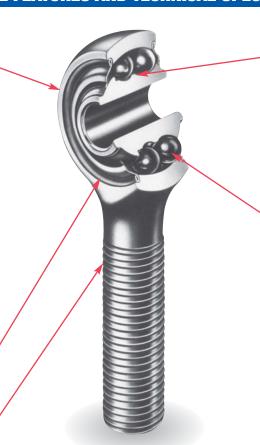
^{*} Check for availability.

RBC Ball Bearing Rod Ends

PRODUCT NO	DMENCLATURE56
BALL BEAR	RING ROD ENDS
External Thr	readed Series
MS21151	REP-M Series: External Threaded57
AeroCres® F	racture-tough Airframe Products58-59
Internal Thr	eaded Series
MS21153	REP-F Series: Internal Threaded
Hollow Shar	nk Series
MS21152	REP-H Series: Hollow Shank61
Solid Shank	Series
MS21150	REP-S Series: Solid Shank

ROLLER ROD ENDS

RA/RR Exte	rnal Threaded Series	
NAS-659	RA-M/RR-M Series: External Series	62
RA/RR Hollo	w Shank Series	
NAS-660	RA-H/RR-H Series: Hollow Shank	6


GENERAL FEATURES AND TECHNICAL SPECIFICATIONS

Outer Rod End Body

The rod end body is selectively heat treated to provide a combination of a fracture tough head, ductile shank, and a carburized raceway to provide high load carrying capacity. External surfaces are plated with Cadmium to provide corrosion protection and thread lubricity. The rod end body can be supplied with AISI8620 or RBC's proprietary "Aerocres" corrosion resistant material.

Seals and Caps

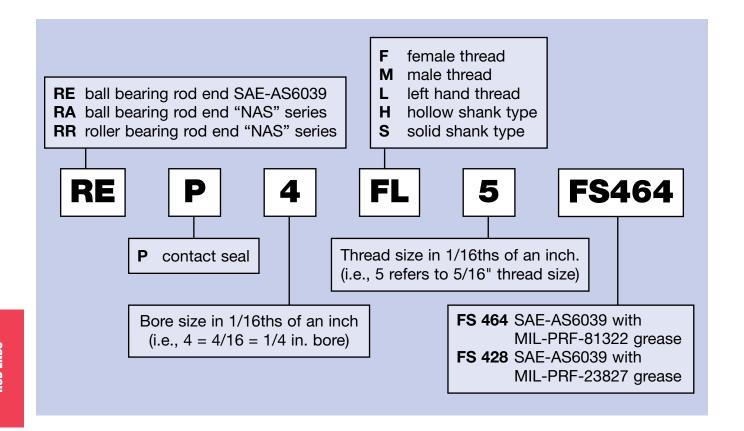
These bearings are equipped with PTFE seals bonded to corrosion resistance caps.

Lubrication

Bearings are 80 to 100% filled with greases in compliance with MIL-PRF-81322, MIL-PRF-23827, and Boeing's BMS3-33.

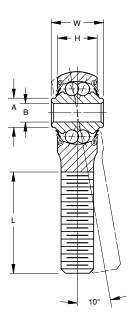
Inner Ring and Balls

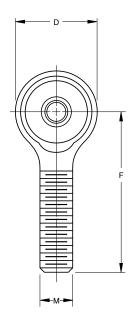
Rings and balls are made from thru-hardened 52100 or CRES 440C to accommodate the application's corrosion resistance needs.


Construction

These double row, self aligning bearings accommodate the application's low torque, high load, and misalignment needs.

Nomenclature


BALL BEARING ROD ENDS



MS21151 • SAE-AS6039

- Precision series
- Double row, ball, self-aligning
- 10° permissible misalignment in either direction
- These bearings are manufactured with an internal play of .0004 in. (.010mm) max.
- Inner and outer raceway surface finish = 8 micro in.
 AA max.
- Equipped with PTFE seals
- Exposed surfaces except bore, cap, and seals are cadmium plated
- Outer shank 90,000 psi min. tensile strength
- Prelubricated (refer to nomenclature page)

SPECIFICATIONS AND ORDERING INFORMATION

TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example REP3MR3 FS464)

Bearing Number	MS 21151 Dash No.	+0.0000,0003 +0.000,008	Outside Diameter D ±.010 ±.25	+0.000,005 +0.00,13	±.010 ±.25	A Approx.	±.010 ±.25	±.031 ±.79	M UNJF-3A Threads Per AS8879	Wt. Approx.	Radial Limit Load Rating
		in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm		lbs. kg	lbf. N
REP3MR3	-2	0.1900 4.826	0.781 19.84	0.437 11.10	0.328 8.33	0.281 7.14	1.375 34.92	0.750 19.05	10-32RH	0.04 0.018	1000 4400
REP3ML3	-1	0.1900 4.826	0.781 19.84	0.437 11.10	0.328 8.33	0.281 7.14	1.375 34.92	0.750 19.05	10-32LH	0.04 0.018	1000 4400
REP3M4-6	-7	0.1900 4.826	0.781 19.84	0.437 11.10	0.328 8.33	0.281 7.14	1.562 39.67	1.000 25.40	1/4-28RH	0.05 0.023	1000 4400
REP3MS4-6 ⁽²⁾	-7C	0.1900 4.826	0.781 19.84	0.437 11.10	0.328 8.33	0.281 7.14	1.562 39.67	1.000 25.40	½-28RH	0.05 0.023	1000 4400
REP3M6-2N	-4	0.1900 4.826	0.781 19.84	0.437 11.10	0.328 8.33	0.281 7.14	1.375 34.92	0.750 19.05	3⁄8-24RH	0.05 0.023	1000 4400
REP3MS6-2N(2) -4C	0.1900 4.826	0.781 19.84	0.437 11.10	0.328 8.33	0.281 7.14	1.375 34.92	0.750 19.05	3/4-24RH	0.05 0.023	1000 4400
REP3ML6-2N	-5	0.1900 4.826	0.781 19.84	0.437 11.10	0.328 8.33	0.281 7.14	1.375 34.92	0.750 19.05	3/4-24LH	0.05 0.023	1000 4400
REP3MLS6(2)	-5C	0.1900 4.826	0.781 19.84	0.437 11.10	0.328 8.33	0.281 7.14	1.375 34.92	0.750 19.05	³ ⁄ ₈ −24LH	0.05 0.023	1000 4400
RAP3M4-2	-6	0.1900 4.826	0.781 19.84	0.500 12.70	0.438 11.13	0.312 7.92	1.812 46.02	0.938 23.83	1/4-28RH	0.10 0.045	1000 4400
RAP3MS4-2(2)	-6C	0.1900 4.826	0.781 19.84	0.500 12.70	0.438 11.13	0.312 7.92	1.812 46.02	0.938 23.83	1/4-28RH	0.10 0.045	1000 4400
REP3M6A	-3	0.1900 4.826	0.969 24.61	0.500 12.70	0.407 ⁽⁴⁾ 10.34	0.304 7.72	2.031 51.59	1.313 33.35	³ ⁄ ₈ -24RH	0.115 0.052	1200 5300
REP3MS6A(2)	-3C	0.1900 4.826	0.969 24.61	0.500 12.70	0.407(4) 10.34	0.304 7.72	2.031 51.59	1.313 33.35	¾-24RH	0.115 0.052	1200 <u>5300</u>
REP4M6	-8	0.2500 6.350	0.938 23.83	0.593 15.06	0.438 11.13	0.345 8.76	1.875 47.62	1.125 28.58	¾-24RH	0.10 0.045	1720 7650
REP4M6-4 ⁽²⁾	-8C	0.2500 6.350	0.938 23.83	0.593 15.06	0.438 11.13	0.345 8.76	1.875 47.62	1.125 28.58	3⁄6-24RH	0.10 0.045	1720 7650
REP4ML6	-9	0.2500 6.350	0.938 23.83	0.593 15.06	0.438 11.13	0.345 8.76	1.875 47.62	1.125 28.58	3⁄6-24LH	0.10 0.045	1720 7650
REP4ML6-4 ⁽²⁾	-9C	0.2500 6.350	0.938 23.83	0.593 15.06	0.438 11.13	0.345 8.76	1.875 47.62	1.125 28.58	3⁄6-24LH	0.10 0.045	1720 7650
REP5M6	-10	0.3125 7.938	1.250 31.75	0.870 22.10	0.656 16.66	0.506 12.85	2.438 61.93	1.563 39.70	3/4-24RH	0.24 0.109	2920 12900
REP5M6-2 ⁽²⁾	-10C	0.3125 7.938	1.250 31.75	0.870 22.10	0.656 16.66	0.506 12.85	2.438 61.93	1.563 39.70	3⁄6-24RH	0.24 0.109	2920 12900
REP5M7	-11	0.3125 7.938	1.250 31.75	0.870 22.10	0.656 16.66	0.506 12.85	2.438 61.93	1.563 39.70	7∕/6-20RH	0.24 0.109	2920 12900
REP5MS7 ⁽²⁾	-11C	0.3125 7.938	1.250 31.75	0.870 22.10	0.656 16.66	0.506 12.85	2.438 61.93	1.563 39.70	⁷ ∕₁6-20RH	0.24 0.109	2920 12900
REP5M10	-12	0.3125 7.938	1.250 31.75	0.870 22.10	0.656 16.66	0.506 12.85	2.438 61.93	1.563 39.70	%-18RH	0.24 0.109	2920 12900
REP5MS10(2)	-12C	0.3125 7.938	1.250 31.75	0.870 22.10	0.656 16.66	0.506 12.85	2.438 61.93	1.563 39.70	%-18RH	0.24 0.109	2920 12900
REP8M10 ⁽³⁾	-	0.5000 12.700	1.875 47.62	1.000 25.40	0.844 21.44	0.688 17.48	3.031 76.99	1.750 44.45	5⁄6-18RH	0.55 0.249	6900 30500
RAP10M10	-13	0.6250 15.875	2.000 50.80	1.125 28.58	0.938 23.83	0.875 22.22	2.750 69.85	1.500 38.10	%-18RH	0.71 0.322	7090 31500
RAP10MS10(2)	-13C	0.6250 15.875	2.000 50.80	1.125 28.58	0.938 23.83	0.875 22.22	2.750 69.85	1.500 38.10	%-18RH	0.71 0.322	7090 31500

⁽¹⁾ Length includes maximum of two incomplete threads.

⁽²⁾ NAS 513 keyway in shank.

^{(3) 5°} permissible misalignment in either direction.

 $^{^{(4)}}$ +.000 in. (+.00 mm), -.015 in. (-.38mm).

AeroCres® Fracture-tough Airframe Products

Fracture-tough airframe products enhance corrosion resistance

For many years, corrosion has been a significant problem with bearings used in the aircraft industry. While CRES 440C has been used successfully in many aircraft applications, it is not suitable for the demands of rod end banjos or track roller studs. These two bearing components require a full Rc 58 hardness in the raceway area and a softer, tougher material elsewhere. This is not attainable with CRES 440C. RBC's AeroCres® products provide the unique solution that meets these dual material requirements.

We have selected a specialized carburized stainless steel, and have developed and optimized the heat treatment process that resulted in a homogeneous microstructure — delivering both corrosion protection and core fracture toughness.

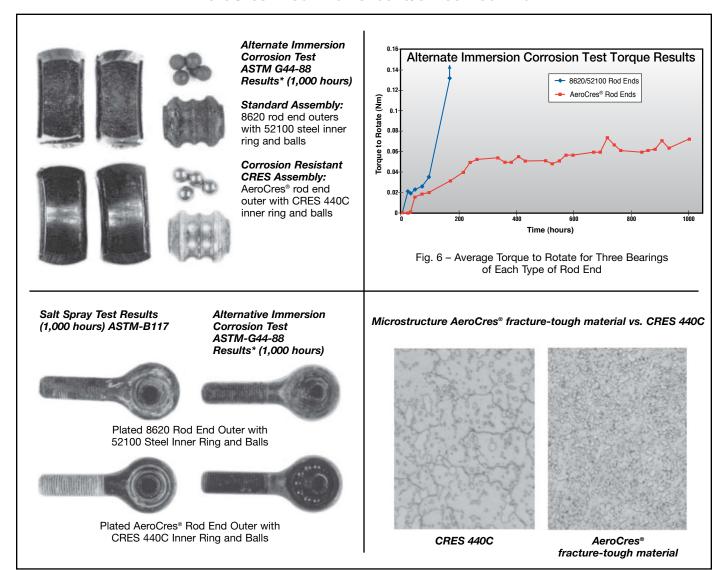
Currently, this new material is being used for many structural bearing components such as rod end banjos, track roller studs, and outer rings. Fracture toughness, corrosion resistance, and long fatigue life are critical requirements for these components.

AeroCres® fracture-tough airframe products offer enhanced corrosion resistance in harsh operating environments.

Benefits

- Excellent fracture toughness superior to CRES 440C.
- Proven corrosion resistance similar to CRES 440C.
- Compressive residual stresses in carburized case.
- Lower starting torque after extended exposure to a neutral salt solution (ASTM-G44).
- Meets or exceeds government requirements for fatigue and static testing per AS 39901.
- Longer bearing life resisting premature corrosion.

Applications


Bearings located in exposed corrosive positions of aircraft such as:

- Landing gear and doors
- Leading and trailing edges
- Engine controls
- Tail sections

Corrosion Resistance Comparison

AeroCres® Rod End vs. 8620/52100 Rod End

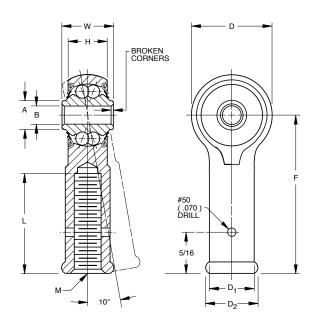
Approvals

- BACB10GS
- BACB10GY
- BACB10GZ

Engineering Support

- Application consultation
- Product design
- Product testing
- · Metallurgical analysis
- Heat treating, stainless, and other high-alloy steels

Ordering Information


• Contact RBC Customer Service

BALL BEARING ROD ENDS — REP SERIES INTERNAL THREAD

MS21153 • SAE-AS6039

- Precision series
- Double row, ball, self-aligning
- 10° permissible misalignment in either direction
- These bearings are manufactured with an internal play of .0004 in. (.010mm) max.
- Inner and outer raceway surface finish = 8 micro in.
 AA max.
- Equipped with PTFE seals
- Exposed surfaces except bore, cap, and seals are cadmium plated
- Outer shank 90,000 psi min. tensile strength
- Prelubricated (refer to nomenclature page)

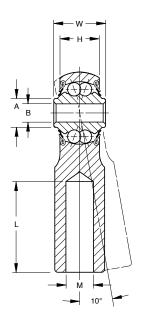
SPECIFICATIONS AND ORDERING INFORMATION

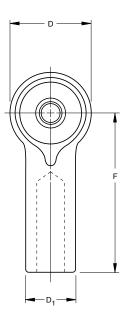
TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example REPB3N FS464)

Bearing Number	MS 21153 Dash No.	Bore B	Outside Diameter D	Wic W	lths H	A	F	L ⁽¹⁾	D ²	D ¹	M UNJF-3B Threads Per	Wt.	Radial Limit Load
	110.	+0.0000,0003	±.010 ±.25	+0.000,005 +0.00,13	±.010 ±.25	Approx.	±.010 ±.25	±.031 ±.79			AS8879	Approx.	Rating
		in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm		lbs. kg	lbf. N
REPB3N	-1	0.1900 4.826	0.781 19.84	0.437 11.10	0.328 8.33	0.281 7.14	1.375 34.92	0.750 19.05	0.438 ⁽³⁾ 11.13 ⁽⁴⁾	0.375 9.52	1/4-28RH	0.05 0.023	1000 4400
REP3FL4-3	-5	0.1900 4.826	0.781 19.84	0.437 11.10	0.328 8.33	0.281 7.14	1.375 34.92	0.750 19.05	0.438(3) 11.13(4)	0.375 9.52	1/4-28LH	0.05 0.023	1000 4400
REPB3N-2	-2	0.1900 4.826	0.781 19.84	0.437 11.10	0.328 8.33	0.281 7.14	1.375 34.92	0.750 19.05	0.438(3) 11.13(4)	0.438 11.13	5⁄16-24RH	0.06 0.027	1000 4400
REP3F4	-3	0.1900 4.826	0.781 19.84	0.500 12.70	0.328 8.33	0.281 7.14	1.375 34.92	0.750 19.05	0.438 ⁽³⁾ 11.13 ⁽⁴⁾	0.375 9.52	1/4-28RH	0.06 0.027	1000 4400
REP3FL4	-4	0.1900 4.826	0.781 19.84	0.500 12.70	0.328 8.33	0.281 7.14	1.375 34.92	0.750 19.05	0.438(3) 11.13(4)	0.375 9.52	1/4-28LH	0.06 0.027	1000 4400
REP4F5	-6	0.2500 6.350	0.938 23.83	0.593 15.06	0.438 11.13	0.345 8.76	1.469 37.31	0.750 19.05	0.438(3) 11.13(4)	0.438 11.13	5⁄46-24RH	0.07 0.032	1720 7650
REP4F5-5 ⁽²⁾	-6C	0.2500 6.350	0.938 23.83	0.593 15.06	0.438 11.13	0.345 8.76	1.469 37.31	0.750 19.05	0.438(3) 11.13(4)	0.438 11.13	5⁄16-24RH	0.07 0.032	1720 7650
REP4FL5(2)	-7	0.2500 6.350	0.938 23.83	0.593 15.06	0.438 11.13	0.345 8.76	1.469 37.31	0.750 19.05	0.438(3) 11.13(4)	0.438 11.13	⁵⁄₁6-24LH	0.07 0.032	1720 7650
REP4FL5-5(2)	-7C	0.2500 6.350	0.938 23.83	0.593 15.06	0.438 11.13	0.345 8.76	1.469 37.31	0.750 19.05	0.438(3) 11.13(4)	0.438 11.13	5⁄16-24LH	0.07 0.032	1720 7650
REP4F7	-8	0.2500 6.350	0.938 23.83	0.593 15.06	0.438 11.13	0.345 8.76	1.875 47.62	1.125 28.58	0.625 15.88	0.625 15.88	⁷ ∕16-20RH	0.08 0.036	1720 7650
REP4FL7	-9	0.2500 6.350	0.938 23.83	0.593 15.06	0.438 11.13	0.345 8.76	1.875 47.62	1.125 28.58	0.625 15.88	0.625 15.88	⁷ ∕16-20LH	0.08 0.036	1720 7650
REP5F5	-10	0.3125 7.938	1.250 31.75	0.870 22.10	0.656 16.66	0.501 12.73	1.875 47.62	1.000 25.40	0.483 11.13	0.438 11.13	5⁄16-24RH	0.1 0.045	2920 12900
REP5FL5	-11	0.3125 7.938	1.250 31.75	0.870 22.10	0.656 16.66	0.501 12.73	1.875 47.62	1.000 25.40	0.483 11.13	0.438 11.13	5⁄₁6-24LH	0.1 0.045	2920 12900

⁽¹⁾ Length includes maximum of two incomplete threads.

⁽²⁾ NAS 513 locking slot in shank.


⁽³⁾ Bead diameter.

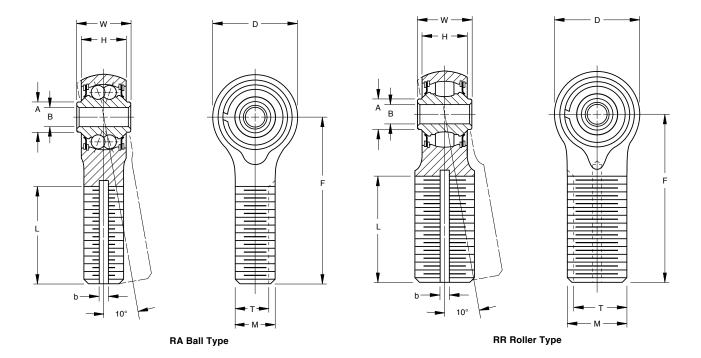

⁽⁴⁾ Hex diameter across flats.

MS21152/MS21150 • SAE-AS6039

- Precision series
- Double row, ball, self-aligning
- 10° permissible misalignment in either direction
- These bearings are manufactured with an internal play of .0004 in. (.010mm) max.
- Inner and outer raceway surface finish = 8 micro in.
 AA max.
- Equipped with PTFE seals
- Exposed surfaces except bore, cap, and seals are cadmium plated
- Outer shank 90,000 psi min. tensile strength

SPECIFICATIONS AND ORDERING INFORMATION

10 OK	DEK, S	SPEC	IFY B	EARI	NG N	NOME	SEK A	AND	FAC	IORY	SPE	CIFIC	AHO	N. SE	E IA	RLF .	1 ON	PG 8.	(Exai	mple	REP3	H5 F	S464)
Bearing Number	MS Bore Outside 21152 B Diameter W			Widths A				F	F(t)		ı	01	М		Wt.		Rad						
	Dash No.		0,0003 0,008	±.(010	+0.000),005),13		.010 <u>25</u>	App	orox.		010 .25		.031		0,002 0,05		010 .25	Арі	orox.	Lim Loa Rati	ıd
		in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kg	lbf.	N
HOLLOW SH	ANK																						
REP3H5	-1	0.1900	4.826	0.781	19.84	0.437	11.10	0.328	8.33	0.281	7.14	1.375	34.92	0.875	22.22	0.430	10.92	0.272	6.91	0.06	0.027	1000	4400
REP4H8	-3	0.2500	6.350	0.938	23.83	0.593	15.06	0.438	11.13	0.345	8.76	1.625	41.28	0.875	22.22	0.625	15.88	0.515	13.08	0.08	0.036	1720	7650
REP4H5-2	-4	0.2500	6.350	0.938	23.83	0.593	15.06	0.438	11.13	0.345	8.76	1.875	47.62	0.750	19.05	0.438	11.13	0.346	8.79	0.12	0.054	1720	7650
REP4H8-2	-5	0.2500	6.350	0.938	23.83	0.593	15.06	0.438	11.13	0.345	8.76	1.875	47.62	1.125	28.58	0.625	15.88	0.500	12.70	0.09	0.041	1720	7650
REP4H6	-2	0.2500	6.350	0.938	23.83	0.593	15.06	0.438	11.13	0.345	8.76	1.875	47.62	1.219	30.96	0.625	15.88	0.386	9.80	0.12	0.054	1720	7650
REP5H8	-	0.3125	7.938	1.250	31.75	0.870	22.10	0.656	16.66	0.506	12.85	2.438	61.93	1.562	39.67	0.625	15.88	0.500	12.70	0.15	0.068	2920	12900
REP8H10	-	0.5000	12.700	1.875	47.62	1.000	25.40	0.844	21.44	0.688	17.48	3.031	76.99	1.640	41.66	0.625	15.88	0.438	11.13	0.55	0.249	6900	30500
	MS 21150																						
SOLID SHAN	IK																						
REP3S7	-1	0.1900	4.826	0.781	19.84	0.437	11.10	0.328	8.33	0.281	7.14	1.375	34.92	-	_	0.430	10.92	-	_	0.07	0.032	1000	4400
REP4S10	-2	0.2500	6.350	0.938	23.83	0.593	15.06	0.438	11.13	0.345	8.76	1.875	47.62	_	_	0.625	15.88	-	_	0.16	0.073	1720	7650


BALL BEARING ROD ENDS — RA/RR SERIES EXTERNAL THREAD

NAS-659

- NAS-659 series⁽¹⁾
- Self-aligning
- 3-way balanced design brings shank strength, bolt strength and bearing capacity all in balance
- "Pressurized" shanks are designed to withstand column action under compression with angularity as high as 9°
- Exposed surfaces except bore, cap, and seals are cadmium plated

- Keyway in shank is designed in accordance with NAS-513 standards for use with NAS-509 drilled jam nuts and either NAS-513 rod end locking washers or NAS-559 rod end key type locks
- Permissible misalignment is 10° in either direction (total 20°)
- Ultimate shank tensile strength is 125,000 to 180,000 psi
- Equipped with molded rubber seals when specified

SPECIFICATIONS AND ORDERING INFORMATION

TO ORDER, SPECIFY BEARING NUMBER AND FACTORY SPECIFICATION. SEE TABLE 1 ON PG 8. (Example RA3M5 FS464)

Bearing ⁽¹⁾ Number	NAS 659 Dash No.	9 B D sh o.		Widths W H	A	F	L ⁽²⁾	b ⁽³⁾	T ⁽³⁾	M UNJF-3A Threads Per	Wt.	Radial Limit Load
		+0.0000,0005 +0.000,013	±.010 ±.25	+0.000,005 +0.010,005 +0.00,13 +0.25,13	Approx.	±.010 ±.25	±.010 ±.25	+0.005,000 +0.13,00	+0.000,005 +0.00,13	AS8879	Approx.	Rating
		in. mm	in. mm	in. mm in. mm	in. mm	in. mm	in. mm	in. mm	in. mm		lbs. kg	lbf. N
RA3M5	-3-5	0.1900 4.826	0.781 19.84	0.562 14.27 0.438 11.13	0.312 7.92	1.938 49.23	1.375 34.92	0.062 1.57	0.26 6.6	5/16-24	0.07 0.032	1000 4400
RA3M5-2 ⁽⁵⁾	-	0.1900 4.826	0.781 19.84	0.500 12.70 0.438 11.13	0.312 7.92	1.938 49.23	1.375 34.92	0.062 1.57	0.26 6.6	5/16-24	0.07 0.032	1000 4400
RA4M7	-4-7	0.2500 6.350	0.938 23.83	0.687 17.45 0.531 13.49	0.365 9.27	2.250 57.15	1.625 41.28	0.093 2.36	0.37 9.4	7/16-20	0.13 0.059	1720 7650
RR4M9	R4-9	0.2500 6.350	1.063 27.00	0.625 15.88 0.469 11.91	0.404 10.26	2.563 65.10	1.875 47.62	0.125 3.18	0.478 12.14	9/16-18	0.21 0.095	3025 13400
RR5M12	R5-12	0.3125 7.938	1.438 36.53	0.812 20.62 0.656 16.66	0.515 13.08	3.125 79.38	2.219 56.36	0.125 3.18	0.663 16.84	3/4-16	0.47 0.213	7350 32500
RR6M14	R6-14	0.3750 9.525	1.750 44.45	0.937 23.80 0.750 19.05	0.564 14.33	3.563 90.50	2.438 61.93	0.156 3.96	0.777 19.74	7/8-14	0.72 0.327	9600 42500

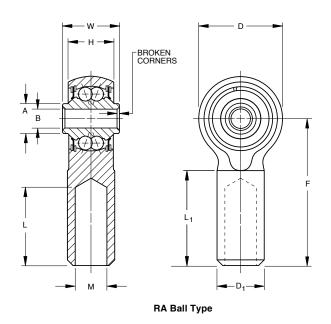
⁽¹⁾ When ordering as NAS part, add suffix "FS237" to part number. (Example RA4M7 FS237)

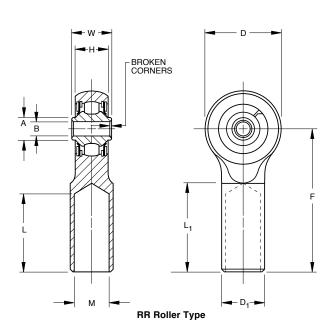
RR6M14-3/8 in. x 2 9/16 in.

Add letter "L" to part number for left hand threads. Example: RA3ML5.

⁽²⁾ Threads: UNJF-3A (based on length of engagement = 1.25 thd. diam. + 5/8).

⁽³⁾ Slots conform to NAS 513 standards.


⁽⁴⁾ Thrust rating is 20% of radial load rating.


 $^{^{(5)}}$ This size not covered by NAS 659. Lightening holes in shank RR5M12-1/4 in. x 2 5/16 in.

NAS-660

- NAS-660 series(1)
- Self-aligning
- 3-way balanced design brings shank strength, bolt strength and bearing capacity all in balance
- "Pressurized" shanks are designed to withstand column action under compression with angularity as high as 9°
- Permissible misalignment is 10° in either direction (total 20°)
- Ultimate shank tensile strength is 125,000 to 180,000 psi
- Equipped with molded rubber seals when specified
- Exposed surfaces except bore, cap, and seals are cadmium plated
- Prepacked with lubricant conforming to MIL-PRF-23827

SPECIFICATIONS AND ORDERING INFORMATION

10 OH	DEK,	, SPECIF	- Y	BEAL	KIN	G NL	JMB	EK /	AND	FAC	IOH	Y SI	JECI	FICA	VI IOI	N. SE	:E 1/	ARLE	: 1 0	N P	à 8.	(Exa	mpl	e KA	13H /	FS4	64)
Bearing ⁽¹⁾ Number	NAS 660 Dash No.	Bore B		Outsi Diame D	eter	w	'		Н	,	4	L			L ₂	I	1		D ₁		L ₃	N		W	/t.	Radial Limit Load Rating	
		+0.0000,00 +0.000,01		±.01 ±.25		+0.000	,		0,005 25,13	Арр	rox.	±.0 ±.2		R	EF.	±.(010 .25		0,-0.002 5,05			+0.010		Арр	rox.	Rat	ing
		in. m	m	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kg	lbf.	N
RA3H7	-3-7	0.1900 4.83	26	0.781 1	19.84	0.562	14.27	0.438	11.13	0.312	7.92	1.538	39.07	1.934	49.12	0.785	19.94	0.430	10.92	0.975	24.76	0.281	7.14	0.06	0.027	1000	4400
RA4H9	-4-9	0.2500 6.3	50	0.938 2	23.83	0.687	17.45	0.531	13.49	0.365	9.27	1.75	44.45	2.219	56.36	0.941	23.90	0.555	14.10	1.125	28.58	0.406	10.31	0.12	0.054	1720	7650
RA4H11	R4-11	0.2500 6.3	50	1.063 2	27.00	0.625 1	15.88	0.469	11.91	0.404	10.26	2.163	54.94	2.694	68.43	1.285	32.64	0.680	17.27	1.475	37.46	0.516	13.11	0.19	0.086	3025	13400
RR5H14	R5-14	0.3125 7.93	38	1.438 3	36.53	0.812 2	20.62	0.656	16.66	0.515	13.08	2.906	73.81	3.625	92.08	1.785	45.34	0.870	22.10	2.094	53.19	0.703	17.86	0.4	0.181	7350	32500
RR6H16	R6-16	0.3750 9.5	25	1.750 4	14.45	0.937	23.80	0.750	19.05	0.564	14.33	3.25	82.55	4.125	104.78	1.785	45.34	0.995	25.27	2.000	50.80	0.812	20.62	0.66	0.299	9600	42500

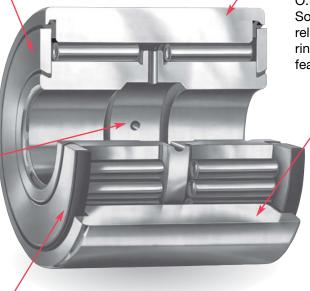
⁽¹⁾ When ordering as NAS part, add suffix "FS237" to part number. (Example RA4H11 FS237)

⁽²⁾ Thrust rating is 20% of radial load rating.

RBC Airframe Control Needle Roller Bearings

PRODUCT N	OMENCLATURE								
	Engineering Section for Needle Track Rollers and Stud-type Track Rollers								
AIRFRAME NEEDLE TF	CONTROL RACK ROLLERS AND STUD-TYPE TRACK ROLLERS								
Single/Doul	ble Row Sealed Series								
MS21438	ATF Series: Single Row, Sealed72								
MS21439	ATL Series: Double Row, Sealed								
AeroCres® F	Reduced Maintenance Track Rollers								
Single/Doul	ole Row, Heavy Loads, Slow Speeds Series								
MS24465	NBF Series: Single Row, Heavy Loads, Low Speeds 76								
MS24466	NBL Series: Double Row, Heavy Loads, Low Speeds 77								

Single Row,	Outer Supported by Housing Series
MS24461	NBC Series: Outer Supported by Housing 78-79
Single/Doub	ole Row Self-aligning Series
MS24463	NBE Series: Single Row, Self-aligning80
MS24464	NBK Series: Double Row, Self-aligning81
Single Row,	Minimum Section Series
MS24462	NCC Series: Minimum Section 82-83
Stud-type T	rack Roller Series
MS21432	HRS/HRSC Series: Stud-type Track Rollers 84-85
AeroCres® F	racture-tough Airframe Products86-87
Special Desi	gns


GENERAL FEATURES AND TECHNICAL SPECIFICATIONS

Washers & Seals

The washers are fastened to the inner ring and contain part specific identification. Improved one piece copolymer design seals provides superior protection and lubricant retention.

Inner rings may contain lubrication grooves and lube holes to allow the bearing to be relubricated in service.

Outer Ring

The outer ring may contain a crown (ATF type) or remain flat. For corrosion protection the O.D. may be chrome plated. Some bearings may contain a relubrication feature in the outer ring. Additionally, a self-aligning feature is optional.

Materials

Various materials are used for track roller construction such as 52100, 440C, or "Aerocres". Aerocres is an internally developed, highly corrosion resistant steel. See our Aerocres "Featured Product" page for more material information.

Construction

A non-separable unit, consisting of an inner ring, needle rollers, outer ring, washers and seals. The outer rings are very thick to withstand heavy rolling loads. For extremely high loads, two roller paths may be chosen (as pictured). All exposed surfaces (except bore) may be cadmium plated for galvanic corrosion resistance.

AIRFRAME CONTROL NEEDLE ROLLER BEARINGS

ATF

'F

T8

Sealed Airframe Track Rollers

ATF single row, track roller, sealed
ATL double row, track roller,
sealed

Diameter of Bore $6 = {}^{6}/_{16} = {}^{3}/_{8}$ in.

6

Design modifications include:

SY or T8 suffixes can also be used as material modifiers

Bore: 8 =
$$\frac{8}{16} = \frac{1}{2}$$
 in.

Width: 12 = $^{12}/_{18} = ^{3}/_{4}$ in.

Outside Diameter 18 = ${}^{18}/_{16} = 1 {}^{1}/_{8}$ in.

8

NBC

12

18

YZP

Airframe Needle Bearings

NBF single row, track roller

NBL double row, track roller

NBC single row bearing

NCC single row bearing

NBE single row, self-aligning bearing

NBK double row, self-aligning bearing

Design modifications include:

- Y lubrication groove (recessed) in bore and hole in inner race
- **Z** lubrication groove (recessed) in O.D. and hole in outer race
- P exposed surfaces, as mounted, cadmium plated
- **J** O.D. of outer race chrome plated and other exposed surfaces, as mounted, cadmium plated for use as a track roller

Diameter of Stud

4 =
$$4+^2/_{16} = ^6/_{16} = ^3/_8$$
 in.

Stud Shank Length 12 = ${}^{12}/_{16} = {}^{3}/_{4}$ in.

HRS

4

CFR

12

Stud Type Track Rollers

HRS stud type, track roller

HRSC stud type, track roller, with crowned outer

AHRSC stainless stud type, track roller, with crowned outer

Design modifications include:

T lubrication fitting in threaded end of stud

F lubrication fitting in flanged end of stud

K keyway

R sealed

A no cotter pin hole in threads

INTRODUCTION

The bearings described in this section of the catalog have been designed to meet the specific needs of the airframe industry. Most of these bearings conform to military, and national standards current at the time of publication of the catalog.

Before selecting specific airframe needle roller bearings, the Engineering Section should be reviewed for detailed information concerning:

- Bearing type
- Material section
- Load ratings/life calculations
- · Application criteria

IDENTIFICATION

The code letters **ATF** denote a sealed airframe track roller bearing with a single row of needle rollers, internal thrust washers, and a crowned 0.D.

The code letters **ATL** denote a sealed airframe track roller bearing with two rows of needle rollers, and internal thrust washers.

The code letters **NBF** denote an airframe track roller bearing with a single row of needle rollers.

The code letters **NBL** denote an airframe track roller bearing with two rows of needle rollers.

The code letters **NBC** denote an airframe bearing with a single row of needle rollers. Type **NBC** bearings must be mounted in supporting housings.

The code letters **NCC** denote an airframe bearing with a single row of needles and a drawn shell that must be mounted in supporting housings.

The code letters **NBE** denote a self-aligning airframe needle roller bearing with a single row of needle rollers. The code letters **NBK** denote an airframe bearing similar to type **NBE** but with two rows of needle rollers. Both types **NBE** and **NBK** bearings must be mounted in supporting housings.

The code letters **HRS** denote a stud type airframe track roller bearing with a single row of needle rollers. This bearing can be sealed.

The code letters **HRSC** denote a sealed, stud type airframe track roller bearing with a single row of needle rollers and a crowned 0.D.

All of these various types of airframe needle roller bearings meet the requirements of U.S. Military Specification AS39901 and the following military specifications:

bearing type	military specification	bearing type	military specification
ATF	SAE AS21438	NBC	SAE AS24461
ATL	SAE AS21439	NBE	SAE AS24463
NBF	SAE AS24465	NBK	SAE AS24464
NBL	SAE AS24466	HRS	SAE AS21432
NCC	SAE AS24462	HRSC	SAE AS21447

RBC airframe needle roller bearings are permanently marked with the bearing designation (which includes the bearing type code) and the military specification number as listed in the tabular pages.

Since these bearings are often supplied prelubricated to meet special requirements, the airframe manufacturer's parts list or another reliable source should always be consulted when ordering bearings to ensure the correct lubricant is used.

ATF

ATL

NBF

NBL

NBK

HRS/HRSC

BEARING TYPE SELECTION

Types **ATF** and **NBF** bearings are designed for use as track rollers to withstand heavy rolling loads. If their full radial capacity is to be realized, they should be mounted on high strength bolts. Also, the initial alignment between the bearing centerline and the surface of the track should be very good. To prevent deflections under load that would cause poor load distribution along the length of the rolling elements, the bearing should be straddle-mounted in a rigid housing, and the track should be rigidly supported.

Types **ATF** and **NBF** bearings are sometimes cantilever mounted on high strength bolts. In this case, the deflection of the supporting member, the mounting bolt and the track should be balanced as carefully as possible to improve the load distribution. If this cannot be accomplished, the track should be crowned, or preference should be given to the type **ATF** which has a crowned outer ring.

Types **ATL** and **NBL** bearings are intended to carry rolling loads which are greater than those for which types **ATF** and **NBF** are designed. Since types **ATL** and **NBL** bearings are quite long, it is important to mount them on high strength shafts or bolts. The alignment between the bearing axis and the track is even more critical than with types **ATF** and **NBF**. Types **ATL** and **NBL** bearings must be straddle-mounted.

Types **ATF** and **ATL** bearings have seal/thrust washers which increase the life in case the bearings are infrequently relubricated.

Type **NBC** bearings are designed primarily to carry heavy static loads, or moderate loads under oscillation or slow rotation. This type of bearing can tolerate incidental thrust loads only through the outer ring when the retaining washers are properly backed up.

Type **NBC** bearings must be supported by housings and mounted on high strength shafts if their inherent load ratings are to be realized. Initial alignment must be good and operating deflections must be minimized to ensure uniform load distribution along the length of the rolling elements.

Type **NCC** bearings are designed primarily to carry moderate loads under oscillation or slow rotation. This type of bearing should not be used in applications that require thrust capability. The **NCC** bearings are the minimal cross-section available in standard airframe needle bearings.

Type **NCC** bearings must be supported by housings and mounted on high strength shafts if their inherent load ratings are to be realized. Initial alignment must be good and operating deflections must be minimal to ensure uniform load distribution along the length of the rolling elements.

Types **NBE** and **NBK** bearings are also used primarily for heavy static loads, and will also handle oscillation or slow rotation. They are designed to accommodate only minor locational thrust loads. Types **NBE** and **NBK** bearings, like type **NBC**, must be supported by housings and mounted on high strength shafts if their inherent load ratings are to be realized.

Types **NBE** and **NBK** bearings are of larger cross-section than the type **NBC**, and, if properly mounted, will tolerate misalignment up to $\pm 5^{\circ}$. They are **not** designed to self-align under heavy loads. If alignment must be accommodated while the bearings are highly loaded, the torque required to overcome the friction at the spherical surfaces may overload the rolling elements.

Types **HRSC** and **HRS** bearings are designed for use as track rollers to carry moderate rolling loads. The bearings have an integral stud, which eliminates the need for a separate mounting bolt.

Types **HRSC** and **HRS** are to be cantilever mounted. Under load, the supporting member, the bearing stud, and the track may deflect to produce misalignment between the bearing and the track. These deflections should be carefully balanced to minimize the effective misalignment, and improve the load distribution. Where misalignment is a factor, preference should be given to type **HRSC**, which has a crowned outer ring.

CONSTRUCTION

All airframe needle roller bearings incorporate materials, protective finishes, and relubrication facilities required for airframe service.

MATERIALS

The outer rings, inner rings, and self-aligning rings are made of high carbon chrome steel, hardened, and precision ground.

Studs are made of bearing quality steel, heat treated to 60 HRC minimum in the raceway area and 36-44 HRC in the shank and thread areas.

The rollers are made of high carbon chrome steel, through hardened, precision ground, and lapped.

The retaining washers are made of high carbon steel, and hardened. The bearing components may also be available in a variety of stainless steels. These specialty steels have been developed for use in extremely corrosive environments and may be available upon request.

The **NCC** series thin shell is made from low carbon steel that is case hardened. The retaining washers are soft low carbon steel.

RELUBRICATION FEATURES

The inner rings of types **ATF, ATL, NBF, NCC,** and **NBL** bearings are provided with relubrication grooves and holes. Relubrication features are omitted from the outer rings since they would be undesirable in track roller bearings or thin shells.

Types **HRSC** and **HRS** can be provided with lubrication fittings in the flanged end or threaded end of the stud, or with no relubrication provision.

Grooves are provided in the bore and outside diameters of the larger types **NBC**, **NBE**, and **NBK** bearings with drilled holes leading to the needle roller complement to allow relubrication through the housing or the shaft. The smaller sizes, as noted in the tabular pages, do not have relubrication grooves and holes in their inner rings since the mounting shafts would be considerably weakened by the required drilled lubrication holes.

The right is reserved to change material specifications or to revise designs without notice.

PROTECTIVE FINISHES

Outer rings of types **ATF, ATL, NBF, NBL, HRSC,** and **HRS** bearings, which are subjected to heavy rolling loads, may be chrome plated on the exposed surfaces for corrosion protection. The other external surfaces of the bearings, except the inner ring bore, (where applicable) are cadmium or zinc-nickel plated.

Types **NBC**, **NCC**, **NBE**, and **NBK** bearings are cadmium or zinc-nickel plated on all external surfaces, except the bore of the inner ring.

LOAD RATINGS

The **limit** load ratings listed in this catalog are the maximum radial loads that can be applied without impairing the subsequent function of the bearing in airframe applications.

The **ultimate (static fracture)** load ratings are not less than 1.5 times the limit load rating.

For types **ATF, ATL, NBF,** and **NBL** bearings, the ultimate load rating assumes an unsupported outer ring. Therefore, the **limit** load ratings listed on the tabular pages correspond to 2/3 of the **limit** load ratings of the fully supported bearing, or 4/9 ASC. The **ultimate (static fracture)** load ratings are not less than 1.5 times the **limit** load rating (2/3 ASC).

In addition to heavy static radial loads, types **ATF, ATL, NBF,** and **NBL** bearings must withstand heavy rolling loads under slow rotation. The **capacity as a track roller** is the load the bearing will carry as a track roller for an L10 life of 20,000 revolutions. The **capacity as a track roller** is based on 1/3 Aircraft Static Capacity (ASC).

To calculate the L_{10} life, in revolutions, of a type **ATF, ATL, NBF,** and **NBL** bearing, the following formula should be used:

$$TL = \frac{20000}{\Sigma T_{i} \left(\frac{P_{i}}{CTR}\right)^{6} + \Sigma t_{i} \left(\frac{p_{i}}{CTR}\right)^{10/3}}$$

Where $TL = total life (L_{10})$

CTR = capacity as a track roller

 P_i = loads greater than CTR

 $p_i = loads less than CTR$

T_i = fraction of total revolutions at load P_i

t_i = fraction of total revolutions at load p_i

Under no circumstances should the applied load exceed the limit load rating.

In the case of types **NBC**, **NCC**, **NBE**, and **NBK** bearings, the ultimate load ratings correspond to the Aircraft Static Capacity. The limit load rating listed is 2/3 of the ultimate load rating.

Types **NBC**, **NCC**, **NBE**, and **NBK** bearings are generally applied where they carry only moderate loads while oscillating or rotating slowly, but they are expected to carry heavy static radial loads or shock loads. For this reason the basic (dynamic) load ratings are not listed. If the basic load ratings are required for specific bearings, please consult the RBC Aerospace Engineering Department.

If types **NBE** and **NBK** bearings are required to carry more than light loads while self-aligning, the torque required to overcome the friction between the spherical surfaces may add substantially to the radial loads on the rolling elements. Under such circumstances, please consult the RBC Aerospace Engineering Department.

Type **HRS** and **HRSC** track roller bearings have heat treated studs as such working loads are not limited by stud strength. The limit load ratings listed on the tabular pages correspond to 2/3 of ASC. The **ultimate** (**static fracture**) load ratings are not less than 1.5 times the limit load rating (ASC). The capacity as a track roller for 20,000 revolutions L10 life is 1/3 • ASC.

TRACK CAPACITY

When applying types **ATF, ATL, NBF, NBL, HRS,** and **HRSC** track roller bearings, the compressive strength of the track material is often the critical design factor for the application. Where listed, the **track capacities** are based on a track hardness equivalent to 40 HRC. For other hardness values multiply the **track capacity** listed on the tabular pages by the appropriate factor selected from Table 1.

When using track materials with high hardness, it must be remembered that the load applied to a bearing should not exceed the limit load for that bearing.

TABLE 1

Track Hardness	Track
HRC	Capacity Factor
20	0.4
25	0.5
30	0.6
35	0.8
40	1.0
45	1.4
50	1.9
55	2.6
58	3.2

TEMPERATURE

The unsealed airframe needle bearings listed herein can be operated at temperatures up to 400°F (200°C) if a suitable lubricant is used. Subjecting these bearings to higher temperatures will result in a loss of capacity, which depends upon the length of time that the bearings are exposed to the higher temperature. Temperature differential between bearing parts should be watched to prevent take-up of internal clearance due to differential expansion.

The operating temperature of the sealed bearings is limited by the seal material and should not exceed 250°F (120°C).

The data herein permit tentative bearing selection, but before the application is finalized, please consult the RBC Aerospace Engineering Department.

SPECIAL BEARINGS

RBC supplies airframe bearings, in addition to types **ATF** and **ATL**, which are sealed to help retain lubricants and exclude foreign matter. For superior performance, the sealing arrangement has been designed to be capable of withstanding a pressure of 400 bar. We also supply bearings with special configurations, materials, protective finishes, tolerance, and lubricants. Please consult the RBC Aerospace Engineering Department.

SPEED

Airframe needle roller bearings are intended for use in low speed, high load applications. The bearing speed should not exceed 100 RPM. Speeds in excess of 100 RPM will greatly reduce the bearing life.

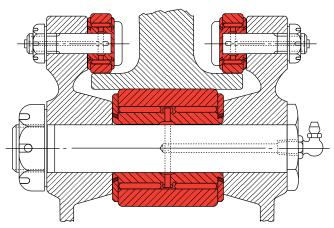
LUBRICATION

The most common greases used in aircraft track roller and cam follower applications are MIL-PRF-23827 TYPE 1 and MIL-PRF-81322 grease. Either grease is available for catalog items. If a specific grease is preferred, then specify it upon placing the order.

Military Spec. No.	MIL-PRF-23827 TYPE 1	MIL-PRF-81322
Grease Name	Aeroshell 33®	Mobil 28®
Operating Temp.	-65°F to +250°F	-60°F to +350°F
	-53°C to +120°C	-51°C to +177°C

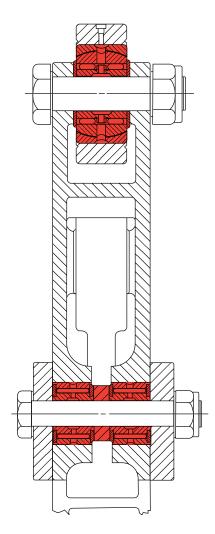
OPERATING TEMPERATURES FOR BEARING COMPONENT MATERIALS

CHART 1 — RINGS AND ROLLERS

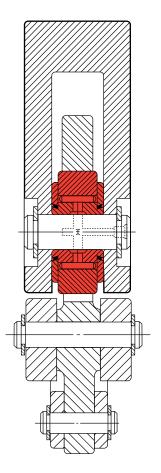

Material	Approximate Chemical Analysis - %	Temp. °F	Minimum Hardness Rc	-100°F -65°F 0°F 100°F 200°F 300°F 350°F 400°F 500°F 600°F 700°F 800°F -73°C -54°C -17°C 38°C 93°C 149°C 177°C 204°C 260°C 316°C 371°C 427°C
52100 per AMS 6440	1C 1.5Cr .35Mn	70	58	Standard dimensional stabilization
Carburizing steel per AISI 8620	.2C .5Cr .80Mn .20Mo .55Ni	70	58	Frequently used to achieve extra ductility for cam follower studs
Corrosion resistant 440C CRES per AMS 5880	1C 18Cr	70	58	Excellent corrosion resistance
Pyroware 675 per AMS 5930	.08C .75Mn 13Cr 2.5Ni 6Co 2Mo .60V	70	58	Superior corrosion resistance and ductility for cam follower studs
Corrosion resistant steel per AMS 5655 with proprietary heat treat process	.22C 12Cr .75Ni 1Mo 1W .25V	70	58	Superior corrosion resistance and fracture toughness
Corrosion resistant 440C CRES per AMS 5880	1C 18Cr	70 450 600	58 55 52	Heat stabilized for maximum hardness at high temperatures. Good oxidation resistance at higher temperatures. Note load capacity drops off more rapidly at higher temperatures than M50 shown below, which should be considered if loads are high.
M50 steel per AMS 6490 or AMS 6491	.80C 4Cr 4Mo 1V	70 450 600	60 59 57	Recommended where stable high hardness at elevated temperatures is required.
	<u> </u>	I	1	-100°F -65°F 0°F 100°F 200°F 300°F 350°F 400°F 500°F 600°F 700°F 800°F -73°C -54°C -17°C 38°C 93°C 149°C 177°C 204°C 260°C 316°C 371°C 427°C

Bearings have been made of special materials such as Haynes Alloy 25, BG42, etc., for operation at temperatures above 800°F (427°C).

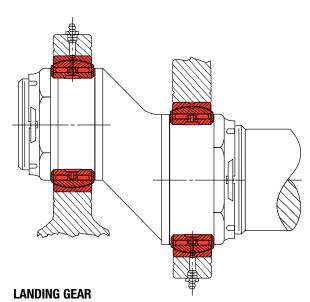
Aeroshell 33° is a registered trademark of Shell Corporation.


Mobil 28° is a registered trademark of Exxon Mobil Corporation.

FLAP TRACK


Airframe needle roller bearings serve where weight and space are vital factors. They give high capacity anti-friction performance on flap tracks of large high-speed, high-altitude aircraft.

BELL CRANK


The small size and light weight of the airframe needle roller bearing permits reduction in material required in surrounding parts.

The high capacity offers superior anti-friction operation under severe service conditions.

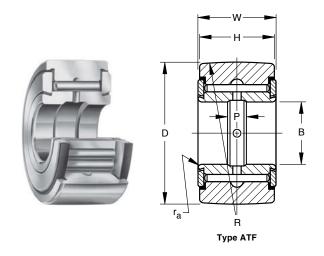
CANOPY

The high capacity and anti-friction characteristics of airframe needle roller bearings are ideal for canopy lock rolls where failure to operate may be fatal.

The high static capacity of the airframe needle roller bearing is an important factor in meeting the rugged impact loads found in aircraft landing gears.

Small size and simple lubrication contribute to lighter assemblies and long service life.

CONSTRUCTION


This is a non-separable unit, comprising an inner ring, needle rollers, retaining washers, seal/thrust washers, and an extra-thick outer ring to withstand heavy rolling loads. The end washers are fastened to the inner ring. Type ATF has a single row of rollers and type ATL has two rows of rollers. The outer ring of type ATF bearing is crowned.

The seals on the ATF and ATL bearings are located in counterbores of the outer ring and seal against the O.D. of the end washers, providing a good retention of lubricant and exclusion of foreign material. Seal/thrust washers, made of a self-lubricating resin material, separate the steel thrust surfaces, extending the life of lubricant and bearing.

Grooves and holes for relubrication are provided in the inner ring only, since the outer ring must serve as a roller. Type ATF has a groove in the bore of the outer ring for storage of additional lubricant. For protection from corrosion under heavy rolling loads, the O.D. of the bearing is chrome plated. Other exposed surfaces, as mounted, are cadmium or zinc-nickel plated. Inner rings are oxided.

DIMENSIONS

Types ATF and ATL are manufactured to inch nominal dimensions. Metric dimensions shown are for the convenience of the user, and the controlling dimensions are in inches. Dimensions listed are for the finished bearing after plating. The shaft diameter dimensions necessary to mount these bearings properly are listed on the facing page.

SPECIFICATIONS AND ORDERING INFORMATION

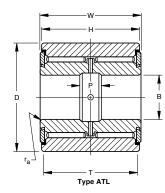
BEARING DIMENSIONS

Bearing Designation	MS21438 MS21439		B* ore	0.		,		dths ∅	Н	r _a Sha Fill	aft	Inner Groove	Ring	F Cro Rad	wn
Designation	Dash No.	+.000 0007	+.000 018	+0.001 -0.001	+0.025 -0.025	+.000 010	+.000 25	+.000 010	+.000 25	(ma	x.)	(re	f.)	(re	f.)
		in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm
ATF-3	MS21438-103	0.1900	4.826	0.7500	19.05	0.312	7.92	0.280	7.11	0.022	0.56	0.094	2.39	11	279
ATF-4	MS21438-104	0.2500	6.350	0.8750	22.23	0.375	9.53	0.345	8.76	0.022	0.56	0.125	3.18	11	279
ATF-6	MS21438-106	0.3750	9.525	1.0625	26.99	0.500	12.70	0.455	11.56	0.022	0.56	0.188	4.78	11	279
ATF-8	MS21438-108	0.5000	12.700	1.3125	33.34	0.625	15.88	0.580	14.73	0.032	0.81	0.188	4.78	13	330
ATF-10	MS21438-110	0.6250	15.875	1.5000	38.10	0.750	19.05	0.705	17.91	0.032	0.81	0.250	6.35	18	457
ATF-12	MS21438-112	0.7500	19.050	1.7500	44.45	1.000	25.40	0.950	24.13	0.032	0.81	0.250	6.35	31	787
ATF-14	MS21438-114	0.8750	22.225	2.0000	50.80	1.125	28.58	1.075	27.31	0.032	0.81	0.250	6.35	36	914
ATF-16	MS21438-116	1.0000	25.400	2.2500	57.15	1.125	28.58	1.075	27.31	0.032	0.81	0.250	6.35	27	686
ATF-20	MS21438-120	1.2500	31.750	2.5000	63.50	1.250	31.75	1.200	30.48	0.032	0.81	0.375	9.53	61	1549
ATF-24	MS21438-124	1.5000	38.100	3.0000	76.20	1.500	38.10	1.440	36.58	0.032	0.81	0.375	9.53	61	1549
ATF-28	MS21438-128	1.7500	44.450	3.4375	87.31	1.500	38.10	1.440	36.58	0.032	0.81	0.375	9.53	61	1549
ATF-32	MS21438-132	2.0000	50.800	3.8750	98.43	1.500	38.10	1.440	36.58	0.032	0.81	0.375	9.53	61	1549
ATL-4	MS21439-104	0.2500	6.350	0.8750	22.23	0.750	19.05	0.710	18.03	0.022	0.56	0.188	4.78	-	-
ATL-6	MS21439-106	0.3750	9.525	1.1250	28.58	1.000	25.40	0.940	23.88	0.022	0.56	0.188	4.78	-	-
ATL-8	MS21439-108	0.5000	12.700	1.3750	34.93	1.250	31.75	1.190	30.23	0.032	0.81	0.250	6.35	-	-
ATL-10	MS21439-110	0.6250	15.875	1.6250	41.28	1.500	38.10	1.440	36.58	0.032	0.81	0.375	9.53	-	-
ATL-12	MS21439-112	0.7500	19.050	1.8750	47.63	1.750	44.45	1.690	42.93	0.032	0.81	0.375	9.53	-	-
ATL-14	MS21439-114	0.8750	22.225	2.1250	53.98	2.000	50.80	1.940	49.28	0.032	0.81	0.375	9.53	-	-
ATL-16	MS21439-116	1.0000	25.400	2.3750	60.33	2.250	57.15	2.190	55.63	0.032	0.81	0.375	9.53	-	-
ATL-20	MS21439-120	1.2500	31.750	2.7500	69.85	2.500	63.50	2.440	61.98	0.032	0.81	0.375	9.53	-	-
ATL-24	MS21439-124	1.5000	38.100	3.0000	76.20	2.750	69.85	2.690	68.33	0.032	0.81	0.375	9.53	-	-
ATL-28	MS21439-128	1.7500	44.450	3.4375	87.31	3.000	76.20	2.940	74.68	0.032	0.81	0.375	9.53	-	-
ATL-32	MS21439-132	2.0000	50.800	3.8750	98.43	3.000	76.20	2.940	74.68	0.032	0.81	0.375	9.53	3	-

^{*} Bore and 0.D. tolerance limits correspond to the single mean diameter (the arithmetical mean of the largest and smallest diameters in a single radial plane).

ØTolerance for width C for ATL series is +0.000 -0.005 in.

[§] Equal to minimum bearing chamfers.

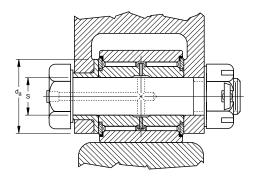


MOUNTING

Types ATF and ATL bearings are designed for heavy rolling loads. The type ATF bearing is usually clevis mounted or cantilever mounted on a high strength shaft or bolt. The type ATL bearing must be straddle-mounted on a high strength shaft or bolt.

The end washers are fastened to the inner ring in a manner only to maintain the integrity of the assembly while handling and installing the bearing. Therefore, when mounted they should be firmly backed up by washers or other clamping surfaces that are flat and square with the shaft center line. To provide sufficient washer support, the outside diameter of the clamping surfaces should be at least as large as the minimum clamping diameter (d_a) listed below.

LOAD RATINGS


Bearings are constructed to provide maximum capacity under rolling loads.

The limit load ratings (also called "allowable working load ratings") of the bearings are listed below. The ultimate load ratings are not less then 1.5 times the limit load ratings. The ultimate load ratings correspond to 2/3 of the Aircraft Static Capacity ratings.

Load ratings are given in pounds-force:

$$1 \text{ lbf} = 0.454 \text{ kgf} = 4.448 \text{ N}$$

Before final bearing selection is made, please consult the RBC Aerospace Engineering Department.

SPECIFICATIONS AND ORDERING INFORMATION

MOUNTING DIMENSIONS

	T rack ontact	Wei	ight		Shaft Di			Clar	d _a nping meter		mping orce		Bearing	Capacity	
W	vidth nimum)	(арр	•	Transiti (loose max.			ion Fits range) min.		imum)		nax.)	as Track (CT	Roller	Lo	mit ad ting
in.	mm	lbs	kgs	in.	in.	in.	in.	in.	mm	lbf	N	lbf	N	lbf	N
-	-	0.030	0.01	0.1894	0.1889	0.1902	0.1897	0.438	11.13	480	2100	900	4000	1200	5300
-	-	0.051	0.02	0.2494	0.2489	0.2502	0.2497	0.516	13.11	870	3900	1430	6400	1910	8500
-	-	0.103	0.05	0.3119	0.3114	0.3127	0.3122	0.672	17.07	2100	9300	2700	12000	3600	16000
-	-	0.187	0.08	0.3744	0.3739	0.3752	0.3747	0.844	21.44	3840	17100	4300	19100	5780	25700
-	-	0.279	0.13	0.4369	0.4364	0.4277	0.4272	0.953	24.21	6150	27400	6400	28500	8530	37900
-	-	0.520	0.24	0.4994	0.4989	0.5002	0.4997	1.109	28.17	8950	39800	10700	47600	14200	63200
-	-	0.749	0.34	0.6244	0.6239	0.6252	0.6247	1.219	30.96	12200	54300	14400	64100	19300	85900
-	-	0.931	0.42	0.7494	0.7489	0.7502	0.7497	1.500	38.10	16300	72500	16400	73000	21800	97000
-	-	1.160	0.53	0.8744	0.8739	0.8752	0.8747	1.625	41.28	25800	114800	18900	84100	25300	112500
-	-	2.360	1.07	0.9994	0.9989	1.0002	0.9997	2.000	50.80	25800	114800	28400	126300	37900	168600
-	-	2.710	1.23	1.2494	1.2488	1.2503	1.2497	2.281	57.94	25800	114800	33500	149000	44600	198400
-	-	3.367	1.53	1.2494	1.2488	1.2503	1.2497	2.562	65.07	25800	114800	36700	163200	48900	217500
-	-	0.107	0.05	0.2494	0.2489	0.2502	0.2497	0.576	14.63	870	3900	2310	10300	3080	13700
0.815	20.70	0.239	0.11	0.3119	0.3114	0.3127	0.3122	0.672	17.07	2100	9300	5370	23900	7130	31700
1.065	27.05	0.437	0.20	0.3744	0.3739	0.3752	0.3747	0.891	22.63	3840	17100	9370	41700	12500	55600
1.315	33.40	0.728	0.33	0.4369	0.4364	0.4377	0.4372	1.109	28.17	6150	27400	15000	66700	19900	88500
1.565	39.75	1.130	0.51	0.4994	0.4989	0.5002	0.4997	1.281	32.54	8950	39800	21400	95200	28500	126800
1.895	48.13	1.630	0.74	0.6244	0.6239	0.6252	0.6247	1.469	37.31	12200	54300	28900	128600	38500	171300
2.045	51.94	2.310	1.05	0.7494	0.7489	0.7502	0.7497	1.578	40.08	16300	72500	33600	149500	44900	199700
2.225	56.52	3.260	1.48	0.8744	0.8739	0.8752	0.8747	1.844	46.84	25800	114800	44600	198400	59500	264700
2.475	62.87	4.330	1.96	0.9994	0.9989	1.0002	0.9997	1.984	50.39	25800	114800	53600	238400	71300	317200
2.685	68.20	6.090	2.76	1.2494	1.2488	1.2503	1.2497	2.281	57.94	25800	114800	69000	306900	92000	409200
2.685	68.20	7.350	3.33	1.2494	1.2488	1.2503	1.2497	2.562	65.07	25800	114800	76000	338100	102000	453700

AeroCres® Reduced Maintenance Track Rollers

RBC's AeroCres® bearings minimize maintenance to reduce downtime

RBC's new AeroCres® bearings provide a system solution that significantly reduces aircraft maintenance and downtime. The innovative design combines an advanced corrosion-resistant steel with a special lubricant and improved seal to set the standard in wing flap/slat performance.

RBC's AeroCres® bearings are made from bearing quality stainless steels that are manufactured using a proprietary process. This material is eight times more corrosion resistant than CRES 440C. These bearings also feature an improved one-piece seal and a special grease to enhance corrosion protection and extend service life.

This dependable wing system solution helps airlines reduce their total maintenance and downtime costs, including flight delays and cancellations.

Outstanding corrosion resistance is the key to the reduced maintenance and extended service life of RBC's new AeroCres® grease bearings.

System Solution Benefits

Maximum Corrosion Resistance -Unique bearing package withstands corrosion in flight-tested environments through the combination of special steel, seal and lubricant.

Advanced Steel - Proprietary technology produces a superior material that is 38 times more corrosion resistant than 52100 steel and 8 times greater than CRES 440C.

Effective Seal - Improved onepiece copolymer design provides better protection and lubricant retention, even at regreasing pressures up to 5,800 psi (400 bar).

Superior Grease - AeroCres® grease is formulated to resist washout, emulsify water and guard against internal bearing corrosion and rolling contact fatigue.

Extended Service Life - Bearings are designed to resist corrosion and will last up to and beyond the first major maintenance check with minimal relubrication.

Reduced Downtime - Reliable design extends the regular maintenance cycle and minimizes unscheduled bearing replacement.

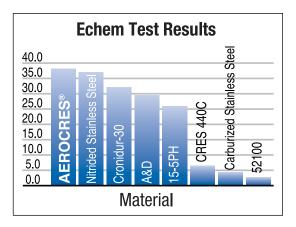
Bolt-On Replacement - Design permits direct interchange with existing bearings.

©2008 RBC Bearings Incorporated. All rights reserved.

Cost Efficiency - Less bearingrelated downtime saves maintenance time and money. Reduced flight delays and cancellations help airlines improve revenues.

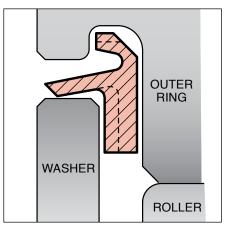
OEM Approval - Bearings are currently approved for use on various Boeing and Airbus aircraft models.

FAA Approval – FAA/PMA approval allows immediate replacement of current bearings on various aircraft, including most Boeing aircraft.


Wingset Kits - Complete bearing sets for flaps and slats simplify ordering, inventory, handling, and installation.

Bearing Steel

A proprietary heat treatment of a 400 grade stainless steel produces the advanced material used in RBC AeroCres® bearings. This unique steel provides outstanding corrosion resistance and performance characteristics that are superior to traditional bearing alloy steels under typical operating conditions.


Electrochemical and environmental testing demonstrate unmatched corrosion resistance – 38 times greater than conventional 52100 bearing steel and 8 times over CRES 440C. Also, improved fatigue resistance enables bearings to withstand greater loads for longer cycles.

Relative corrosion resistance after electrochemical test.

One-Piece Seal

Bearing design features a one-piece seal and thrust washer molded of BASF N-2310P acetal copolymer with lubricant fillers. This material provides superior wear resistance for both seal lips and thrust washers. The seal mounts securely in the bearing and incorporates pressure-relief features that permit full lubricant retention and function after regreasing with pressures in excess of 5,800 psi (400 bar).

Combination seal and thrust washer resists contamination and retains lubricant.

Special Grease

The special grease is formulated to optimize long-term performance and extend relubrication intervals to achieve 5+ years. This grease is a blend of MIL-PRF 23827 and Braycote 600EF. It is currently approved to both Airbus and Boeing specifications.

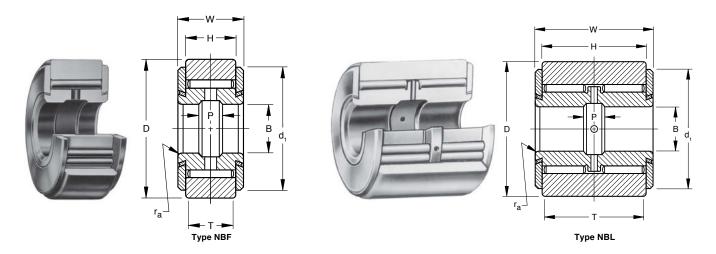
Key Benefits of AeroCres® Grease

- Emulsification of water
- Resistance to washout
- Compatibility with other aircraft industry greases

CONSTRUCTION

This is a non-separable unit, comprising an inner ring, needle rollers, retaining washers and outer ring made extra-thick to better withstand rolling loads. The end washers are fastened to the inner ring. Type NBF has a single row of rollers, and type NBL has two rows of rollers.

Lubrication grooves and holes are provided for relubrication in the inner ring only, since the outer ring must serve as a roller.


For protection from corrosion under the heavy rolling loads, the O.D. of the bearing is chrome plated. Other exposed surfaces, as mounted, are cadmium plated, or zinc-nickel plated.

DIMENSIONS

Dimensions listed below are for the finished bearing after plating.

Bearings are made to ISO and U.S. Military Specifications, and are constructed to have maximum capacity under rolling loads.

The shaft diameter dimensions necessary to mount these bearings properly are listed on the facing page.

SPECIFICATIONS AND ORDERING INFORMATION

BEARING DIMENSIONS

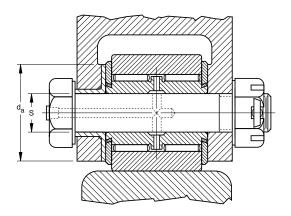
Bearing Designation	MS24465 MS24466	В	3* ore	0.)* .D.			dths Ø	Н	r _a Sha Fill	eft	E Wa	i ₁ nd sher	P Inner Groove	Ring
Doorgination	Dash No.	+.000 0007	+.000 018	+0.001 -0.001	+0.025 -0.025	+.000 005	+.000 13	+.000 005	+.000 13	(ma	x.)		neter ef.)	(re	f.)
		in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm
3NBF512YJ	MS24465-3	0.1900	4.826	0.7500	19.05	0.312	7.92	0.218	5.54	0.022	0.56	0.688	17.48	0.094	2.39
4NBF614YJ	MS24465-4	0.2500	6.350	0.8750	22.23	0.375	9.53	0.281	7.14	0.022	0.56	0.750	19.05	0.125	3.18
6NBF817YJ	MS24465-6	0.3750	9.525	1.0625	26.99	0.500	12.70	0.375	9.53	0.022	0.56	0.938	23.83	0.188	4.78
8NBF1021YJ	MS24465-8	0.5000	12.700	1.3125	33.34	0.625	15.88	0.500	12.70	0.032	0.81	1.188	30.18	0.188	4.78
10NBF1224YJ	MS24465-10	0.6250	15.875	1.5000	38.10	0.750	19.05	0.625	15.88	0.032	0.81	1.375	34.93	0.250	6.35
12NBF1628YJ	MS24465-12	0.7500	19.050	1.7500	44.45	1.000	25.40	0.875	22.23	0.032	0.81	1.625	41.28	0.250	6.35
14NBF1832YJ	MS24465-14	0.8750	22.225	2.0000	50.80	1.125	28.58	1.000	25.40	0.032	0.81	1.875	47.63	0.250	6.35
20NBF2040YJ	MS24465-20	1.2500	31.750	2.5000	63.50	1.250	31.75	1.049	26.64	0.032	0.81	1.906	48.41	0.375	9.53
6NBL1618YJ	MS24466-6	0.3750	9.525	1.1250	28.58	1.000	25.40	0.875	22.23	0.022	0.56	1.000	25.40	0.188	4.78
8NBL2022YJ	MS24466-8	0.5000	12.700	1.3750	34.93	1.250	31.75	1.125	28.58	0.032	0.81	1.250	31.75	0.250	6.35
10NBL2426YJ	MS24466-10	0.6250	15.875	1.6250	41.28	1.500	38.10	1.375	34.93	0.032	0.81	1.500	38.10	0.375	9.53
12NBL2830YJ	MS24466-12	0.7500	19.050	1.8750	47.63	1.750	44.45	1.625	41.28	0.032	0.81	1.750	44.45	0.375	9.53
14NBL3234YJ	MS24466-14	0.8750	22.225	2.1250	53.98	2.000	50.80	1.875	47.63	0.032	0.81	2.000	50.80	0.375	9.53
16NBL3638YJ	MS24466-16	1.0000	25.400	2.3750	60.33	2.250	57.15	2.049	52.04	0.032	0.81	2.125	53.98	0.375	9.53
20NBL4044YJ	MS24466-20	1.2500	31.750	2.7500	69.85	2.500	63.50	2.299	58.39	0.032	0.81	2.500	63.50	0.375	9.53

*Bore and O.D. tolerance limits correspond to the single mean diameter (the arithmetical mean of the largest and smallest diameters in a single radial plane).

§ Equal to minimum inner bearing chamfers.

MOUNTING

Types NBF and NBL bearings are designed for heavy rolling loads. The type NBF bearing is usually clevis mounted or cantilever mounted on a high strength shaft or bolt. The type NBL bearing must be straddle-mounted on a high strength shaft or bolt.


The end washers are fastened to the inner ring in a manner only to maintain the integrity of the assembly, while handling and installing the bearing. Therefore, when mounted they should be firmly backed up by washers or other clamping surfaces that are flat and square with the shaft center line. To provide sufficient washer support, the outside diameter of the clamping surfaces should be at least as large as the minimum clamping diameter (d_a) listed below.

LOAD RATINGS

The limit load ratings (also called "allowable working load ratings") of the bearings are listed below. The ultimate load ratings are not less than 1.5 times the limit load ratings. The ultimate load ratings correspond to 2/3 of the Aircraft Static Capacity ratings.

The track capacity ratings listed below are based on a track hardness equivalent to 40 HRC. For track capacity ratings for other hardness values see the "Engineering for Airframe Needle Roller Bearings" section of this catalog. It is important that the limit load rating of the bearings not be exceeded.

Load ratings are given in pounds-force: 1 lbf = 0.454 kgf = 4.448 NBefore final bearing selection is made, please consult the RBC Aerospace Engineering Department.

SPECIFICATIONS AND ORDERING INFORMATION

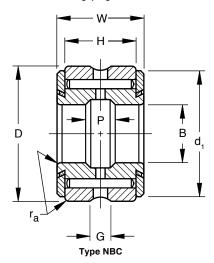
MOUN	TING DI	IMENSI	ONS												
	T rack ntact	We	ight			S iameters		Clar	d _a mping meter		mping orce		Bearing	Capacity	
W	fidth nimum)		rox.)	Transiti (loose max.			tion Fits range) min.		imum)		nax.)	as Track (CT	Roller	Lo	mit oad ting
in.	mm	lbs	kgs	in.	in.	in.	in.	in.	mm	lbf	N	lbf	N	lbf	N
0.125	3.18	0.029	0.01	0.1894	0.1889	0.1902	0.1897	0.438	11.13	480	2100	900	4000	1200	5300
0.218	5.54	0.049	0.02	0.2494	0.2489	0.2502	0.2497	0.516	13.11	870	3900	1430	6400	1910	8500
0.312	7.92	0.098	0.04	0.3744	0.3739	0.3752	0.3747	0.672	17.07	2100	9300	2700	12000	3600	16000
0.438	11.13	0.178	0.08	0.4994	0.4989	0.5002	0.4997	0.844	21.44	3840	17100	4300	19100	5780	25700
0.562	14.27	0.266	0.12	0.6244	0.6239	0.6252	0.6247	0.953	24.21	6150	27400	6400	28500	8530	37900
0.750	19.05	0.495	0.22	0.7494	0.7489	0.7502	0.7497	1.109	28.17	8950	39800	10700	47600	14200	63200
0.875	22.23	0.713	0.32	0.8744	0.8739	0.8752	0.8747	1.219	30.96	12200	54300	14400	64100	19300	85900
0.938	23.83	1.100	0.50	1.2494	1.2489	1.2503	1.2497	1.625	41.28	25800	114800	18900	84100	25300	112500
0.750	19.05	0.228	0.10	0.3744	0.3739	0.3752	0.3747	0.672	17.07	2100	9300	5370	23900	7130	31700
1.000	25.40	0.416	0.19	0.4994	0.4989	0.5002	0.4997	0.891	22.63	3840	17100	9370	41700	12500	55600
1.125	28.58	0.693	0.31	0.6244	0.6239	0.6252	0.6247	1.109	28.17	6150	27400	15000	66700	19900	88500
1.375	34.93	1.080	0.49	0.7494	0.7489	0.7502	0.7497	1.281	32.54	8950	39800	21400	95200	28500	126800
1.625	41.28	1.550	0.70	0.8744	0.8739	0.8752	0.8747	1.469	37.31	12200	54300	28900	128600	38500	171300
1.797	45.64	2.200	1.00	0.9994	0.9989	1.0002	0.9997	1.578	40.08	16300	72500	33600	149500	44900	199700
2.047	51.99	3.100	1.41	1.2494	1.2488	1.2503	1.2497	1.844	46.84	25800	114800	44600	198400	59500	264700

CONSTRUCTION

This is a non-separable unit, comprising an of inner ring, outer ring, needle rollers, and retaining washers which are fastened to the inner ring.

Grooves and hole for relubrication are provided in the inner ring and outer ring.

External surfaces, except the inner ring bore, are cadmium plated.



Dimensions listed are for the finished bearing after plating.

Bearings are made to ISO and U.S. Military Specifications, and are constructed to have low radial clearance when mounted to minimize vibration and backlash.

The shaft diameter and housing bore dimensions necessary to mount these bearings properly are listed on the facing page.

SPECIFICATIONS AND ORDERING INFORMATION

BEARING DIMENSIONS

Bearing Designation	MS24461 Dash No.		B Bo	* ore			D 0.			+.000	Wid	Ø	+.000	r _a Sh Fill	aft		l ₁ 1d sher 1eter	G Outer Groove	Ring
		ma	X.	m	in.	ma	х.	mi	in.	005	13	005	13	(ma	ax.)		ef.)	(re	f.)
		in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm
3NBC511ZP†	MS24461-3	0.1900	4.826	0.1893	4.808	0.6875	17.46	0.6870	17.45	0.312	7.92	0.218	5.54	0.022	0.56	0.625	15.88	0.062	1.57
4NBC612ZP†	MS24461-4	0.2500	6.350	0.2493	6.332	0.7500	19.05	0.7495	19.04	0.375	9.53	0.281	7.14	0.022	0.56	0.688	17.48	0.094	2.39
5NBC713ZP [†]	MS24461-5	0.3125	7.938	0.3118	7.920	0.8125	20.64	0.8120	20.62	0.437	11.10	0.344	8.74	0.022	0.56	0.750	19.05	0.094	2.39
6NBC914YZP	MS24461-6	0.3750	9.525	0.3743	9.507	0.8750	22.23	0.8745	22.21	0.562	14.27	0.469	11.91	0.022	0.56	0.812	20.62	0.125	3.18
7NBC1015YZP	MS24461-7	0.4375	11.113	0.4368	11.095	0.9375	23.81	0.9370	23.80	0.625	15.88	0.531	13.49	0.032	0.81	0.875	22.23	0.125	3.18
8NBC1218YZP	MS24461-8	0.5000	12.700	0.4993	12.682	1.1250	28.58	1.1245	28.56	0.750	19.05	0.656	16.66	0.032	0.81	1.031	26.19	0.125	3.18
9NBC1419YZP	MS24461-9	0.5625	14.288	0.5618	14.270	1.1875	30.16	1.1870	30.15	0.875	22.23	0.781	19.84	0.032	0.81	1.094	27.79	0.156	3.96
10NBC1620YZP	MS24461-10	0.6250	15.875	0.6243	15.857	1.2500	31.75	1.2495	31.74	1.000	25.40	0.906	23.01	0.032	0.81	1.156	29.36	0.156	3.96
12NBC1822YZP	MS24461-12	0.7500	19.050	0.7493	19.032	1.3750	34.93	1.3745	34.91	1.125	28.58	1.000	25.40	0.032	0.81	1.281	32.54	0.156	3.96
14NBC2026YZP	MS24461-14	0.8750	22.225	0.8743	22.207	1.6250	41.28	1.6245	41.26	1.250	31.75	1.125	28.58	0.032	0.81	1.500	38.10	0.156	3.96
16NBC2028YZP	MS24461-16	1.0000	25.400	0.9993	25.382	1.7500	44.45	1.7495	44.44	1.250	31.75	1.125	28.58	0.032	0.81	1.625	41.28	0.156	3.96
20NBC2032YZP	MS24461-20	1.2500	31.750	1.2493	31.732	2.0000	50.80	1.9994	50.78	1.250	31.75	1.049	26.64	0.032	0.81	1.906	48.41	0.156	3.96
24NBC2036YZP	MS24461-24	1.5000	38.100	1.4993	38.082	2.2500	57.15	2.2494	57.13	1.250	31.75	1.049	26.64	0.032	0.81	2.156	54.76	0.156	3.96
28NBC2040YZP	MS24461-28	1.7500	44.450	1.7493	44.432	2.5000	63.50	2.4994	63.48	1.250	31.75	1.049	26.64	0.032	0.81	2.406	61.11	0.156	3.96
32NBC2044YZP	MS24461-32	2.0000	50.800	1.9993	50.782	2.7500	69.85	2.7494	69.83	1.250	31.75	1.049	26.64	0.032	0.81	2.656	67.46	0.156	3.96
36NBC2048YZP	MS24461-36	2.2500	57.150	2.2493	57.132	3.0000	76.20	2.9994	76.18	1.250	31.75	1.049	26.64	0.032	0.81	2.906	73.81	0.156	3.96
40NBC2052YZP	MS24461-40	2.5000	63.500	2.4993	63.482	3.2500	82.55	3.2492	82.53	1.250	31.75	1.049	26.64	0.032	0.81	3.156	80.16	0.156	3.96
44NBC2056YZP	MS24461-44	2.7500	69.850	2.7493	69.832	3.5000	88.90	3.4992	88.88	1.250	31.75	1.049	26.64	0.032	0.81	3.406	86.51	0.156	3.96
48NBC2060YZP	MS24461-60	3.0000	76.200	2.9993	76.182	3.7500	95.25	3.7492	95.23	1.250	31.75	1.049	26.64	0.032	0.81	3.656	92.86	0.156	3.96
52NBC2064YZP	MS24461-52	3.2500	82.550	3.2382	82.250	4.0000	101.60	3.9992	101.58	1.250	31.75	1.049	26.64	0.032	0.81	3.906	99.21	0.156	3.96
56NBC2070YZP	MS24461-56	3.5000	88.900	3.4992	88.880	4.3750	111.13	4.3742	111.10	1.250	31.75	1.049	26.64	0.044	1.12	4.219	107.16	0.156	3.96
60NBC2074YZP	MS24461-60	3.7500	95.250	3.7492	95.230	4.6250	117.48	4.6242	117.45	1.250	31.75	1.049	26.64	0.044	1.12	4.469	113.51	0.156	3.96
64NBC2078YZP	MS24461-64	4.0000	101.600	3.9992	101.580	4.8750	123.83	4.8740	123.80	1.250	31.75	1.049	26.64	0.044	1.12	4.719	119.86	0.156	3.96

*Bore and 0.D. tolerance limits correspond to the single mean diameter (the arithmetical mean of the largest and smallest diameters in a single radial plane).

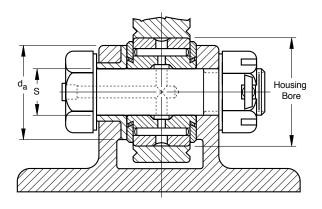
§ Equal to minimum inner bearing chamfers.

MOUNTING

The housing bore dimensions shown below are applicable to bearings mounted in steel. These dimensions should be decreased .0002 in. (.005mm) when aluminum alloy housings are used.

The end washers are fastened to the inner ring in a manner only to maintain the integrity of the assembly while handling and installing the bearing. Therefore, when mounted, they should be firmly backed up by washers or other clamping surfaces that are flat and square with the shaft center line. To provide sufficient washer support, the outside diameter of the clamping surfaces should be at least as large as the minimum clamping diameter (d_a) listed below.

Tight range transitional fitting practice should not be used for both the outer and the inner rings, since this may cause excessive preloading of the bearing. If this type of mounting becomes necessary, consult the RBC Aerospace Engineering Department for specific recommendations.


LOAD RATINGS

The limit load ratings (also called "allowable working load ratings") of the bearings are listed below. The ultimate load ratings are not less than 1.5 times the limit load ratings. The ultimate load ratings correspond to the Aircraft Static Capacity ratings.

Load ratings are given in pounds-force:

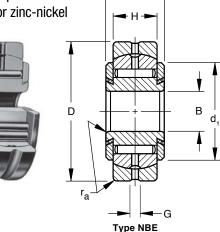
1 lbf = 0.454 kgf = 4.448 N

Before final bearing selection is made, please consult the RBC Aerospace Engineering Department.

SPECIFICATIONS AND ORDERING INFORMATION

MOUNTING DIMENSIONS

Inne	P er Ring	We				S ameters			Housii	ng Bore			l _a	Clan	nping		mit pad
	ref.)	(арр	•		ion Fits range) min.		ion Fits range) min.	Transiti (tight r max.		Transiti (loose max.		Dian	neter mum)	Fo	ax.)		iting
in.	mm	lbs	kgs	in.	in.	in.	in.	in.	in.	in.	in.	in.	mm	lbf	N	lbf	N
-	-	0.028	0.01	0.1894	0.1889	0.1902	0.1897	0.6867	0.6872	0.6874	0.6879	0.438	11.13	480	2100	1800	8000
-	-	0.040	0.02	0.2494	0.2489	0.2502	0.2497	0.7492	0.7497	0.7499	0.7504	0.516	13.11	870	3900	2870	12800
	-	0.057	0.03	0.3119	0.3114	0.3127	0.3122	0.8117	0.8122	0.8124	0.8129	0.578	14.68	1400	6200	4070	18100
0.188	4.78	0.075	0.03	0.3744	0.3739	0.3752	0.3747	0.8742	0.8747	0.8749	0.8754	0.641	16.28	2100	9300	6330	28200
0.188	4.78	0.097	0.04	0.4369	0.4364	0.4377	0.4372	0.9367	0.9372	0.9374	0.9379	0.703	17.86	2850	12700	8000	35600
0.188	4.78	0.165	0.07	0.4994	0.4989	0.5002	0.4997	1.1242	1.1247	1.1249	1.1254	0.844	21.44	3840	17100	11600	51600
0.188	4.78	0.207	0.09	0.5619	0.5614	0.5627	0.5622	1.1867	1.1872	1.1874	1.1879	0.891	22.63	4870	21700	15000	66700
0.250	6.35	0.252	0.11	0.6244	0.6239	0.6252	0.6247	1.2492	1.2497	1.2499	1.2504	0.953	24.21	6150	27400	18900	84100
0.250	6.35	0.336	0.15	0.7494	0.7489	0.7502	0.7497	1.3741	1.3747	1.3749	1.3755	1.078	27.38	8950	39800	23900	106300
0.375	9.53	0.423	0.19	0.8744	0.8739	0.8752	0.8747	1.6241	1.6247	1.6249	1.6255	1.250	31.75	12200	54300	30500	135700
0.375	9.53	0.510	0.23	0.9994	0.9989	1.0002	0.9997	1.7491	1.7497	1.7499	1.7505	1.375	34.93	16300	72500	33900	150800
0.375	9.53	0.600	0.27	1.2494	1.2488	1.2503	1.2497	1.9991	1.9997	1.9999	2.0005	1.625	41.28	25800	114800	37900	168600
0.375	9.53	0.710	0.32	1.4994	1.4988	1.5003	1.4997	2.2488	2.2496	2.2499	2.2507	1.875	47.63	25800	114800	44200	196600
0.375	9.53	0.780	0.35	1.7494	1.7488	1.7503	1.7497	2.4988	2.4996	2.4999	2.5007	2.125	53.98	25800	114800	50500	224600
0.375	9.53	0.880	0.40	1.9994	1.9987	2.0003	1.9996	2.7488	2.7496	2.7499	2.7507	2.375	60.33	25800	114800	56800	252700
0.375	9.53	0.980	0.44	2.2494	2.2487	2.2503	2.2496	2.9988	2.9996	2.9999	3.0007	2.625	66.68	25800	114800	63100	280700
0.375	9.53	1.060	0.48	2.4994	2.4987	2.5003	2.4996	3.2485	3.2495	3.2498	3.2508	2.875	73.03	25800	114800	69400	308700
0.375	9.53	1.150	0.52	2.7494	2.7487	2.7503	2.7496	3.4985	3.4995	3.4998	3.5008	3.125	79.38	25800	114800	75700	336700
0.375	9.53	1.240	0.56	2.9994	2.9987	3.0003	2.9996	3.7485	3.7495	3.7498	3.7508	3.375	85.73	25800	114800	82000	364800
0.375	9.53	1.340	0.61	3.2494	3.2486	3.2504	3.2496	3.9985	3.9995	3.9998	4.0008	3.641	92.48	25800	114800	88300	392800
0.375	9.53	1.730	0.78	3.4994	3.4986	3.5004	3.4996	4.3735	4.3745	4.3748	4.3758	3.969	100.81	25800	114800	96700	430100
0.375	9.53	1.840	0.83	3.7494	3.7486	3.7504	3.7496	4.6235	4.6245	4.6248	4.6258	4.219	107.16	25800	114800	103000	458200
0.375	9.53	1.990	0.90	3.9994	3.9986	4.0004	3.9996	4.8735	4.8745	4.8748	4.8758	4.469	113.51	25800	114800	109000	484900

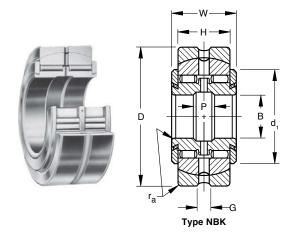

CONSTRUCTION

This is a non-separable, self-aligning unit comprising an inner ring, needle rollers, outer ring with spherical O.D., retaining washers and housing ring with spherical I.D. The end washers are fastened to the inner ring. Type NBE has a single row of rollers, and type NBK has two rows of rollers.

Lubrication grooves and holes in the inner ring, outer ring and housing ring are provided in the type NBK bearing. The type NBE bearing is similarly designed, except groove and holes in the inner ring are omitted.

The self-aligning bearing outer ring and its housing ring are a matched assembly that must be kept together.

External surfaces, except the inner ring bore, are cadmium or zinc-nickel plated.



DIMENSIONS

Dimensions listed are for the finished bearing after plating.

Bearings are made to ISO and U.S. Military Specifications, and are constructed to have low radial clearance when mounted to minimize vibration and backlash.

The shaft diameter and housing bore dimensions necessary to mount these bearings properly are listed on the facing page.

SPECIFICATIONS AND ORDERING INFORMATION

BEARING DIMENSIONS

Bearing Designation	MS24463 MS24464 Dash No.	ma	В	3* ore m	in.	ma	0.)* D. m	in.	+.000 005	Wid	Ø	+.000 13	r _a Sha Fill (ma	aft let	Eı	sher neter	G Outer Groove (ref	Width
		in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm
3NBE514ZP	MS24463-3	0.1900	4.826	0.1893	4.808	0.8750	22.23	0.8745	22.21	0.312	7.92	0.218	5.54	0.022	0.56	0.625	15.88	0.062	1.57
4NBE615ZP	MS24463-4	0.2500	6.350	0.2493	6.332	0.9375	23.81	0.9370	23.80	0.375	9.53	0.281	7.14	0.022	0.56	0.688	17.48	0.094	2.39
5NBE717ZP	MS24463-5	0.3125	7.938	0.3118	7.920	1.0625	26.99	1.0620	26.97	0.437	11.10	0.344	8.74	0.022	0.56	0.750	19.05	0.094	2.39
6NBK919YZP	MS24464-6	0.3750	9.525	0.3743	9.507	1.1875	30.16	1.1870	30.15	0.562	14.27	0.469	11.91	0.022	0.56	0.812	20.62	0.125	3.18
7NBK1021YZP	MS24464-7	0.4375	11.113	0.4368	11.095	1.3125	33.34	0.3120	7.92	0.625	15.88	0.531	13.49	0.032	0.81	0.875	22.23	0.125	3.18
8NBK1224YZP	MS24464-8	0.5000	12.700	0.4993	12.682	1.5000	38.10	1.4995	38.09	0.750	19.05	0.656	16.66	0.032	0.81	1.031	26.19	0.125	3.18
9NBK1427YZP	MS24464-9	0.5625	14.288	0.5618	14.270	1.6875	42.86	1.6870	42.85	0.875	22.23	0.781	19.84	0.032	0.81	1.094	27.79	0.156	3.96
10NBK1628YZP	MS24464-10	0.6250	15.875	0.6243	15.857	1.7500	44.45	1.7495	44.44	1.000	25.40	0.906	23.01	0.032	0.81	1.156	29.36	0.156	3.96
12NBK1830YZP	MS24464-12	0.7500	19.050	0.7493	19.032	1.8750	47.63	1.8745	47.61	1.125	28.58	1.000	25.40	0.032	0.81	1.281	32.54	0.156	3.96
14NBK2034YZP	MS24464-14	0.8750	22.225	0.8743	22.207	2.2150	56.26	2.1244	53.96	1.250	31.75	1.125	28.58	0.032	0.81	1.500	38.10	0.156	3.96
16NBK2036YZP	MS24464-16	1.0000	25.400	0.9993	25.382	2.2500	57.15	2.2494	57.13	1.250	31.75	1.125	28.58	0.032	0.81	1.625	41.28	0.156	3.96
20NBK2040YZP	MS24464-20	1.2500	31.750	1.2493	31.732	2.5000	63.50	2.4994	63.48	1.250	31.75	1.049	26.64	0.032	0.81	1.906	48.41	0.156	3.96
24NBK2044YZP	MS24464-24	1.5000	38.100	1.4993	38.082	2.7500	69.85	2.7494	69.83	1.250	31.75	1.049	26.64	0.032	0.81	2.156	54.76	0.156	3.96
32NBK2052YZP	MS24464-32	2.0000	50.800	1.9993	50.782	3.2500	82.55	3.2492	82.53	1.250	31.75	1.049	26.64	0.032	0.81	2.656	67.46	0.156	3.96
40NBK2060YZP	MS24464-40	2.5000	63.500	2.4993	63.482	3.7500	95.25	3.7492	95.23	1.250	31.75	1.049	26.64	0.032	0.81	3.156	80.16	0.156	3.96
48NBK2068YZP	MS24464-48	3.0000	76.200	2.9993	76.182	4.2500	107.95	4.2492	107.93	1.250	31.75	1.049	26.64	0.032	0.81	3.656	92.86	0.156	3.96
56NBK2078YZP	MS24464-56	3.5000	88.900	3.4992	88.880	4.8750	123.83	4.8740	123.80	1.250	31.75	1.049	26.64	0.044	1.12	4.219	107.16	0.156	3.96
*Doro and O.D. talors					Alexandria							and the land of							

*Bore and O.D. tolerance limits correspond to the single mean diameter (the arithmetical mean of the largest and smallest diameters in a single radial plane).

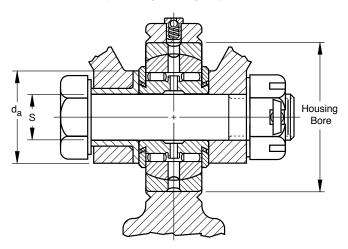
§ Equal to minimum inner bearing chamfers.

MOUNTING

The housing bore dimensions shown below are applicable to bearings mounted in steel. These dimensions should be decreased .0002 in. (.005mm) when aluminum alloy housings are used.

The end washers are fastened to the inner ring in a manner only to maintain the integrity of the assembly while handling and installing the bearing. Therefore, when mounted they should be firmly backed up by washers or other clamping surfaces that are flat and square with the shaft center line. To provide sufficient washer support, the outside diameter of the clamping surfaces should be at least as large as the minimum clamping diameter (d_a) listed below. The maximum clamping diameter is also given to assure that a misalignment of $\pm 5^{\circ}$ can be accommodated.

LOAD RATINGS


The limit load ratings (also called "allowable working load ratings") of the bearings are listed below. The ultimate load ratings are not less than 1.5 times the limit load ratings. The ultimate load ratings correspond to the Aircraft Static Capacity ratings.

When the application requires dynamic self-alignment, additional bearing loads (due to the friction of dynamic self-alignment) must be taken into account.

Load ratings are given in pounds-force:

1 lbf = 0.454 kgf = 4.448 N

Before final bearing selection is made, please consult the RBC Aerospace Engineering Department.

SPECIFICATIONS AND ORDERING INFORMATION

MOUNTING DIMENSIONS

Inner		Wei	aht		Shaft Di	S ameters			Housir	ng Bore				i _a nping		Clam	pina		imit oad
Groove (re					ion Fits range)	Transit (tight		Transiti (tight			ion Fits range)			neter		Foi		Ra	iting
	;ı. <i>)</i>	(аррі	rox.)	max.	min.	max.	min.	max.	min.	max.	min.	m	ax.	miı	n.	(ma	ax.)		
in.	mm	lbs	kgs	in.	in.	in.	in.	in.	in.	in.	in.	in.	mm	in.	mm	lbf	N	lbf	N
-	-	0.041	0.02	0.1894	0.1889	0.1902	0.1897	0.8742	0.8747	0.8749	0.8754	0.625	15.88	0.438	11.13	480	2100	1800	8000
-	-	0.053	0.02	0.2494	0.2489	0.2502	0.2497	0.9367	0.9372	0.9374	0.9379	0.688	17.48	0.516	13.11	870	3900	2870	12800
	-	0.079	0.04	0.3119	0.3114	0.3127	0.3122	1.0617	1.0622	1.0624	1.0629	0.734	18.64	0.578	14.68	1400	6200	4070	18100
0.188	4.78	0.130	0.06	0.3744	0.3739	0.3752	0.3747	1.1867	1.1872	1.1874	1.1879	0.781	19.84	0.641	16.28	2100	9300	4530	20200
0.188	4.78	0.174	0.08	0.4369	0.4364	0.4377	0.4372	1.3116	1.3122	1.3124	1.3130	0.844	21.44	0.703	17.86	2850	12700	5870	26100
0.188	4.78	0.293	0.13	0.4994	0.4989	0.5002	0.4997	1.4991	1.4997	1.4999	1.5005	1.000	25.40	0.844	21.44	3840	17100	8670	38600
0.188	4.78	0.420	0.19	0.5619	0.5614	0.5627	0.5622	1.6866	1.6872	1.6874	1.6880	1.062	26.97	0.891	22.63	4870	21700	11800	52500
0.250	6.35	0.520	0.24	0.6244	0.6239	0.6252	0.6247	1.7491	1.7497	1.7499	1.7505	1.094	27.79	0.953	24.21	6150	27400	15500	68900
0.250	6.35	0.630	0.29	0.7494	0.7489	0.7502	0.7497	1.8741	1.8747	1.8749	1.8755	1.156	29.36	1.078	27.38	8950	39800	20000	89000
0.375	9.53	0.870	0.39	0.8744	0.8739	0.8752	0.8747	2.1238	2.1246	2.1249	2.1257	1.375	34.93	1.250	31.75	12200	54300	25800	114800
0.375	9.53	0.960	0.44	0.9994	0.9989	1.0002	0.9997	2.2488	2.2496	2.2499	2.2507	1.500	38.10	1.375	34.93	16300	72500	28700	127700
0.375	9.53	1.070	0.49	1.2494	1.2488	1.2503	1.2497	2.4988	2.4996	2.4999	2.5007	1.781	45.24	1.625	41.28	25800	114800	31400	139700
0.375	9.53	1.230	0.56	1.4994	1.4988	1.5003	1.4997	2.7488	2.7496	2.7499	2.7507	2.062	52.37	1.875	47.63	25800	114800	36600	162800
0.375	9.53	1.490	0.68	1.9994	1.9987	2.0003	1.9996	3.2485	3.2495	3.2498	3.2508	2.594	65.89	2.375	60.33	25800	114800	47100	209500
0.375	9.53	1.780	0.81	2.4994	2.4987	2.5003	2.4996	3.7485	3.7495	3.7498	3.7508	3.062	77.77	2.875	73.03	25800	114800	57500	255800
0.375	9.53	2.060	0.93	2.9994	2.9987	3.0003	2.9996	4.2485	4.2495	4.2498	4.2508	3.562	90.47	3.375	85.73	25800	114800	67900	302000
0.375	9.53	2.650	1.20	3.4994	3.4986	3.5004	3.4996	4.8735	4.8745	4.8748	4.8758	4.141	105.18	3.969	100.81	25800	114800	80100	356300

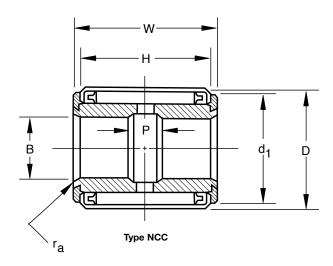
CONSTRUCTION

This is a non-separable unit comprising a DC-type needle bearing, inner race, and retaining washers. The end washers are fastened to the inner race.

Lubrication grooves and holes are provided in the inner race for all bearings except the 3, 4, and 5 for relubrication purposes. The DC needle bearing can be provided with an oil hole in its outer shell. If so desired, please specify on order.

Exposed surfaces, as mounted, are cadmium plated to meet military specifications.

These bearings must not be used as rollers.



DIMENSIONS

Dimensions given below are for the finished bearing after cadmium plating. Only the nominal bearing 0.D. is given since the bearing depends on the housing dimensions for its final sizing.

Bearings are made to AFMBA and military specifications and are constructed to have low radial clearances when mounted, in order to keep vibration and backlash in mechanisms to a minimum.

Shaft diameter and housing bore dimensions necessary to mount these bearings properly are given on the facing page.

SPECIFICATIONS AND ORDERING INFORMATION

BEARING DIMENSIONS

Bearing	MS24462 Dash	E Bo	-	Housin) g Bore	,	W Wie	iths	Н	r _a		C	i,
Designation	No.	+.000 0005	+.000 013	+.0005 0005	+.013 013	+.000 005	+.000 13	+.000 010	+.000 25	Rad oi 45° B	•	End Ri	ng Dia.
		in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm
3NCC1010P	MS24462-3	0.1900	4.826	0.6250	15.875	0.625	15.88	0.500	12.70	0.022	0.56	0.563	14.30
4NCC910P	MS24462-4	0.2500	6.350	0.6250	15.875	0.562	14.27	0.500	12.70	0.022	0.56	0.563	14.30
5NCC1011P	MS24462-5	0.3125	7.938	0.6875	17.463	0.625	15.88	0.500	12.70	0.022	0.56	0.625	15.88
6NCC1312YP	MS24462-6	0.3750	9.525	0.7500	19.050	0.812	20.62	0.750	19.05	0.022	0.56	0.688	17.48
7NCC1413YP	MS24462-7	0.4375	11.113	0.8125	20.638	0.875	22.23	0.750	19.05	0.032	0.81	0.750	19.05
8NCC1416YP	MS24462-8	0.5000	12.700	1.0000	25.400	0.875	22.23	0.750	19.05	0.032	0.81	0.938	23.83
10NCC1418YP	MS24462-10	0.6250	15.875	1.1250	28.575	0.875	22.23	0.750	19.05	0.032	0.81	1.063	27.00
12NCC1820YP	MS24462-12	0.7500	19.050	1.2500	31.750	1.125	28.58	1.000	25.40	0.032	0.81	1.188	30.18
14NCC1822YP	MS24462-14	0.8750	22.225	1.3750	34.925	1.125	28.58	1.000	25.40	0.032	0.81	1.313	33.35
16NCC1824YP	MS24462-16	1.0000	25.400	1.5000	38.100	1.125	28.58	1.000	25.40	0.032	0.81	1.438	36.53
20NCC2230YP	MS24462-20	1.2500	31.750	1.8750	47.625	1.375	34.93	1.250	31.75	0.032	0.81	1.813	46.05

[§] Equal to minimum bearing chamfers.

For aluminum, die castings and similar low tensile housings, consult with the RBC Aerospace Engineering Department.

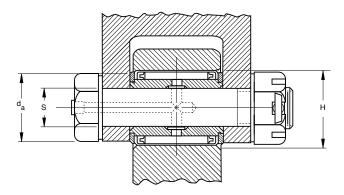
MOUNTING

The housing bore dimensions shown below are for mounting bearings in steel housings. These dimensions should be decreased .001 in. (.025mm) or more for initial trial if die-cast housings of low tensile strength are used.

End washers are fastened to bearings only to facilitate handling and installation. They should be firmly backed up by washers or other clamping surfaces that are flat and square with the shaft center line. In order to provide sufficient washer support, the outside diameter of the clamping surfaces should be at least as large as the minimum clamping diameters (d_a) given below.

LOAD RATINGS

The Aircraft Static Capacities shown below are obtained by use of the formula:


"P.D." is the bearing pitch diameter and "/" is the effective length of the rollers. They are based on the Aircraft Static Capacities of the DC needle bearings which are components of the NCC bearings.

The allowable dynamic working load should be taken as one-half of the Aircraft Static Capacity.

Load ratings are given in pounds-force:

$$1 \text{ lbf} = 0.454 \text{ kgf} = 4.448 \text{ N}$$

Before final bearing selection is made, please consult the RBC Aerospace Engineering Department.

SPECIFICATIONS AND ORDERING INFORMATION

MOUNTING DIMENSIONS

			•												
	P	L	imit	West	ight			S iameters			Н	Clar	d _a mping meter		nping rce
	er Race ve Width	1	oad ating		rox.)	Transit (loos max.	ion Fits e fits) min.		ition Fits t range) min.		ing Bore ess Fit min.		imum)		ax.)
in.	mm	lbf	N	lbs	kgs	in.	in.	in.	in.	in.	in.	in.	mm	lbf	N
0.000	0.00	679	3000	0.040	0.02	0.1894	0.1889	0.1902	0.1897	0.6255	0.6245	0.469	11.91	480	2100
0.000	0.00	878	3900	0.025	0.01	0.2494	0.2489	0.2502	0.2497	0.6255	0.6245	0.500	12.70	870	3900
0.000	0.00	988	4400	0.050	0.02	0.3119	0.3114	0.3127	0.3122	0.6880	0.6870	0.563	14.29	1400	6200
0.188	4.78	1920	8500	0.060	0.03	0.3744	0.3739	0.3752	0.3747	0.7505	0.7495	0.625	15.88	2100	9300
0.188	4.78	2110	9400	0.090	0.04	0.4369	0.4364	0.4377	0.4372	0.8130	0.8120	0.688	17.46	2850	12700
0.188	4.78	2350	10500	0.120	0.05	0.4994	0.4989	0.5002	0.4997	1.0005	0.9995	0.844	21.43	3840	17100
0.250	6.35	2690	12000	0.150	0.07	0.6244	0.6239	0.6252	0.6247	1.1255	1.1245	0.969	24.61	6150	27400
0.250	6.35	4480	19900	0.210	0.10	0.7494	0.7489	0.7502	0.7497	1.2505	1.2495	1.094	27.78	8950	39800
0.375	9.53	5000	22200	0.240	0.11	0.8744	0.8739	0.8752	0.8747	1.3755	1.3745	1.219	30.96	12200	54300
0.375	9.53	5510	24500	0.270	0.12	0.9994	0.9989	1.0002	0.9997	1.5005	1.4995	1.344	34.13	16300	72500
0.375	9.53	8180	36400	0.300	0.14	1.2494	1.2488	1.2503	1.2497	1.8755	1.8745	1.641	41.67	25800	114800

AIRFRAME CONTROL NEEDLE ROLLER BEARINGS — HRS, HRSC

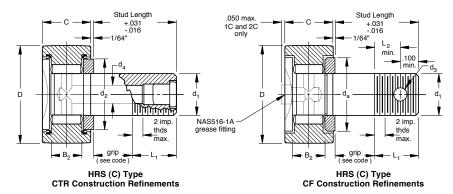
CONSTRUCTION

RBC stud type airframe track rollers have been designed for specific use on track type or cam-controlled equipment when cantilever mounting is desired.

Each non-separable unit comprises an outer ring, a full complement of needle rollers, stud, and washer. The O.D. of the outer ring is chromium plated in accordance with the AMS-QQ-C-320, Class 2 specifications to a minimum thickness of .0004 in. All other exposed surfaces are cadmium or zinc-nickel plated. The sealed track rollers have seals made from a special plastic or acetal resin.

Track rollers are available with cylindrical or crowned outer rings. Crowned track rollers reduce the effect of uneven bearing loading resulting from deflection, bending, or misalignment in mounting. A track roller with a cylindrical

outer ring is identified by the prefix letters HRS. A track roller with a crowned outer ring has a letter "C" added to the end of the prefix code (i.e., HRSC).


Normally, the track rollers are prepackaged with a low temperature aircraft grease meeting MIL-PRF-81322 specification, when specified.

DIMENSIONS

Dimensions are for the finished bearing after chrome and cadmium plating. No standard stud length is shown in the tables because the grip length is variable in 1/16 in. increments, coded in the bearing number. Since many combinations of length and type are possible for each track roller size, almost every track roller ordered is a special bearing. See note 3 below for thread specifications.

SPECIFICATIONS AND ORDERING INFORMATION

BEARING DIMENSIONS

Bearing Designation	MS21432 Dash No. ⁽⁴⁾	Former NAS 562 Number	Stud I +.0000 0015 in.	1	+0.0010 0005 in.	+.025 013 mm	0	AR. dth +.000 13	L ₂ min	d ₂ min.	B ₂ Track Contact Width ⁽²⁾ min.	Preferred Max. Grip Length	L ₁ Thread Length (ref.)	Thread Size ⁽³⁾	d ₃ Cotter Pin Hole Diam. (ref.)	d ₄ dia. (ref.)
HRS1C HRSC1C	MS 21432-3	NAS 562-3	0.1900	4.826	0.5000	12.700	0.281	7.14	0.211	0.323	0.230	5⁄8	0.344	10-32	0.070	none
HRS2C HRSC2C	MS 21432-4	NAS 562-4	0.2500	6.350	0.6875	17.463	0.281	7.14	0.224	0.418	0.230	15/16	0.344	1/4-28	0.076	0.076
HRS3C HRSC3C	MS 21432-5	NAS 562-5	0.3120	7.925	0.7500	19.050	0.344	8.74	0.234	0.494	0.290	1 1/4	0.359	5/16-24	0.076	0.076
HRS4C HRSC4C	MS 21432-6	NAS 562-6	0.3750	9.525	0.8750	22.225	0.469	11.91	0.265	0.575	0.380	1 5/8	0.359	3/8-24	0.106	0.106
HRS5C HRSC5C	MS 21432-7	NAS 562-7	0.4370	11.100	1.0000	25.400	0.531	13.49	0.283	0.680	0.430	1 3/4	0.422	7/16-20	0.106	0.106
HRS6C HRSC6C	MS 21432-8	NAS 562-8	0.5000	12.700	1.1250	28.575	0.656	16.66	0.314	0.744	0.530	1 3/4	0.422	1/2-20	0.106	0.106

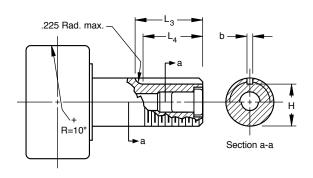
- (1) Tolerance for crowned outer ring 0.D, is +.0010,-.0015.
- (2) Applies to cylindrical outer ring design only.
- (3) All threads conform to SAE AS-8879 specification, UNJF series and Class 3A. The last two threads on the stud are imperfect threads.
- (4) HRSC bearings meet the requirements of SAE AS-21447.

©2008 RBC Bearings Incorporated. All rights reserved.

BEARING NUMBER

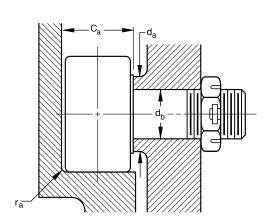
Bearing numbers for RBC Airframe HRSC and HRS track rollers are based on the ABMA identification system. Each complete bearing number comprises three sections of letter and numeral codes which indicate, in this order, basic type and size, construction refinements, and grip length. The sections of the number are contiguous and not separated by spaces or dashes. Designers should familiarize themselves with the numbering system and use the proper sequence of letters and numerals in print specifications and correspondence.

Section 1: Basic Bearing Number The letters HRS and HRSC followed by size designations (1C, 2C, etc.) relate to the dimensions given in the tabulation above. Section 2: Construction Refinements Additional letters, which must appear in the sequence below, indicate special optional features:


- F- lubricator in flanged end of stud.
- T- lubricator in threaded end of stud: cotter pin hole omitted. (Note: the HRS1C stud is too small to permit lubrication through the threaded end.)
- K- stud slotted to receive an MS 27111 washer.
- A- no cotter pin hole.
- R- sealed.

Section 3: Grip Length Number A number indicating the grip length in increments of 1/16 in. Tolerance on grip length is $\pm .016$ in. The nominal stud length is the sum of the nominal grip length and thread length (column L1).

MOUNTING


The bore diameter for the stud is listed in column d_b . Other mounting requirements are track fillet radius (r_a) , minimum overhang space (C_a) and minimum clamping diameter (d_a) . See footnotes 1 and 2 below for additional requirements.

LOAD RATINGS

To utilize a track roller properly, three different capacities must be considered: the capacity of the material on which the track roller will roll (see Note 3), the capacity of the bearing elements to carry the load (see Note 4), and the capacity of the bearing elements to withstand the maximum radial loads (see Note 5).

Before final bearing selection is made please consult the RBC Aerospace Engineering Department.

SPECIFICATIONS AND ORDERING INFORMATION

MOUNTING DIMENSIONS

L ₄	L.	b	н	Weight, Pounds		1		Mounti	ng Dimension:	s, Inches		Load	l Ratings, Po	unds
4	3			Approx.		re	ra	Rec.	C _a *	d _a		Be	earing Capac	ity
+0.030 000	(ref.)	±.0020	±.0030	gln=Grip Length Number		neter stud min.	Track Fillet Radius (max.)	Clamping Torque (max.) Ibin. ⁽¹⁾	Min. Overhang Space	Clamping Diameter (min.)	Bearing Size No.	Track Capacity 40HRc Steel ⁽³⁾	as a Track Roller ⁽⁴⁾	Limit Load Rating ⁽⁵⁾
n.a.	n.a.	n.a.	n.a.	.014 + (gln x .0005)	0.1905	0.1900	0.010	8	0.313	0.297	1	385	395	790
0.375	0.534	0.0635	0.2143	.031 + (gln x .0009)	0.2505	0.2500	0.010	20	0.313	0.359	2	525	470	940
0.390	0.546	0.0635	0.2768	.043 + (gln x .0014)	0.3120	0.2500	0.010	40	0.376	0.422	3	725	830	1660
0.390	0.572	0.0947	0.3236	.081 + (gln x .0020)	0.3755	0.3750	0.025	55	0.501	0.500	4	1100	1360	2720
0.453	0.635	0.0947	0.3861	.125 + (gln x0026)	0.4375	0.4370	0.025	150	0.563	0.562	5	1425	1930	3860
0.453	0.662	0.1260	0.4330	.190 + (gln x0035)	0.5005	0.5000	0.040	205	0.688	0.625	6	1975	3040	6080

- (1) The maximum recommended clamping torque is based on lubricated threads. If threads are dry, the torque values listed may be doubled.
- (2) The edge of the housing which supports the stud shank should be as sharp as possible, without burrs, and square with the stud centerline.
 (3) Track capacity is critical with respect to bearing rolling capacity. Increase in track hardness will increase track capacity. Never exceed bearing capacity as a track roller under dynamic conditions.
- ⁽⁴⁾ The highest load that can be applied to a bearing for a life of 20,000 revolutions, L10.

BEARING NUMBER EXAMPLES (RBC WITH MS EQUIVALENTS) RBC-ABMA HRS3CT7 — equivalent to MS 21432-5T7

Track roller with .7500 in. outer ring 0.D.; .344 in. outer ring width; .3120 in. stud diameter; lubricator in threaded end of stud; cotter pin hole omitted; and a 7 /16 in. grip length.

RBC-ABMA HRSC4CFR6 — equivalent to MS 21477-6F6

Track roller with .8750 in. outer ring 0.D.; .469 in. outer ring width; .3750 in. stud diameter; lubricator in threaded end of stud; .106 in. diameter cotter pin hole located in threaded end of stud; sealed; and a 6/16 in. grip length.

RBC-ABMA HRS2CTK3 — no equivalent to MS 21432

Track roller with .6875 in. outer ring 0.D.; .281 in. outer ring width; .2500 in. stud diameter; lubricator in threaded end of stud. Stud slotted to receive an MS 27111 key washer; and a 3/16 in. grip length.

*The NAS 516-1A grease fitting is flush or indented on all sizes except HRS1CF and HRS2CF, where it protrudes .050 in. Accordingly, when these two sizes are mounted, dimension Ca must be adjusted to accommodate the slight protrusion.

⁽⁵⁾ The limit load is the maximum radial load which can be applied to a bearing without impairing the subsequent functioning of the bearing in airframe applications. To realize this rating fully, compensation must be provided for stud deflection in order to assure full track contact under load. The static fracture load (Aircraft Static Capacity) is not less than 1.5 times the limit load rating.

AeroCres® Fracture-tough Airframe Products

Fracture-tough airframe products enhance corrosion resistance

For many years, corrosion has been a significant problem with bearings used in the aircraft industry. While CRES 440C has been used successfully in many aircraft applications, it is not suitable for the demands of rod end banjos or track roller studs. These two bearing components require a full Rc 58 hardness in the raceway area and a softer, tougher material elsewhere. This is not attainable with CRES 440C. RBC's AeroCres® products provide the unique solution that meets these dual material requirements.

We have selected a specialized carburized stainless steel, and have developed and optimized the heat treatment process that resulted in a homogeneous microstructure — delivering both corrosion protection and core fracture toughness.

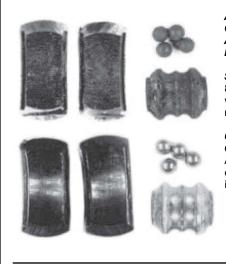
Currently, this new material is being used for many structural bearing components such as rod end banjos, track roller studs, and outer rings. Fracture toughness, corrosion resistance, and long fatigue life are critical requirements for these components.

AeroCres® fracture-tough airframe products offer enhanced corrosion resistance in harsh operating environments.

Benefits

- Excellent fracture toughness superior to CRES 440C.
- Proven corrosion resistance similar to CRES 440C.
- Compressive residual stresses in carburized case.
- Lower starting torque after extended exposure to a neutral salt solution (ASTM-G44).
- Meets or exceeds government requirements for fatigue and static testing per AS 39901.
- Longer bearing life resisting premature corrosion.

Applications


Bearings located in exposed corrosive positions of aircraft such as:

- Landing gear and doors
- · Leading and trailing edges
- Engine controls
- Tail sections

Corrosion Resistance Comparison

AeroCres® Rod End vs. 8620/52100 Rod End

Alternate Immersion Corrosion Test ASTM G44-88 Results* (1,000 hours)

Standard Assembly: 8620 rod end outers with 52100 steel inner ring and balls

Corrosion Resistant CRES Assembly: AeroCres® rod end outer with CRES 440C inner ring and balls

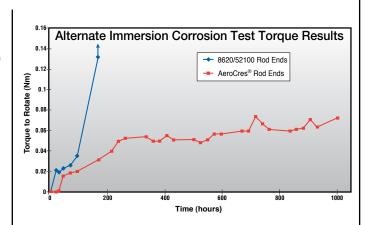
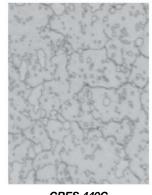


Fig. 6 – Average Torque to Rotate for Three Bearings of Each Type of Rod End

Salt Spray Test Results (1,000 hours) ASTM-B117

Alternative Immersion Corrosion Test ASTM-G44-88 Results* (1,000 hours)


Plated 8620 Rod End Outer with 52100 Steel Inner Ring and Balls

Plated AeroCres® Rod End Outer with CRES 440C Inner Ring and Balls

Microstructure AeroCres® fracture-tough material vs. CRES 440C

CRES 440C

AeroCres® fracture-tough material

Approvals

- BACB10GS
- BACB10GY
- BACB10GZ

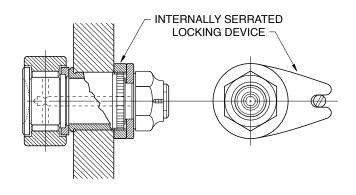
Engineering Support

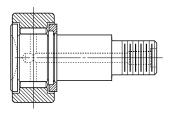
- Application consultation
- Product design
- Product testing
- Metallurgical analysis
- Heat treating, stainless, and other high-alloy steels

Ordering Information

• Contact RBC Customer Service

AIRFRAME CONTROL NEEDLE ROLLER BEARINGS — SPECIAL DESIGNS




SPECIAL DESIGNS


Standard catalog airframe bearings are not always suitable in aircraft design. When unusual or demanding requirements present bearing application problems, special bearing solutions are required.

Prototype bearings can be made to meet the critical time schedules of development projects.

Stud type track rollers can be manufactured with the customary concentric studs, or eccentric studs that will permit adjustment at the time of assembly. Both types are illustrated on this page along with typical installation arrangements.

RBC Thin Section Ball Bearings

PRODUCT NOMENCLATURE90
Thin Section Ball Bearings Type
Thin Section Ball Bearings Separator Guide 92
Engineering Section for Thin Section Ball Bearings
Thin Section Ball Bearings Tolerance and Fits

Thin Section Ball Bearings Tables
SuperDuplex™ Series
Radial Contact, C-Type Series106-11
Angular Contact, A-Type Series112-11
4-Point Contact, X-Type Series118-12
Sealed Radial Contact, C-Type Series
Sealed Radial Contact, X-Type Series
Simplex™ Series
Sample Applications

GENERAL FEATURES AND TECHNICAL SPECIFICATIONS

Seals and Shields

Standard seals for thin section ball bearings are molded from elastomers. PTFE seals, fiber glass reinforced PTFE seals, stainless steel shields, and many other options are available for low torque and other special applications.

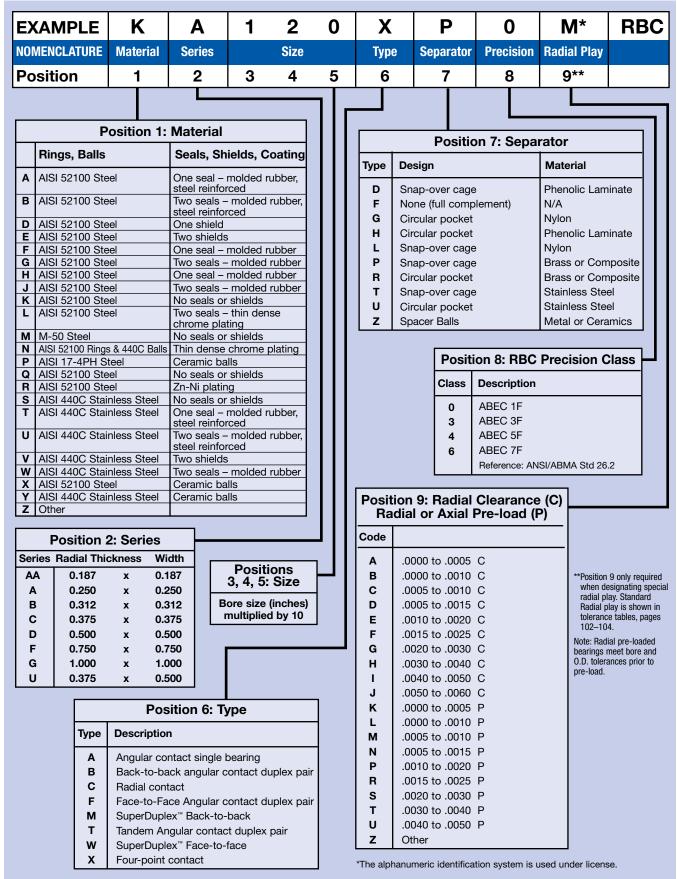
Materials

Rings are made from SAE 52100, M50, 17-4, 440C, aluminum and other specialty bearing steels to provide corrosion resistance, high temperature capability, alternative load capacity, or chemical compatibility. Surfaces can be coated with cadmium, zinc nickel, or nodular thin dense chrome (TDC) as required by application.

Separators

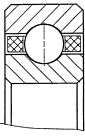
Some options include snap-over cage, one-piece ring circular pocket, wire cage, spacer balls, slugs, or helical coil springs. Materials include phenolic laminates, nylon, brass, composite, stainless steel, and ceramics, to name a few.

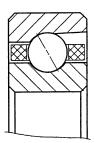
Balls


Some special ball materials available include 52100, CRES 440C, 300 series stainless steel, silicon nitride, M50, and ceramic balls.

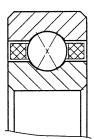
Construction

Available in single and double row construction to accommodate different load requirements. Mounting features, such as flanges, anti-rotation tabs, and mounting holes can be incorporated on the rings. Pre-loading of the duplex bearing can be customized to meet application needs.

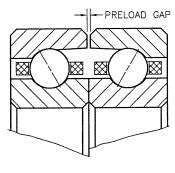

Nomenclature

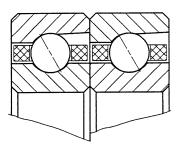


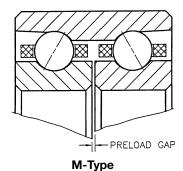
THIN SECTION BALL BEARINGS TYPE

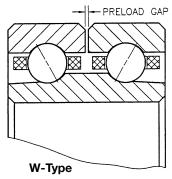

			LOAD CONDITION							
Bearing Type	Ball Contact	Radial	Axial	Moment	Reversing Axial	Combined Radial, Axial & Moment				
С	Radial	Good	Fair	Poor	Fair	Poor				
Α	Angular	Good	Very Good	Do not use	Do not use	Do not use				
Х	4-Point	Fair	Good	Good	Good	Fair				
В	Double Angular	Very Good	Very Good	Very Good	Very Good	Good				
F	Double Angular	Very Good	Very Good	Very Good	Very Good	Good				
Т	Double Angular	Very Good	Excellent	Do not use	Do not use	Do not use				
М	Double Angular	Excellent	Excellent	Excellent	Excellent	Excellent				
W	Double Angular	Excellent	Excellent	Excellent	Excellent	Excellent				

C-Type (Radial Contact)


A-Type (Angular Contact)


X-Type (4-Point Contact)


Duplex Back-to-Back (DB)


F-TypeDuplex Face-to-Face (DF)

T-TypeDuplex Tandem (DT)

SuperDuplex™ Back-to-Back

SuperDuplex™ Face-to-Face

THIN SECTION BALL BEARINGS SEPARATOR GUIDE

DESIGN	Separator Type	Description	Material	Advantages	Bearing Features	Limitations
$(\bigcirc\bigcirc\bigcirc\bigcirc)$	G	One-piece ring, circular pockets	Nylon	Low torque and light weight applications. High speed limits.	Used in A-Type bearings, standard for KAA series.	Not recommended for temperatures outside of the standard range: -65° to 250°F.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	н	One-piece ring, circular pockets	Phenolic Laminate	Low torque and light weight applications. Can be oil impregnated as required.	Used in A-Type bearings.	Not recommended for temperatures above 250°F.
$(\bigcirc\bigcirc\bigcirc\bigcirc)$	R	One-piece ring, circular pockets	Brass or Composite	Ideal for commercial applications with moderate torque and speed requirements.	Standard separator for A-Type bearings KA through KG series.	Not recommended for low torque applications.
	U	One-piece ring, circular pockets	Stainless Steel	High strength, improved corrosion resistance. High temperature capabilities.	Used in A-Type bearings.	Not recommended for low torque applications.
	D	One-piece ring, snap-over type	Phenolic Laminate	Low torque and light weight applications. Can be oil impregnated as required.	Designed for use in C- and X-Type bearings.	Not recommended for high speed or high temperature applica- tions above 250°F.
	L	One-piece ring, snap-over type	Nylon	Low torque and light weight applications. High speed limits.	Used in both C- and X-Type bearings, standard for KAA series.	Not recommended for temperatures outside of the standard range: -65° to 250°F.
	Р	One-piece ring, snap-over type	Brass or Composite	Ideal for commercial applications with moderate torque and speed requirements.	Standard separator for C- and X-Type bearings KA through KG series.	Not recommended for low torque applications.
	Т	One-piece ring, snap-over type	Stainless Steel	High strength, improved corrosion resistance. High temperature capabilities.	Used in C- and X-Type bearings.	Not recommended for low torque applications.
	I	Slugs	PTFE	Low torque applications, higher capacity than standard bearings.	Used in C- and X-Type bearings. Offers increased ball complement.	Not intended for use in high speed applications. Material may have temperature limitations.
	s	Helical coil springs	Stainless Steel, or music wire	Low torque and light weight applications.	Used in C- and X-Type bearings.	Not intended for use in high speed applications.
	w	Wire cage, open segmental	Stainless Steel, or music wire	High torque, low speed, and light weight applications.	Used in A-Type bearings. May also be used in C- and X-Type bearings with half as many balls.	Not intended for use in high speed applications.
00000	I	Toroids	PTFE or Polymide	Low torque applications, higher capacity than standard bearings.	Used in A-Type bearings. Offers increased ball complement.	Not intended for use in high speed applications. Material may have temperature limitations.
00000000	F	Full complement of balls	N/A	Highest loading capacity and maximum stiffness.	All bearing types. C- and X-Type require a filling slot.	Higher torque and lower speed limits. Not recom- mended for high torque and/or high speed.
	Z	Spacer Balls	Metal or Ceramics	High temperature applications, offers higher resistance to wear.	Filling slot required for C- and X-Type bearings. Reduced ball complement in A-Type bearings.	Lower load capacity in A-Type bearings.

THIN SECTION BALL BEARING ENGINEERING DATA

The methods, equations, and technical data presented in this section allow the user to select the correct bearings and estimate their performance for a wide range of applications. For applications with severe or unusual operating conditions, RBC is prepared to provide an in-depth analysis and recommend the most suitable bearing arrangement.

Where standard bearings cannot be used, RBC can meet the application requirements with a special bearing design specifically tailored for optimum performance. Questions concerning information in this section should be directed to the appropriate RBC Aerospace Bearings sales engineer.

Capacity and Fatigue Life of Ball Bearings

The basic dynamic radial load rating, C, or "dynamic capacity," for a ball bearing is the calculated, constant radial load at which 90% of a group of apparently identical bearings with stationary outer rings can statistically endure 10⁶ revolutions of the inner ring. ANSI/ABMA Standard 9 with correction factors for race curvatures was used to calculate the catalog ratings.

The dynamic thrust and dynamic moment load ratings are also shown in the product tables. The ratings shown are a guide for the maximum loads under which these bearings should be operated with either pure thrust or pure moment loading. Thrust ratings are 2.5 to 3.0 times the radial ratings depending on the bearing type and cross-section. These load ratings are not additive. For combined radial and thrust loads, an equivalent radial load is to be calculated.

The basic static load rating, C_0 , or "static capacity," is that uniformly distributed load, which produces a maximum theoretical contact stress of 609,000 psi. At this contact stress, permanent deformation of ball and raceway occurs. This deformation is approximately .0001% of the ball diameter.

The rating life, L_{10} , is a statistical measure of the life which 90% of a large group of apparently identical ball bearings will achieve or exceed. For a single bearing, L_{10} also refers to the life associated with 90% reliability. Median life, L_{50} , is the life that 50% of the group of ball bearings will achieve or exceed. Median life is approximately five times the rating life.

The relationship between rating life, load rating, and load is:

$$L_{10} = (C/P)^3$$
 with $L_{10} = rating$ life (10⁶ rev)
 $C = basic$ dynamic radial load rating (lbf)
 $P = equivalent$ radial load (lbf)

To obtain the rating life in hours, use: $L_{10 \text{ hrs}} = 16667/\text{N} * (\text{C/P})^3 \text{ with N} = \text{speed (rpm)}$

The equivalent radial load is defined as:

$$P = XF_r + YF_a$$
 with $F_r = radial load (lbf)$
 $F_a = axial load (lbf)$
 $X - see below$
 $Y - see below$

Radial Contact Bearing Calculations

For radial contact bearings calculate P with X=1 and Y=0. Then recalculate P with X=0.56 and Y= (see chart below). Use the larger value of P to determine L_{10} life.

F _a	
nd ²	Y
25	2.30
50	1.99
100	1.71
150	1.55
200	1.45
300	1.31
500	1.15
750	1.04
1000	1.00

n = number of ballsd = diameter of balls (in.)

Angular or 4-Point Contact Bearing Calculations*

For angular contact and 4-point contact bearings calculate P with X=1.0 and Y=0. Then recalculate P with X=0.39 and Y=0.76. Use the larger value of P to determine L_{10} life.

The equations are valid in the range of approximately 100 hrs to 100,000 hrs of life. Extreme loads or speeds may result in a shorter life; while in less demanding applications, metal fatigue may never affect bearing service life.

*Capacity and fatigue life information is based on ANSI/ABMA Standard 9-1990 published by: The American Bearing Manufacturers Association, Inc., 1200 19th Street, NW, Suite 300, Washington, DC 20036-2401

Adjustment Factors for Rating Life

If a bearing design and operation deviates significantly from normal, it may be necessary to use additional factors to estimate the fatigue life L_n .

$$L_n = a_1 * a_2 * a_3 * L_{10hrs}$$

with $a_1 =$ reliability factor
 $a_2 =$ material and processing factor
 $a_3 =$ application factor

Reliability Factor a₁

Reliability is the percentage of a group of apparently identical ball bearings that is expected to attain or exceed a specified life. For an individual bearing it is the probability that the bearing will attain or exceed a specified life. Typical bearing fatigue life is calculated for 90% reliability. The life adjustment factors for other reliability numbers are shown below.

Reliability %	L _n	Reliability Factor a ₁
90	L ₁₀	1.00
95	L ₅	.62
96	$L_{\!\scriptscriptstyle{4}}$.53
97	L_3	.44
98	L_2	.33
99	L ₁	.21

Material Factor a₂

For standard bearings, the material factor \mathbf{a}_2 is equal to 1.00. Factor \mathbf{a}_2 is determined by material processing, forming methods, heat treatment, and other manufacturing methods. Some commonly used material factors are listed below:

Material, Condition	a ₂ max
52100, Air melt	1.00
52100, Vacuum degassed	1.50
52100, Air melt and TDC Plate	2.00
52100, Vacuum melt, (CEVM)	3.00
440C, Air melt	1.00
440C, Vacuum melt (CEVM)	3.00
M50, Vacuum melt (CEVM)	5.00
M50, Vacuum re-melt (VIM-VAR)	8.00

Application Factor a₃

The application factor a3 is equal to 1.0 for most applications. Unusual or extreme conditions in certain applications such as low speed, shock loading, vibration, and extreme temperature may lower the application factor to 0.50. Contact your RBC Aerospace Sales Engineer for help in determining this factor for special applications.

Load and Speed Limitations

The load ratings shown in the product tables are not additive. For combined simultaneous loading, an equivalent radial or thrust load must be considered. In general, C-Type bearings are designed for radial loading applications; moderate thrust and/or moment loading may be applied in combination with radial loading. For thrust loading applications use the A-Type bearing; any radial loading should only be applied in combination with thrust loading. X-Type bearings are primarily for reversing thrust and moment loading, pure radial loading should not be applied.

The limiting speeds shown in the product tables are based on standard lubrication. The unsealed bearing speeds are calculated assuming the bearings are lubricated with MIL-PRF-8085. Limiting speeds for sealed bearings are calculated assuming the bearings are lubricated with MIL-PRF-23827 grease. If bearings are lubricated with alternate oils or greases, new limiting speeds must be calculated, see page 95.

OPERATING CONDITIONS

Lubrication

Lubricants serve a number of very important purposes in ball bearings, including:

- · protecting bearing surfaces from corrosion
- · reducing rolling and sliding friction
- preventing metal-to-metal contact between balls and raceway
- providing a barrier against external contaminants (grease)
- · removing heat (oil)

Lack of lubrication or inadequate lubrication is the most common cause of bearing failure.

Standard RBC thin section ball bearings are lubricated with either oil or grease. The unsealed bearings, the K series, are thoroughly coated in MIL-PRF-8085 oil and drained of excess. Sealed bearings are lubricated with MIL-PRF-23827 grease. The external surfaces of sealed bearings are lightly coated with the same grease for corrosion resistance. Additional lubricants are also available. An RBC Aerospace Sales Engineer can help select the appropriate lubricant for special applications.

Temperature

Standard RBC thin section ball bearings can operate at temperatures from -65°F to +250°F. Temperatures up to 350°F can be reached if the bearings are temperature stabilized. By the use of special materials RBC can provide bearings for operation to 900°F. Contact the RBC Aerospace Bearings sales engineer for recommendations on bearings operating above 250°F.

Limiting Speed

The limiting speed of a bearing is dependent upon a number of different factors including bearing size, bearing type, ball separator design, lubrication and loading. The limiting speeds for the bearings shown in this catalog are determined using the following:

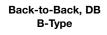
$$N = \frac{1000 * k}{E} \text{ with N} = \text{Speed (RPM)}$$

$$E = \frac{D + B}{2} \text{ (Bearing pitch diameter)}$$

k = constant, see table below

		k Value	
Bearing Type	Load Condition	Grease	0il
C or A	Radial or Thrust	16	20
Χ	Thrust	10	12
Х	Radial, Combined Radial & Thrust, or Moment	3	4

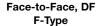
©2008 RBC Bearings Incorporated. All rights reserved.

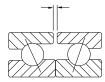

The "k" values shown give the maximum speeds at which a typical thin section ball bearing can operate. It is recommended that operating speeds of large diameter bearings in a given series be reduced up to 40% of the calculated rating to avoid high bearing temperatures. Speed ratings can also be impacted by load conditions, lubrication, alignment, and ambient temperature. All of these factors must be considered when designing thin section ball bearings into your application.

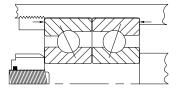
DUPLEX PAIRS AND AXIAL PRE-LOADING

Duplex Pairs

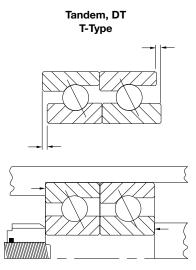
Duplex bearings are a pair of angular contact RBC thin section ball bearings specially ground for use as a matched set. A duplexed pair can be used to provide accurate shaft location, to increase capacity or to increase stiffness of the bearing assembly. A duplex pair of RBC thin section ball bearings is ground so that when mounted using recommended fits, there will be no internal clearance in the bearings. There are three basic mounting methods to accommodate different loading requirements:


- Back-to-Back (DB), B-Type
- Face-to-Face (DF), F-Type
- Tandem (DT), T-Type



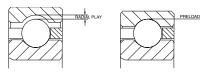


- Heavy radial loads
- Combined thrust and radial loads
- Reversing thrust loads
- Excellent rigidity
- Moment loads



- · Heavy radial loads
- · Combined thrust and radial loads
- · Reversing thrust load
- Moment loads

- · High one-direction thrust loads
- · Minimum axial shaft deflection
- · Heavy radial loads


Axial Pre-loading

Standard duplex bearings are ground so that there will be a light axial pre-load induced on the bearing at nominal conditions. In some applications increased bearing stiffness may be required. In these cases the duplex grinding can be done such that a heavier axial load is induced in the mounted bearing. This load can be increased or decreased to meet the requirements of a particular application. Consult an RBC Aerospace Bearings sales engineer for special requirements.

©2008 RBC Bearings Incorporated. All rights reserved.

Radial Play

Radial play (diametral clearance) is the distance the inner ring can be moved radially from one extreme position to the other. Standard RBC thin section ball bearings are manufactured with enough radial play that some clearance remains after the bearing is properly installed.

When there is negative radial play (diametral preload) there is interference rather than clearance between the balls and the races. As the interference increases, the friction, stiffness and torque also increase. RBC thin section ball bearings can be manufactured with customer specified diametral preload or clearance. Consult an RBC Aerospace Bearings sales engineer for design assistance.

Radial and Axial Runout

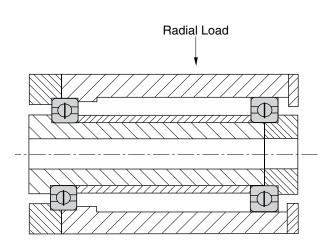
Radial runout of RBC thin section ball bearings is a measurement of the thickness variation of the bearing rings. The outer ring is measured from the ball path to the outer diameter of the ring, the inner ring is measured from the ball path to the bore. Radial runout is defined as the wall thickness variation of the rotating ring.

Axial runout is measured from the ball path to the face of the bearing rings. The variation in thickness measured is the axial runout.

TOLERANCES

Precision Grades

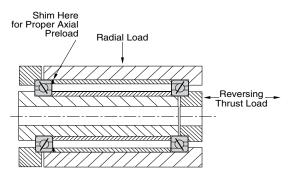
RBC thin section ball bearings are available in four precision grades. RBC precision classes 0, 3, 4, and 6 correspond to ABMA ABEC grades 1F, 3F, 5F, and 7F respectively. The tolerances for the bearing bores, outer diameters, radial runouts, axial runouts, and radial plays are shown in the Tolerance Tables on pages 102 – 104.


Shaft and Housing Fits

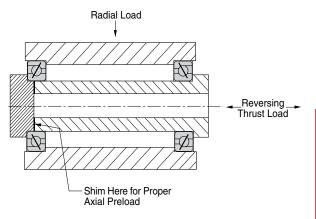
Proper shaft and housing fits are critical to the successful operation of a thin section ball bearing. The internal clearance of the bearing will be reduced proportionally by an interference fit. In addition, the roundness of the shaft and housing will directly affect the roundness of the inner and outer ring raceways. For most applications, the inner ring is rotating and the load is stationary with respect to the outer ring. In this circumstance, a light press fit onto the shaft is recommended. The recommended shaft and housing fits are shown in the Tolerance Tables on pages 102 – 104.

MOUNTING ARRANGEMENTS

When selecting a mounting arrangement for RBC thin section ball bearings, you must first consider the loading condition. A duplex pair of angular contact bearings may be used for combined loading, moment loading, or heavy thrust loading. Combination A and C-Type, A and X-Type, or C and X-Type bearings are common mounting arrangements. Two X-Type bearings should never be mounted on the same shaft. There may be many different bearing arrangements for carrying the same load. Some typical mounting arrangements are shown below.



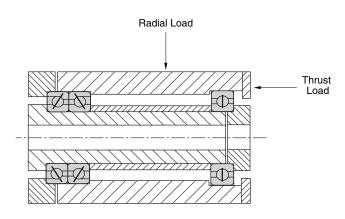
Heavy Radial Loads

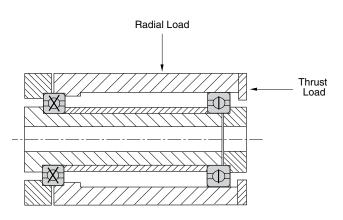

The C-Type bearing is designed primarily for heavy radial loads. Two bearings can be installed on the same shaft as shown. By axially fixing one bearing and allowing the other to float, this configuration allows differential expansion between the housing and shaft, such as caused by temperature difference, without adding axial stress to the bearings. Although the C-Type bearing is designed for radial loads, they can withstand moderate thrust, moment, and reversing loads.

Reversing Loads

The duplex pair of A-Type bearings offers several configurations. For reversing loads, either back-to-back, B-Type, or face-to-face, F-Type, should be used. The F-Type mounting method demonstrates reversing thrust load. Combined radial and thrust loads are shown on the B-Type configuration. Both of these methods can be used for heavy radial loads, combined thrust, and radial loads, or moment loads.

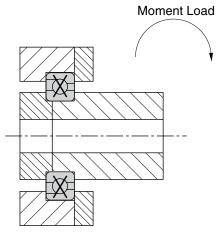
F-Type Configuration




B-Type Configuration

Heavy Combined Loading


For heavy combined loading, other special mounting arrangements may be employed. As shown in the top drawing, a duplex pair of A-Type bearings can be used with a floating C-Type bearing. In this configuration, the A-Type bearings will carry the thrust load and part of the radial load while the C-Type carries only radial load. An X-Type bearing can replace the duplex pair of A-Type bearings to carry lower thrust loads as shown in the second drawing.



Heavy Combined Loading or Moment Loading

Alternate mountings for heavy combined loading or moment loading are shown below. A duplex pair of B-Type bearings resists high thrust, radial, and moment loads. An X-Type bearing may replace the duplex pair in less heavily loaded applications for weight, space, and cost savings.

B-Type Configuration

Single Bearing X-Type Configuration

CUSTOM FEATURES

RBC manufactures many custom bearings designed to optimize bearing performance for specific applications. Special features include changes in radial play, lubricants, materials, pre-loading and design. Contact an RBC Aerospace Bearings sales engineer for your custom bearing needs.

There are many design options available to solve difficult application problems.

Materials

The standard bearings shown in the catalog have SAE 52100 steel rings and balls. RBC thin section ball bearings can be manufactured from other specialty bearing steels to provide corrosion resistance, high temperature capability, alternative load capacity, or chemical compatibility.

Rings— RBC has manufactured thin section ball bearings from SAE CRES 440C to provide corrosion resistance. As an alternative to stainless steel rings, the entire surface of the rings can be plated with nodular thin dense chrome (TDC). This plating, which meets AMS 2438, achieves a molecular bond that will not flake, peel, or separate from the base material. The TDC plate has a hardness of HRC 70 - 78 and can withstand temperatures well beyond the range of the base material.

Special RBC thin section ball bearings have been manufactured from aluminum, 300 series stainless steel, 17-4 stainless steel, and other metals.

Balls— Some special ball materials available include 440C CRES, 300 Series stainless steel, silicon nitride, and M-50 steel.

Lubrication

Many different lubricants are available from RBC for special applications. Greases that are designed specifically for high speed, low torque, water resistance, high temperature, oscillatory motion, and food machinery can be provided. Additional lubricants, such as dry film, are suitable for use in vacuums and space applications.

Sealing

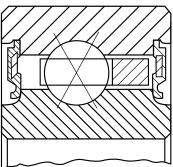
Standard seals for thin section ball bearings are molded from elastomers. PTFE seals, fiber glass reinforced PTFE seals, stainless steel shields, and many other options are available for low torque and other special applications.

Radial Play

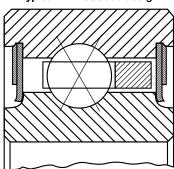
The radial play (diametral clearance) of a thin section ball bearing will need to be predetermined if mounting fits other than those recommended are used. Special radial play may be required for a temperature differential across the bearing, for housing and shaft materials that have different coefficients of thermal expansion, or to change operating characteristics of the bearing. Radial pre-loaded bearings are measured to meet bore and 0.D. tolerances prior to pre-load.

Pre-loading of Duplex Bearings

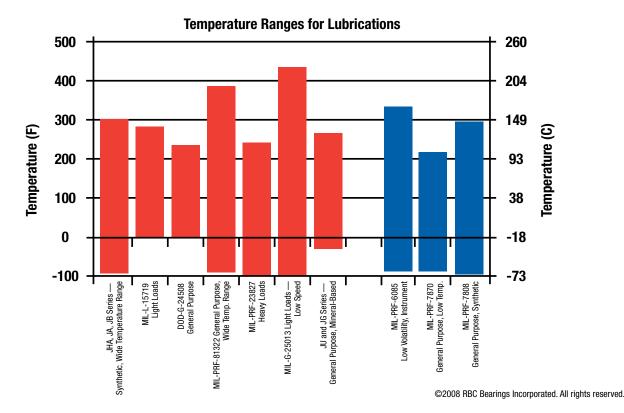
Standard duplex bearings are ground so that there will be a light axial pre-load induced on the bearing at nominal conditions. In some applications increased bearing stiffness may be required. In these cases the duplex grinding can be done such that a heavier axial load is induced in the mounted bearing. This load can be increased or decreased to meet the requirements of a particular application. Consult your RBC Aerospace Bearings sales engineer for special requirements.


Mounting Features

Mounting features, such as flanges, anti-rotation tabs, and mounting holes can be incorporated on the inner and outer rings. Mating parts, such as gears and housings, may be integrated into the bearing rings for improved performance and cost.


ELASTOMER MOLDED SEALS VS. PTFE/SS300 SEALS

Typical elastomer molded design


Many molded seals used in bearings are made out of nitrile (molded rubber per MIL-R-6855). The material has a relatively high coefficient of friction. In order to meet low torque bearing requirements, seal fit-up during installation must be adjusted to minimize contact pressure on the sealing surfaces — reducing torque by reducing sealing effectiveness. The inherent variability in the seal molding process can further aggravate these issues. Over time, torque fluctuations are nearly inevitable since seals may reset or the amount of lube between the seal and the sealing surface may change. Based on these performance characteristics, molded seals are often marginal and unreliable solutions for torque sensitive applications.

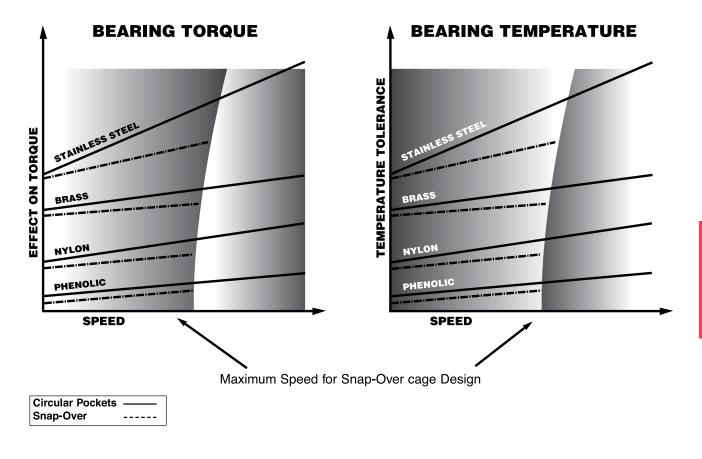
Typical PTFE/SS300 design

RBC's solution is a combination seal-shield design. The seal is made from either pure PTFE or glass fiber reinforced PTFE. PTFE is chemically inert, has a very low coefficient of friction (inherent lubricity), and provides the widest operating temperature range of any sealing material. The seal is held in place and shielded with a stainless steel (300 series) flat ring. The seal drag torque in this design is minimal, predictable, and consistent over time.

RBC invariably recommends this design for all low torque or torque sensitive applications that require sealing. RBC can readily retrofit problematic molded seal designs with a PTFE/300SS optlmized solution.

100

Separators


Standard RBC thin section ball bearings, KA through KG and JU series, are manufactured with brass separators. The KAA series contains nylon separators. The A-Type bearings contain one-piece circular pocket separators, while the C and X-Types have snap-over separators. The four basic separator materials are brass, nylon, phenolic, and stainless steel.

The graph below schematically illustrates the effects of cage design and material on bearing performance. For example, the one-piece circular pocket design may reach roughly two times the speed of the snap-over design. Likewise, a brass separator design will generate more torque and withstand higher temperatures than a

phenolic separator. Exact speed limits depend on bearing size, bearing type, lubrication and loading. Specific material advantages and limitations are illustrated below. For assistance in selecting the appropriate separator for special applications, contact your RBC Aerospace Bearings sales engineer.

Schematic Illustration of Effects of Cage Design and Material on Bearing Torque, Speed and Temperature.

TOLERANCE TABLES AND RECOMMENDED FITS

Precision Tolerances

The RBC thin section ball bearings shown in this catalog are manufactured to ABEC 1F precision tolerances. Where required, RBC thin section ball bearings can be manufactured to ABEC 3F, ABEC 5F, and ABEC 7F precision tolerances.

RBC PRECISION CLASS 0

Values in 0.0001 in

ADE	\sim		∩ т	VDE
ADE		IF '	∪- I	YPE

Bearing Bore	Diam	neters		Runout & Axial							ry Shaft		
Size Inches	Bore Nominal	O.D. Nominal	Inner Max	Outer Max	Width Nominal	Min	Max	Shaft OD Nominal	Housing ID Nominal	Shaf Max	t OD Min	Hous Max	sing ID Min
1.00	-4	-5	5	8	-50	10	16	+4	+5	-4	-8	-5	-10
1.50	-5	-5	6	8	-50	12	18	+5	+5	-5	-10	-5	-10
2.00	-6	-5	8	10	-50	12	24	+6	+5	-6	-12	-5	-10
2.50	-6	-5	8	10	-50	12	24	+6	+5	-6	-12	-5	-10
3.00	-6	-6	8	10	-50	12	24	+6	+6	-6	-12	-6	-12
3.50	-8	-6	10	12	-50	16	28	+8	+6	-8	-16	-6	-12
4.00	-8	-6	10	12	-50	16	28	+8	+6	-8	-16	-6	-12
4.25	-8	-8	10	14	-50	16	28	+8	+8	-8	-16	-8	-16
4.50	-8	-8	10	14	-50	16	28	+8	+8	-8	-16	-8	-16
4.75	-10	-8	12	14	-50	20	34	+10	+8	-10	-20	-8	-16
5.00	-10	-8	12	14	-50	20	34	+10	+8	-10	-20	-8	-16
5.50	-10	-10	12	16	-50	20	34	+10	+10	-10	-20	-10	-20
6.00	-10	-10	12	16	-50	20	34	+10	+10	-10	-20	-10	-20
6.50	-10	-10	12	16	-50	20	34	+10	+10	-10	-20	-10	-20
7.00	-10	-10	12	16	-50	20	34	+10	+10	-10	-20	-10	-20
7.50	-12	-12	16	18	-50	24	42	+12	+12	-12	-24	-12	-24
8.00	-12	-12	16	18	-50	24	42	+12	+12	-12	-24	-12	-24
9.00	-12	-12	16	18	-50	24	42	+12	+12	-12	-24	-12	-24
10.00	-14	-14	18	20	-50	28	48	+14	+14	-14	-28	-14	-28
11.00	-14	-14	18	20	-50	28	48	+14	+14	-14	-28	-14	-28
12.00	-14	-14	18	20	-50	28	48	+14	+14	-14	-28	-14	-28
14.00	-16	-16	18	20	-100	32	52	+16	+16	-16	-32	-16	-32
16.00	-18	-18	18	20	-100	36	56	+18	+18	-18	-36	-18	-36
18.00	-18	-18	20	20	-100	36	56	+18	+18	-18	-36	-18	-36
20.00	-20	-20	20	20	-100	40	60	+20	+20	-20	-40	-20	-40
25.00	-30	-30	20	20	-100	60	80	+30	+30	-30	-60	-30	-60
30.00	-30	-30	20	20	-100	60	80	+30	+30	-30	-60	-30	-60
35.00	-40	-40	20	20	-100	80	100	+40	+40	-40	-80	-40	-80
40.00	-40	-40	20	20	-100	80	100	+40	+40	-40	-80	-40	-80

Does not apply to bearings with pre-load.

|--|

DUPLEX PAIR	Values in 0.0001 in.		
Bearing Bore	Size (Inches)	Wid	th
Over	Including	Max	Min
-	2.00	0	-200
2.00	5.00	0	-300
5.00	14.00	0	-400
14.00	40.00	0	-500

TOLERANCE TABLES AND RECOMMENDED FITS

RBC PRECISION CLASS 0

Values in 0.0001 in.

Bearing	Diar	neters		Runout & Axial			nl Play stallation*	Rotatir	ng Shaft		Stationa	ry Shaft	
Bore Size Inches	Bore Nominal	O.D. Nominal	Inner Max	Outer Max	Width Nominal	Min	Max	Shaft OD Nominal	Housing ID Nominal	Sha Max	ft OD Min	Hous Max	sing ID Min
1.00	-4	-5	3	4	-50	10	15	+4	+5	-4	-8	-5	-10
1.50	-5	-5	4	4	-50	12	17	+5	+5	-5	-10	-5	-10
2.00	-6	-5	5	5	-50	12	22	+6	+5	-6	-12	-5	-10
2.50	-6	-5	5	5	-50	12	22	+6	+5	-6	-12	-5	-10
3.00	-6	-6	6	6	-50	12	22	+6	+6	-6	-12	-6	-12
3.50	-8	-6	6	6	-50	16	26	+8	+6	-8	-16	-6	-12
4.00	-8	-6	6	6	-50	16	26	+8	+6	-8	-16	-6	-12
4.25	-8	-8	6	8	-50	16	26	+8	+8	-8	-16	-8	-16
4.50	-8	-8	6	8	-50	16	26	+8	+8	-8	-16	-8	-16
4.75	-10	-8	8	8	-50	20	30	+10	+8	-10	-20	-8	-16
5.00	-10	-8	8	8	-50	20	30	+10	+8	-10	-20	-8	-16
5.50	-10	-10	10	10	-50	20	30	+10	+10	-10	-20	-10	-20
6.00	-10	-10	10	10	-50	20	30	+10	+10	-10	-20	-10	-20
6.50	-10	-10	10	10	-50	20	30	+10	+10	-10	-20	-10	-20
7.00	-10	-12	10	10	-50	20	30	+10	+12	-10	-20	-12	-24
7.50	-12	-12	12	12	-50	24	34	+12	+12	-12	-24	-12	-24
8.00	-12	-12	12	12	-50	24	34	+12	+12	-12	-24	-12	-24
9.00	-12	-12	12	12	-50	24	34	+12	+12	-12	-24	-12	-24
10.00	-14	-14	14	14	-50	28	38	+14	+14	-14	-28	-14	-28
11.00	-14	-14	14	14	-50	28	38	+14	+14	-14	-28	-14	-28
12.00	-14	-14	14	14	-50	28	38	+14	+14	-14	-28	-14	-28
14.00	-14	-14	14	14	-100	28	38	+14	+14	-14	-28	-14	-28
16.00	-16	-16	16	16	-100	32	42	+16	+16	-16	-32	-16	-32
18.00	-16	-16	16	16	-100	32	42	+16	+16	-16	-32	-16	-32
20.00	-18	-18	18	18	-100	36	46	+18	+18	-18	-36	-18	-36
25.00	-18	-18	18	18	-100	36	46	+18	+18	-18	-36	-18	-36
30.00	-18	-18	18	18	-100	36	46	+18	+18	-18	-36	-18	-36
35.00	-20	-20	20	20	-100	40	50	+20	+20	-20	-40	-20	-40
40.00	-20	-20	20	20	-100	40	50	+20	+20	-20	-40	-20	-40

Does not apply to bearings with pre-load.

*X-Type Only

RBC PRECISION CLASS 3

Values in 0.0001 in.

Bearing	Dian	neters		Runout & Axial			al Play stallation†	Rotatin	g Shaft		Stationa	tionary Shaft			
Bore Size Inches	Bore Nominal	O.D. Nominal	Inner Max	Outer Max	Width Nominal	Min	Max	Shaft OD Nominal	Housing ID Nominal	Shat Max	ft OD Min	Hous Max	sing ID Min		
1.00	-2	-3	3	4	-50	7	11	+2	+3	-2	-4	-3	-6		
1.50	-3	-3	4	4	-50	8	12	+3	+3	-3	-6	-3	-6		
2.00	-4	-4	4	5	-50	8	18	+4	+4	-4	-8	-4	-8		
2.50	-4	-4	4	5	-50	8	18	+4	+4	-4	-8	-4	-8		
3.00	-4	-4	4	6	-50	8	18	+4	+4	-4	-8	-4	-8		
3.50	-5	-4	5	6	-50	10	20	+5	+4	-5	-10	-4	-8		
4.00	-5	-4	5	6	-50	10	20	+5	+4	-5	-10	-4	-8		
4.25	-5	-5	5	8	-50	10	20	+5	+5	-5	-10	-5	-10		
4.50	-5	-5	5	8	-50	10	20	+5	+5	-5	-10	-5	-10		
4.75	-6	-5	6	8	-50	12	22	+6	+5	-6	-12	-5	-10		
5.00	-6	-5	6	8	-50	12	22	+6	+5	-6	-12	-5	-10		
5.50	-6	-6	6	9	-50	12	22	+6	+6	-6	-12	-6	-12		
6.00	-6	-6	6	9	-50	12	22	+6	+6	-6	-12	-6	-12		
6.50	-6	-6	6	9	-50	12	22	+6	+6	-6	-12	-6	-12		
7.00	-6	-7	6	10	-50	14	24	+6	+7	-6	-12	-7	-14		
7.50	-7	-7	8	10	-50	14	24	+7	+7	-7	-14	-7	-14		
8.00	-7	-7	8	10	-50	14	24	+7	+7	-7	-14	-7	-14		
9.00	-7	-7	8	10	-50	14	24	+7	+7	-7	-14	-7	-14		
10.00	-8	-8	10	12	-50	16	26	+8	+8	-8	-16	-8	-16		
11.00	-8	-8	10	12	-50	16	26	+8	+8	-8	-16	-8	-16		
12.00	-8	-9	10	14	-50	18	28	+8	+9	-8	-16	-9	-18		
14.00	-8	-9	12	14	-100	18	28	+8	+9	-8	-16	-9	-18		
16.00	-9	-10	14	16	-100	20	30	+9	+10	-9	-18	-10	-20		
18.00	-9	-10	14	16	-100	20	30	+9	+10	-9	-18	-10	-20		
20.00	-10	-12	16	18	-100	24	34	+10	+12	-10	-20	-12	-24		

Does not apply to bearings with pre-load.

[†]C and X-Type Only

TOLERANCE TABLES AND RECOMMENDED FITS

RBC PRECISION CLASS 4

Values in 0.0001 in.

ABEC	5F	ALL	T	/PES	

	Diameters Race Runout						Radial		Rotatin	g Shaft		Stationa	ary Shaft				
Bearing Bore			Rad	lial	A	xial		Before Ins	tallation ^T				Ottationa	- y Onait			
Size Inches	Bore Nominal	0.D. Nominal	Inner Max	Outer Max	Inner Max	Outer Max	Width Nominal	Min	Max	Shaft OD Nominal	Housing ID Nominal	Sha Max	ft OD Min	Hous Max	sing ID Min		
1.00	-2	-2	2	2	3	3	-50	5	9	+2	+2	-2	-4	-2	-4		
1.50	-2	-2	2	2	3	3	-50	5	9	+2	+2	-2	-4	-2	-4		
2.00	-3	-3	2	3	3	4	-50	5	9	+3	+3	-3	-6	-3	-6		
2.50	-3	-3	2	3	3	4	-50	5	9	+3	+3	-3	-6	-3	-6		
3.00	-3	-3	2	4	3	5	-50	6	12	+3	+3	-3	-6	-3	-6		
3.50	-3	-3	3	4	4	5	-50	6	12	+3	+3	-3	-6	-3	-6		
4.00	-3	-3	3	4	4	5	-50	6	12	+3	+3	-3	-6	-3	-6		
4.25	-3	-4	3	4	4	5	-50	8	14	+3	+4	-3	-6	-4	-8		
4.50	-3	-4	3	4	4	5	-50	8	14	+3	+4	-3	-6	-4	-8		
4.75	-4	-4	3	4	4	5	-50	8	14	+4	+4	-4	-8	-4	-8		
5.00	-4	-4	3	4	4	5	-50	8	14	+4	+4	-4	-8	-4	-8		
5.50	-4	-5	3	5	4	6	-50	10	16	+4	+5	-4	-8	-5	-10		
6.00	-4	-5	3	5	4	6	-50	10	16	+4	+5	-4	-8	-5	-10		
6.50	-4	-5	3	5	4	6	-50	10	16	+4	+5	-4	-8	-5	-10		
7.00	-4	-5	3	5	4	6	-50	10	16	+4	+5	-4	-8	-5	-10		
7.50	-5	-5	4	5	5	6	-50	10	16	+5	+5	-5	-10	-5	-10		
8.00	-5	-5	4	5	5	6	-50	10	16	+5	+5	-5	-10	-5	-10		
9.00	-5	-5	4	5	5	6	-50	10	16	+5	+5	-5	-10	-5	-10		
10.00	-5	-5	5	6	6	7	-50	10	16	+5	+5	-5	-10	-5	-10		
11.00	-5	-5	5	6	6	7	-50	10	16	+5	+5	-5	-10	-5	-10		
12.00	-5	-6	5	7	6	8	-50	12	18	+5	+6	-5	-10	-6	-12		
14.00	-6	-6	5	7	7	8	-100	12	18	+6	+6	-6	-12	-6	-12		
16.00	-6	-7	7	8	8	9	-100	14	20	+6	+7	-6	-12	-7	-14		
18.00	-6	-7	7	8	8	9	-100	14	20	+6	+7	-6	-12	-7	-14		
20.00	-7	-8	8	9	9	10	-100	14	22	+7	+8	-7	-14	-8	-16		

Does not apply to bearings with pre-load.

[†]C and X-Type Only

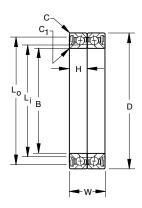
RBC PRECISION CLASS 6

Values in 0.0001 in.

|--|

Bearing	Diam	eters		Runout & Axial			nl Play stallation†	Rotatir	ng Shaft		Stationa	ry Shaft		
Bore Size Inches	Bore Nominal	O.D. Nominal	Inner Max	Outer Max	Width Nominal	Min	Max	Shaft OD Nominal	Housing ID Nominal	Shat Max	ft OD Min	Hous Max	sing IC Mi	
1.00	-1.5	-2	1.5	2	-50	4	8	+2	+2	-2	-4	-2		
1.50	-2	-2	1.5	2	-50	5	9	+2	+2	-2	-4	-2	-	
2.00	-2	-2	1.5	2	-50	5	10	+2	+2	-2	-4	-2		
2.50	-2	-2	1.5	2	-50	5	10	+2	+2	-2	-4	-2		
3.00	-2	-3	1.5	2	-50	6	12	+2	+3	-2	-4	-3		
3.50	-2.5	-3	2	2	-50	6	12	+3	+3	-3	-5	-3		
4.00	-2.5	-3	2	2	-50	6	12	+3	+3	-3	-5	-3		
4.25	-2.5	-4	2	3	-50	8	14	+3	+4	-3	-5	-4		
4.50	-2.5	-4	2	3	-50	8	14	+3	+4	-3	-5	-4		
4.75	-3	-4	3	3	-50	8	14	+3	+4	-3	-6	-4		
5.00	-3	-4	3	3	-50	8	14	+3	+4	-3	-6	-4		
5.50	-3	-4	3	3	-50	8	14	+3	+4	-3	-6	-4		
6.00	-3	-4	3	3	-50	8	14	+3	+4	-3	-6	-4		
6.50	-3	-4	3	3	-50	8	14	+3	+4	-3	-6	-4		
7.00	-3	-4	3	4	-50	8	14	+3	+4	-3	-6	-4		
7.50	-4	-4	3	4	-50	8	14	+4	+4	-4	-8	-4		
8.00	-4	-4	3	4	-50	8	14	+4	+4	-4	-8	-4		
9.00	-4	-4	3	4	-50	8	14	+4	+4	-4	-8	-4		
10.00	-5	-5	4	4	-50	10	16	+5	+5	-5	-10	-5		
11.00	-5	-5	4	4	-50	10	16	+5	+5	-5	-10	-5		
12.00	-5	-5	4	5	-50	10	16	+5	+5	-5	-10	-5	-	
14.00	-5	-6	4	5	-100	12	18	+5	+6	-5	-10	-6	-	

Does not apply to bearings with pre-load.


[†]C and X-Type Only

Y-PWI SERIES

- Mounted in duplex pairs
- Combination PTFE seals with stainless steel caps
- Exposed surfaces (except bore) are cadmium plated
- Prepacked with lubricant conforming to military specifications

SPECIFICATIONS AND ORDERING INFORMATION

DIMENSIONS - TOLERANCES

	l .	B Bore		ide	W	Width				L _i	ı	0	C,	(1)	C	[1)	Ва	ills	Weig	ght
Bearing Number		uic	Diam		+.00 020 +.00 51) in. mm	+.000 i 005 i +.00m 13mi	n. m	Арр	orox.	Арг	orox.		ner Radius	Ou Ring R		No.	Size	(Ea Beari	
	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm			lbs.	kg
Y64PWI-CR DB	4.0000 3.9992	101.600 101.580	5.1250 5.1242	130.175 130.155	1.250	31.75	.625	15.88	4.250	108.00	4.815	122.30	.031	0.79	.031	0.79	36	5/16	.97	.440
Y80PWI-CR DB	5.0000 4.9990	127.000 126.975	6.1250 6.1240	155.575 155.550	1.250	31.75	.625	15.88	5.250	133.40	5.801	147.35	.031	0.79	.031	0.79	44	5/16	1.18	.535
Y96PWI-CR DB	6.0000 5.9990	152.400 152.375	7.1250 7.1240	180.975 180.950	1.250	31.75	.625	15.88	6.250	158.80	6.801	172.75	.031	0.79	.031	0.79	52	5/16	1.39	.630
Y128PWI-CR DB	8.0000 7.9988	203.200 203.170	9.1250 9.1238	231.775 231.745	1.250	31.75	.625	15.88	8.252	209.60	8.801	232.55	.031	0.79	.031	0.79	66	5/16	1.82	.826
Y176PWI-CR DB	11.0000 10.9986	279.400 279.364	12.500 12.4984	317.500 317.460	1.500	38.10	.750	19.05	11.375	288.90	12.036	305.70	.031	0.79	.031	0.79	76	3/8	4.37	1.98
Y224PWI-CR DB	14.0000 13.9984	355.600 355.560	15.500 15.4984	393.700 393.660	1.500	38.10	.750	19.05	14.375	365.10	15.036	381.90	.031	0.79	.031	0.79	95	3/8	5.81	2.64
Y288PWI-2-MBR DB	18.0000 17.9983	457.200 457.157	20.0000 19.9981	508.000 507.952	2.000	50.80	1.000	25.40	18.500	469.90	19.500	495.30	.031	0.79	.031	0.79	92	1/2	13.20	5.99

(1)Maximum shaft or housing fillet radius which bearing corners will clear.

Bearing	Radial Limit Load Rating			t Limit	Limit Moment Rating		Moment Constant		Rated Radial Capacity at Various RPM Based on 7500 Hours Average Life ⁽¹⁾							ninal
Number			Load	Rating					100rpm ⁽²⁾		300rpm ⁽²⁾		500rpm ⁽²⁾		Preload	
	lbs.	N	lbs.	N	lbin.	N-cm	1/in.	1/cm	lbs.	N	lbs.	N	lbs.	N	lbs.	N
Y64PWI-CR DB	38500	170000	17500	78000	29700	335550	.589	.232	3480	15500	2410	10700	2030	9000	90	400
Y80PWI-CR DB	47300	210000	21500	95000	42100	475650	.511	.200	3770	16700	2610	11600	2200	9800	100	440
Y96PWI-CR DB	55800	248000	25400	112000	56800	641730	.447	.175	4030	17900	2800	12500	2360	10400	130	580
Y128PWI-CR DB	70900	315000	32200	143000	89100	1006700	.361	.142	4280	19000	2960	13200	2500	11200	160	710
Y176PWI-CR DB	117500	522000	53400	237000	199000	2248300	.268	.105	6180	27500	4280	19000	3610	16000	270	1200
Y224PWI-CR DB	147000	654000	66800	297000	302600	3418900	.221	.088	7090	31500	4920	21900	4140	18400	330	1470
Y288PWI-2-MBR DB	253000	1120000	115000	510000	1357500	15337000	.085	.033	10090	44900	7000	31000	5900	26200	575	2560

The limit load ratings shown apply only to airframe control position where bearings are used for oscillatory service.

Equivalent Radial Load = .52 x Radial Load + 1.91 x Thrust Load or = Radial Load, whichever is greater.

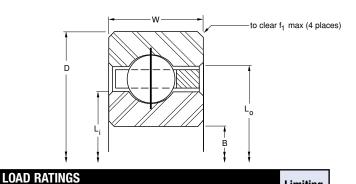
Pure Thrust Rating = .84 Radial Rating at operating speed.

(1) These ratings are for single bearings.

⁽²⁾Heavy line indicates limiting speeds recommended for sealed bearings; for higher speeds, seals should be removed.

THIN SECTION BALL BEARINGS — RADIAL CONTACT, C-TYPE

Cross Section Size: 3/16" 1/4" 5/16" 3/8" 1/2" 3/4" 1"


DART			NOMIN	AL DIMENSIONS	S			
PART Number*	В	D	l w	Land [Diameter	f ₁	Ball	
NOMBLIT	Bore	Outside Diameter	Width	L _i -Inner Ring	L₀ -Outer Ring	Housing Fillet	Diameter	
	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in.	
KAA10CL0*RBC	1.0000 25.40	1.3750 34.925	0.1875 4.763	1.141 28.98	1.234 31.34	0.015 0.38	3/32	
KAA15CL0*RBC	1.5000 38.10	1.8750 47.625	0.1875 4.763	1.641 41.68	1.734 44.04	0.015 0.38	3/32	
KA020CP0*RBC	2.0000 50.800	2.5000 63.500	0.2500 6.350	2.188 55.58	2.313 58.75	0.025 0.64	1/8	
KB020CP0*RBC	2.0000 50.80	2.6250 66.675	0.3125 7.938	2.234 56.74	2.391 60.73	0.032 0.81	5/32	
KA025CP0*RBC	2.5000 63.50	3.0000 76.200	0.2500 6.350	2.688 68.28	2.813 71.45	0.025	1/8	
KB025CP0*RBC	2.5000 63.50	3.1250 79.375	0.3125 7.938	2.734 69.44	2.891 73.43	0.032 0.81	5/32	l
KA030CP0*RBC	3.0000 76.20	3.5000 88.900	0.2500 6.350	3.188 80.98	3.313 84.15	0.025 0.64	1/8	
KB030CP0*RBC	3.0000 76.20	3.6250 92.075	0.3125 7.938	3.234 82.14	3.391 86.13	0.032 0.81	5/32	
KA035CP0*RBC	3.5000 88.90		0.2500 6.350	3.688 93.68	3.813 96.85	0.025 0.64	1/8	
KB035CP0*RBC	3.5000 88.90	1	0.3125 7.938	3.734 94.84	3.897 98.98	0.032 0.81	5/32	
KA040CP0*RBC	4.0000 101.600		0.2500 6.350	4.188 106.38	4.313 109.55	0.025 0.64	1/8	
KB040CP0*RBC	4.0000 101.600	4.6250 117.475	0.3125 7.938	4.234 107.54	4.391 111.53	0.032 0.81	5/32	
KC040CP0*RBC	4.0000 101.60		0.3750 9.525	4.281 108.74	4.469 113.51	0.040 1.02	3/16	
KD040CP0*RBC	4.0000 101.600		0.5000 12.700	4.375 111.13	4.625 117.48	0.060 1.52	1/4	
KF040CP0*RBC	4.0000 101.600		0.7500 19.050	4.563 115.90	4.938 125.43	0.080 2.03	3/8	
KG040CP0*RBC	4.0000 101.60		1.0000 25.400	4.750 120.65	5.250 133.35	0.080 2.03	1/2	
KA042CP0*RBC	4.2500 107.950		0.2500 6.350	4.438 112.73	4.563 115.90	0.025 0.64	1/8	l
KB042CP0*RBC	4.2500 107.950		0.3125 7.938	4.484 113.89	4.641 117.88	0.032 0.81	5/32	l
KC042CP0*RBC	4.2500 107.950		0.3750 9.525	4.531 115.09	4.719 119.86	0.040 1.02	3/16	l
KD042CP0*RBC	4.2500 107.95	1	0.5000 12.700	4.625 117.48	4.875 123.83	0.060 1.52	1/4	l
KF042CP0*RBC	4.2500 107.950	1	0.7500 19.050	4.813 122.25	5.188 131.78	0.080 2.03	3/8	l
KG042CP0*RBC	4.2500 107.95		1.0000 25.400	5.000 127.00	5.500 139.70	0.080 2.03	1/2	
KA045CP0*RBC	4.5000 114.30		0.2500 6.350	4.688 119.08	4.813 122.25	0.025 0.64	1/8	
KB045CP0*RBC	4.5000 114.30		0.3125 7.938	4.734 120.24	4.891 124.23	0.032 0.81	5/32	
KC045CP0*RBC	4.5000 114.30		0.3750 9.525	4.781 121.44	4.969 126.21	0.040 1.02	3/16	
KD045CP0*RBC	4.5000 114.30		0.5000 12.700	4.875 123.83	5.125 130.18	0.060 1.52	1/4	
KF045CP0*RBC	4.5000 114.30		0.7500 19.050	5.063 128.60	5.438 138.13	0.080 2.03	3/8	
KG045CP0*RBC	4.5000 114.30		1.0000 25.400	5.250 133.35	5.750 146.05	0.080 2.03	1/2	
KA047CP0*RBC	4.7500 120.650		0.2500 6.350	4.938 125.43	5.063 128.60	0.025 0.64	1/8	l
KB047CP0*RBC	4.7500 120.650		0.3125 7.938	4.984 126.59	5.141 130.58	0.032 0.81	5/32	l
KC047CP0*RBC	4.7500 120.650		0.3750 9.525	5.031 127.79	5.219 132.56	0.040 1.02	3/16	
KD047CP0*RBC	4.7500 120.650	1	0.5000 12.700	5.125 130.18	5.375 136.53	0.060 1.52	1/4	
KF047CP0*RBC	4.7500 120.650	1	0.7500 19.050	5.313 134.95	5.688 144.48	0.080 2.03	3/8	
KG047CP0*RBC	4.7500 120.650		1.0000 25.400	5.500 139.70	6.000 152.40	0.080 2.03	1/2	
KA050CP0*RBC	5.0000 127.000		0.2500 6.350	5.188 131.78	5.313 134.95	0.025 0.64 0.032 0.81	1/8 5/32	
KB050CP0*RBC	5.0000 127.000		0.3125 7.938	5.234 132.94	5.391 136.93			
KC050CP0*RBC	5.0000 127.000		0.3750 9.525 0.5000 12.700	5.281 134.14	5.469 138.91	0.040 1.02	3/16 1/4	
KD050CP0*RBC KF050CP0*RBC	5.0000 127.000		0.5000 12.700 0.7500 19.050	5.375 136.53	5.625 142.88 5.938 150.83	0.060 1.52 0.080 2.03	3/8	
	5.0000 127.000		1.0000 25.400	5.563 141.30 5.750 146.05	6.250 158.75		1/2	
KG050CP0*RBC KA055CP0*RBC	5.0000 127.000		0.2500 6.350	5.750 146.05 5.688 144.48	5.813 147.65		1/2	
KB055CP0*RBC	5.5000 139.70 5.5000 139.70	1	0.2500 6.350	5.688 144.48 5.734 145.64	5.891 149.63	0.025 0.64 0.032 0.81	5/32	
KC055CP0*RBC							3/16	
KD055CP0*RBC	5.5000 139.70	1	0.3750 9.525 0.5000 12.700	5.781 146.84	5.969 151.61 6.125 155.58		1/4	
KF055CP0*RBC	5.5000 139.70 5.5000 139.70		0.7500 12.700	5.875 149.23 6.063 154.00	6.438 163.53	0.060 1.52 0.080 2.03	3/8	
KG055CP0*RBC		1	1.0000 25.400	6.250 158.75	6.750 171.45		1/2	
NGUDDUPU"KBU	5.5000 139.70	7.5000 190.500	1.0000 25.400	0.200 108.75	0./30 1/1.45	0.080 2.03	1/2	I

^{*}The alphanumeric identification system is used under license.

- 52100 steel
- Large diameter
- Light weight
- Small cross-section
- Snap-over ball separator

								LUADI	MINUS						Limiting
Ball		prox.		Rac	lial			Thi	rust			Moi	ment		Speed
Quantity	We	eight	Sta	tic	Dyna	amic	Sta	tic	Dyn	amic	Sta	atic	Dyna	amic	(RPM)
	lbs.	kg	lbf	N	lbf	N	lbf	N	lbf	N	lbf - in	Nm	lbf - in	Nm	
21	0.03	0.014	290	1,290	300	1,330	480	2,140	880	3,910	110	10	210	25	16,840
29	0.04	0.018	400	1,780	350	1,560	650	2,890	1,020	4,540	220	25	350	40	11,850
27	0.10	0.045	680	3,020	560	2,490	1,080	4,800	1,640	7,300	490	55	740	80	8,890
23	0.16	0.073	930	4,140	800	3,560	1,460	6,490	2,320	10,320	680	80	1,070	120	8,650
33	0.13	0.059	830	3,690	610	2,710	1,310	5,830	1,770	7,870	720	80	970	110	7,270
28	0.20	0.091	1,140	5,070	860	3,830	1,750	7,780	2,510	11,170	990	110	1,410	160	7,110
39	0.15	0.068	990	4,400	650	2,890	1,530	6,810	1,880	8,360	990	110	1,220	140	6,150
33	0.24	0.109	1,340	5,960	920	4,090	2,050	9,120	2,680	11,920	1,360	150	1,770	200	6,040
45	0.18	0.082	1,140	5,070	690	3,070	1,750	7,780	1,990	8,850	1,320	150	1,490	170	5,330
38	0.27	0.122	1,540	6,850	970	4,310	2,340	10,410	2,810	12,500	1,780	200	2,140	240	5,250
51	0.19	0.086	1,290	5,740	720	3,200	1,980	8,810	2,080	9,250	1,680	190	1,770	200	4,710
43	0.30	0.136	1,750	7,780	1,020	4,540	2,630	11,700	2,950	13,120	2,270	260	2,550	290	4,640
35	0.45	0.204	2,100	9,340	1,290	5,740	3,110	13,830	3,740	16,640	2,720	310	3,280	370	4,570
27	0.78	0.354	3,080	13,700	2,250	10,010	4,950	22,020	6,520	29,000	4,450	500	5,870	660	4,440
19	1.90	0.862	5,360	23,840	3,940	17,530	7,980	35,500	11,420	50,800	7,580	860	10,850	1,230	4,210
15	3.60	1.633	8,210	36,520	6,700	29,800	12,960	57,650	19,440	86,470	12,960	1,460	19,440	2,200	4,000
54	0.20	0.091	1,370	6,090	730	3,250	2,090	9,300	2,110	9,390	1,880	210	1,900	210	4,440
45	0.20	0.031	1,830	8,140	1,030	4,580	2,740	12,190	3,000	13,340	2,500	280	2,730	310	4,380
37	0.31	0.141	2,220	9,880	1,320	5,870	3,270	14,550	3,830	17,040	3,030	340	3,550	400	4,320
28	0.47	0.213	3,190	14,190	2,270	10,100	5,110	22,730	6,580	29,270	4,860	550	6,250	710	4,320
20	2.00	0.907	5,640	25,090	4,070	18,100	8,400	37,370	11,810	52,530	8,400	950	11,810	1,330	4,000
15			1 ′				l '		1	86,470		1,540			3,810
57	3.80	1.724	8,210	36,520	6,700	29,800	12,960	57,650	19,440	9,650	13,600		20,410	2,310	
48	0.22	0.100 0.150	1,440	6,410	750	3,340	2,200	9,790	2,170		2,090	240	2,060	230	4,210
	0.33		1,950	8,670	1,060	4,720	2,920	12,990	3,080	13,700	2,810	320	2,960	330	4,160
39	0.48	0.218	2,340	10,410	1,350	6,010	3,440	15,300	3,910	17,390	3,360	380	3,810	430	4,100
30	0.88	0.399	3,420	15,210	2,350	10,450	5,460	24,290	6,820	30,340	5,460	620	6,820	770	4,000
21	2.10	0.953	5,930	26,380	4,210	18,730	8,820	39,230	12,200	54,270	9,270	1,050	12,810	1,450	3,810
16	4.00	1.814	8,760	38,970	7,000	31,140	13,820	61,470	20,290	90,250	15,200	1,720	22,320	2,520	3,640
60	0.23	0.104	1,520	6,760	760	3,380	2,310	10,280	2,220	9,880	2,310	260	2,220	250	4,000
50	0.34	0.154	2,030	9,030	1,070	4,760	3,030	13,480	3,110	13,830	3,070	350	3,140	350	3,950
41	0.50	0.227	2,460	10,940	1,370	6,090	3,610	16,060	3,970	17,660	3,700	420	4,070	460	3,900
31	0.94	0.426	3,530	15,700	2,360	10,500	5,620	25,000	6,840	30,430	5,910	670	7,180	810	3,810
22	2.20	0.998	6,210	27,620	4,310	19,170	9,220	41,010	12,490	55,560	10,140	1,150	13,740	1,550	3,640
17	4.10	1.860	9,300	41,370	7,290	32,430	14,680	65,300	21,130	93,990	16,890	1,910	24,300	2,750	3,480
63	0.24	0.109	1,590	7,070	770	3,430	2,420	10,760	2,240	9,960	2,540	290	2,350	270	3,810
53	0.38	0.172	2,150	9,560	1,100	4,890	3,210	14,280	3,190	14,190	3,410	390	3,390	380	3,760
43	0.58	0.263	2,590	11,520	1,390	6,180	3,780	16,810	4,040	17,970	4,060	460	4,340	490	3,720
33	1.00	0.454	3,760	16,730	2,430	10,810		26,560	1	31,320	6,570	740	7,740	870	3,640
23	2.30	1.043	6,490	28,870	4,380	19,480		42,700	12,710	56,540		1,250	14,620	1,650	3,480
18	4.30	1.950	9,850	43,810	7,570	33,670		69,170	21,950	97,640	18,660		26,340	2,980	3,330
69	0.25	0.113	1,750	7,780	800	3,560	1	11,790	2,320	10,320	3,040	340	2,660	300	3,480
58	0.41	0.186	2,360	10,500	1,130	5,030	ı	15,570	3,280	14,590	4,070	460	3,810	430	3,440
47	0.59	0.268	2,830	12,590	1,440	6,410	1	18,280	4,170	18,550	4,830	550	4,900	550	3,400
36	1.06	0.481	4,100	18,240	2,510			28,820			7,780	880	8,720	990	3,330
25	2.50	1.134	7,050	31,360	4,540			46,130	I	58,580	12,970		16,460	1,860	3,200
19	4.70	2.132	10,400	46,260	7,850	34,920	16,410	73,000	22,750	101,200	21,330	2,410	29,580	3,340	3,080
Dofor to the En			·				•		•			2000 DDC			•

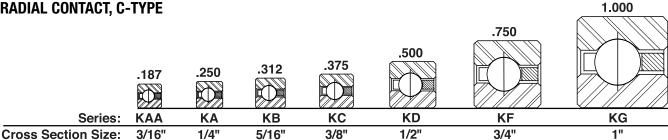
Refer to the Engineering section for load and speed limitations.

D Outside Diameter

Ball

Diameter

f₁ Housing Fillet


RADIAL CONTACT, C-TYPE

В

Bore

PART

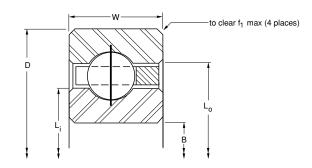
NUMBER*

W Width

NOMINAL DIMENSIONS

Land Diameter

L_i -Inner Ring L_o -Outer Ring


1							_,					_		
	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	
KA060CP0*RBC	6.0000	152.400	6.5000	165.100	0.2500	6.350	6.188	157.18	6.313	160.35	0.025	0.64	1/8	
KB060CP0*RBC	6.0000	152.400	6.6250	168.275	0.3125	7.938	6.234	158.34	6.391	162.33	0.032	0.81	5/32	
KC060CP0*RBC	6.0000	152.400	6.7500	171.450	0.3750	9.525	6.281	159.54	6.469	164.31	0.040	1.02	3/16	
KD060CP0*RBC	6.0000	152.400	7.0000	177.800	0.5000	12.700	6.375	161.93	6.625	168.28	0.060	1.52	1/4	
KF060CP0*RBC	6.0000	152.400	7.5000	190.500	0.7500	19.050	6.563	166.70	6.938	176.23	0.080	2.03	3/8	
KG060CP0*RBC	6.0000	152.400	8.0000	203.200	1.0000	25.400	6.750	171.45	7.250	184.15	0.080	2.03	1/2	
KA065CP0*RBC	6.5000	165.100	7.0000	177.800	0.2500	6.350	6.688	169.88	6.813	173.05	0.025	0.64	1/8	
KB065CP0*RBC	6.5000	165.100	7.1250	180.975	0.3125	7.938	6.734	171.04	6.891	175.03	0.032	0.81	5/32	
KC065CP0*RBC	6.5000	165.100	7.2500	184.150	0.3750	9.525	6.781	172.24	6.969	177.01	0.040	1.02	3/16	
KD065CP0*RBC	6.5000	165.100	7.5000	190.500	0.5000	12.700	6.875	174.63	7.125	180.98	0.060	1.52	1/4	
KF065CP0*RBC	6.5000	165.100	8.0000	203.200	0.7500	19.050	7.063	179.40	7.438	188.93	0.080	2.03	3/8	
KG065CP0*RBC	6.5000	165.100	8.5000	215.900	1.0000	25.400	7.250	184.15	7.750	196.85	0.080	2.03	1/2	
KA070CP0*RBC	7.0000	177.800	7.5000	190.500	0.2500	6.350	7.188	182.58	7.313	185.75	0.025	0.64	1/8	
KB070CP0*RBC	7.0000	177.800	7.6250	193.675	0.3125	7.938	7.234	183.74	7.391	187.73	0.032	0.81	5/32	
KC070CP0*RBC	7.0000	177.800	7.7500	196.850	0.3750	9.525	7.281	184.94	7.469	189.71	0.040	1.02	3/16	
KD070CP0*RBC	7.0000	177.800	8.0000	203.200	0.5000	12.700	7.375	187.33	7.625	193.68	0.060	1.52	1/4	
KF070CP0*RBC	7.0000	177.800	8.5000	215.900	0.7500	19.050	7.563	192.10	7.938	201.63	0.080	2.03	3/8	
KG070CP0*RBC	7.0000	177.800	9.0000	228.600	1.0000	25.400	7.750	196.85	8.250	209.55	0.080	2.03	1/2	
KA075CP0*RBC	7.5000	190.500	8.0000	203.200	0.2500	6.350	7.688	195.28	7.813	198.45	0.025	0.64	1/8	
KB075CP0*RBC	7.5000	190.500	8.1250	206.375	0.3125	7.938	7.734	196.44	7.891	200.43	0.032	0.81	5/32	
KC075CP0*RBC	7.5000	190.500	8.2500	209.550	0.3750	9.525	7.781	197.64	7.969	202.41	0.040	1.02	3/16	
KD075CP0*RBC	7.5000	190.500	8.5000	215.900	0.5000	12.700	7.875	200.03	8.125	206.38	0.060	1.52	1/4	
KF075CP0*RBC	7.5000	190.500	9.0000	228.600	0.7500	19.050	8.063	204.80	8.438	214.33	0.080	2.03	3/8	
KG075CP0*RBC	7.5000	190.500	9.5000	241.300	1.0000	25.400	8.250	209.55	8.750	222.25	0.080	2.03	1/2	
KA080CP0*RBC	8.0000	203.200	8.5000	215.900	0.2500	6.350	8.188	207.98	8.313	211.15	0.025	0.64	1/8	
KB080CP0*RBC	8.0000	203.200	8.6250	219.075	0.3125	7.938	8.234	209.14	8.391	213.13	0.032	0.81	5/32	
KC080CP0*RBC	8.0000	203.200	8.7500	222.250	0.3750	9.525	8.281	210.34	8.469	215.11	0.040	1.02	3/16	
KD080CP0*RBC	8.0000	203.200	9.0000	228.600	0.5000	12.700	8.375	212.73	8.625	219.08	0.060	1.52	1/4	
KF080CP0*RBC	8.0000	203.200	9.5000	241.300	0.7500	19.050	8.563	217.50	8.938	227.03	0.080	2.03	3/8	
KG080CP0*RBC	8.0000	203.200	10.0000	254.000	1.0000	25.400	8.750	222.25	9.250	234.95	0.080	2.03	1/2	
KA090CP0*RBC	9.0000	228.600	9.5000	241.300	0.2500	6.350	9.188	233.38	9.313	236.55	0.025	0.64	1/8	
KB090CP0*RBC	9.0000	228.600	9.6250	244.475	0.3125	7.938	9.234	234.54	9.391	238.53	0.032	0.81	5/32	
KC090CP0*RBC	9.0000	228.600	9.7500	247.650	0.3750	9.525	9.281	235.74	9.469	240.51	0.040	1.02	3/16	
KD090CP0*RBC	9.0000	228.600	10.0000	254.000	0.5000	12.700	9.375	238.13	9.625	244.48	0.060	1.52	1/4	
KF090CP0*RBC	9.0000	228.600	10.5000	266.700	0.7500	19.050	9.563	242.90	9.938	252.43	0.080	2.03	3/8	
KG090CP0*RBC	9.0000	228.600	11.0000	279.400	1.0000	25.400	9.750	247.65	10.250	260.35	0.080	2.03	1/2	
KA100CP0*RBC	10.0000	254.000	10.5000	266.700	0.2500	6.350	10.188	258.78	10.313	261.95	0.025	0.64	1/8	
KB100CP0*RBC	10.0000	254.000	10.6250	269.875	0.3125	7.938	10.234	259.94	10.391	263.93	0.032	0.81	5/32	
KC100CP0*RBC	10.0000	254.000	10.7500	273.050	0.3750	9.525	10.281	261.14	10.469	265.91	0.040	1.02	3/16	
KD100CP0*RBC	10.0000	254.000	11.0000	279.400	0.5000	12.700	10.375	263.53	10.625	269.88	0.060	1.52	1/4	
KF100CP0*RBC	10.0000	254.000	11.5000	292.100	0.7500	19.050	10.563	268.30	10.938	277.83	0.080	2.03	3/8	
KG100CP0*RBC	10.0000	254.000	12.0000	304.800	1.0000	25.400	10.750	273.05	11.250	285.75	0.080	2.03	1/2	
*The alphanumeric ident	ification sys	tem is used u	nder license.							©2008 RBC	Bearings Inc	corporated. A	II rights reserved.	

The alphanumeric identification system is used under license.

- 52100 steel
- Large diameter
- Light weight
- Small cross-section
- Snap-over ball separator

								LOAD R	ATINGS						Limiting
Ball	Appro	OX.		Rac	lial			Thr	ust			Mor	nent		Speed
Quantity	Weig	jht	Sta			amic	Sta	tic	Dyn	amic	Sta	atic	Dyna	mic	(RPM)
	lbs.	kg	lbf	N	lbf	N	lbf	N	lbf	N	lbf - in	Nm	lbf - in	Nm	, ,
75	0.28 0).127	1,900	8,450	830	3,690	2,870	12,770	2,420	10,760	3,590	410	3,020	340	3,200
63	0.44 0	0.200	2,560	11,390	1,170	5,200	3,790	16,860	3,380	15,030	4,790	540	4,270	480	3,170
51	0.63 0).286	3,070	13,660	1,490	6,630	4,450	19,790	4,320	19,220	5,670	640	5,510	620	3,140
39).526	4,450	19,790	2,580	11,480	6,990	31,090	7,500	33,360	9,090	1,030	9,740	1,100	3,080
27		.225	7,620	33,900	4,660	20,730	11,130	49,510	13,530	60,180	15,030	1,700	18,260	2,060	2,960
21	5.10 2	2.313	11,490	51,110	8,390	37,320	18,140	80,690	24,320	108,180	25,390	2,870	34,050	3,850	2,860
81).136	2,050	9,120	850	3,780	3,100	13,790	2,450	10,900	4,180	470	3,310	370	2,960
68).213	2,760	12,280	1,200	5,340	4,080	18,150	3,470	15,440	5,560	630	4,730	530	2,940
55		0.308	3,310	14,720	1,530	6,810	4,790	21,310	4,440	19,750	6,580	740	6,110	690	2,910
42).553	4,790	21,310	2,650	11,790	7,500	33,360	7,680	34,160	10,500	1,190	10,760	1,220	2,860
29		.315	8,180	36,390	4,790	21,310	11,900	52,930		61,830	17,250	1,950	20,160	2,280	2,760
22		2.449	12,040	53,560	8,520	37,900	18,910	84,120		109,870	28,360	3,200	37,050	4,190	2,670
87).141	2,200	9,790	870	3,870	3,320	14,770	2,520	11,210	4,810	540	3,660	410	2,760
73).227	2,970	13,210	1,240	5,520	4,380	19,480	3,600	16,010	6,400	720	5,260	590	2,740
59		0.331	3,550	15,790	1,570	6,980	5,120	22,770	4,550	20,240	7,550	850	6,710	760	2,710
45).594	5,130	22,820	2,730	12,140	8,020	35,670	7,910	35,190	12,030	1,360	11,870	1,340	2,670
31		.451	8,750	38,920	4,920	21,890	12,670	56,360	14,280	63,520	19,640	2,220	22,130	2,500	2,580
24		2.631	13,130	58,410	8,880	39,500	20,520	91,280		114,540	32,840	3,710	41,210	4,660	2,500
93).154	2,350	10,450	890	3,960	3,540	15,750	2,580	11,480	5,490	620	4,000	450	2,580
78).240	3,170	14,100	1,280	5,690	4,670	20,770	3,710	16,500	7,300	820	5,800	660	2,560
63).354	3,790	16,860	1,600	7,120	5,450	24,240	4,640	20,640	8,590	970	7,300	820	2,540
48		0.640	5,470	24,330	2,800	12,460	8,530	37,940	8,120	36,120	13,650	1,540	12,990	1,470	2,500
33		.542	9,310	41,410	5,040	22,420	13,440	59,780	l '	64,990	22,170	2,500	24,100	2,720	2,420
25		2.767	10,640	47,330	8,960	39,860	21,270	94,610		115,610	36,160	4,090	44,190	4,990	2,350
99).172	2,500	11,120	910	4,050	3,770	16,770	2,640	11,740	6,220	700	4,350	490	2,420
83).259	3,370	14,990	1,280	5,690	4,960	22,060	3,720	16,550	8,240	930	6,190	700	2,410
67).381	4,030	17,930	1,650	7,340	5,790	25,760	4,770	21,220	9,700	1,100	7,990	900	2,390
51 25		0.694	5,810	25,840	2,860	12,720	9,040	40,210	8,290	36,880	15,370	1,740	14,090	1,590	2,350
35 27		.588	9,880	43,950	5,140	22,860	14,200	63,160	14,900	66,280	24,840	2,810	26,070	2,950	2,290
		2.948	14,770	65,700	9,300 940	41,370	22,890			119,920	41,200	4,650	48,520	5,480	2,220
111	-).200).299	2,810	12,500		4,180	4,210	18,730	2,730	12,140	7,800	880	5,050	570	2,160
93 75).426	3,780	16,810	1,330	5,920	5,540	24,640	3,860 5,020	17,170 22,330	10,320	1,170	7,190	810 1,060	2,150
			4,510	20,060	1,730	7,700	6,470	28,780	l '	38,340	12,120	1,370	9,410		2,130
57).780	6,500	28,910	2,970	13,210	10,060	44,750	8,620	69,170	19,120	2,160	16,390	1,850	2,110
39 30		.769	11,000	48,930	5,360	23,840	15,740	70,020	15,550		30,690	3,470	30,320	3,430	2,050
30 123		3.266 3.227	16,420	73,040	9,720 990	43,240	25,270 4,660	20,730		125,440 12,720	50,540	5,710 1,080	56,390	6,370 660	2,000
103).22 <i>1</i>).331	3,110 4,190	13,830 18,640	1,400	4,400 6,230	6,130	20,730	2,860 4,050	18,020	9,560 12,630	1,430	5,860 8,350	940	1,950 1,940
83).481	4,190	22,200	1,781	7,920	7,140	31,760	5,170	23,000	14,810	1,670	10,730	1,210	1,940
63).853	7,180	31,940	3,070	13,660	11,080	49,290	8,900	39,590	23,270	2,630	18,680	2,110	1,900
43		.950	12,130	53,960	5,550	24,690	17,260	76,780	16,060	71,440	37,110	4,190	34,530	3,900	1,860
43 33		.950 3.583	18,060	80,330	10,040	44,660	27,620			129,490	60,760	4,190 6,860	64,040	3,900 7,240	1,820
აა	1.50 3		10,000	00,000	10,040	44,000	21,020	122,000	23,110	120,400	00,700	0,000	04,040	1,240	1,020

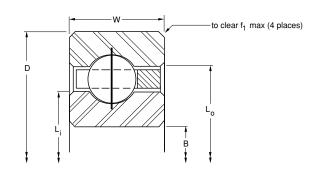
Refer to the Engineering section for load and speed limitations.

THIN SECTION BALL BEARINGS — RADIAL CONTACT, C-TYPE

RADIAL CONTACT, C-TYPE 1.000 .750 .500 .375 .312 .250 .187 Series: KB KC KD KF KG

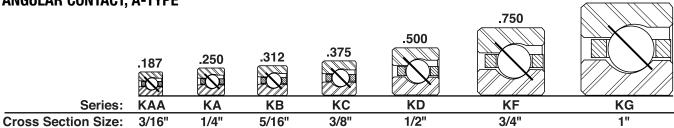
NOMINAL DIMENSIONS

3/4" **Cross Section Size:** 1/4" 3/8" 1/2" 5/16"


PART	D	D	W	Lond F		f ₁	Ball	
NUMBER*	B Bore	Outside Diameter	Width	L _i -Inner Ring	Diameter Lo -Outer Ring	Housing Fillet	Diameter	
	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in.	
KA110CP0*RBC	11.0000 279.400	11.5000 292.100	0.2500 6.350	11.188 284.18	11.313 287.35	0.025 0.64	1/8	
KB110CP0*RBC	11.0000 279.400	11.6250 295.275	0.3125 7.938	11.234 285.34	11.391 289.33	0.032 0.81	5/32	
KC110CP0*RBC	11.0000 279.400	11.7500 298.450	0.3750 9.525	11.281 286.54	11.469 291.31	0.040 1.02	3/16	
KD110CP0*RBC	11.0000 279.400	12.0000 304.800	0.5000 12.700	11.375 288.93	11.625 295.28	0.060 1.52	1/4	
KF110CP0*RBC	11.0000 279.400	12.5000 317.500	0.7500 19.050	11.563 293.70	11.938 303.23	0.080 2.03	3/8	
KG110CP0*RBC	11.0000 279.400	13.0000 330.200	1.0000 25.400	11.750 298.45	12.250 311.15	0.080 2.03	1/2	
KA120CP0*RBC	12.0000 304.800	12.5000 317.500	0.2500 6.350	12.188 309.58	12.313 312.75	0.025 0.64	1/8	
KB120CP0*RBC	12.0000 304.800	12.6250 320.675	0.3125 7.938	12.234 310.74	12.391 314.73	0.032 0.81	5/32	
KC120CP0*RBC	12.0000 304.800	12.7500 323.850	0.3750 9.525	12.281 311.94	12.469 316.71	0.040 1.02	3/16	
KD120CP0*RBC	12.0000 304.800	13.0000 330.200	0.5000 12.700	12.375 314.33	12.625 320.68	0.060 1.52	1/4	
KF120CP0*RBC	12.0000 304.800	13.5000 342.900	0.7500 19.050	12.563 319.10	12.938 328.63	0.080 2.03	3/8	
KG120CP0*RBC	12.0000 304.800	14.0000 355.600	1.0000 25.400	12.750 323.85	13.250 336.55	0.080 2.03	1/2	
KB140CP0*RBC	14.0000 355.600	14.6250 371.475	0.3125 7.938	14.234 361.54	14.391 365.53	0.032 0.81	5/32	
KC140CP0*RBC	14.0000 355.600	14.7500 374.650	0.3750 9.525	14.281 362.74	14.469 367.51	0.040 1.02	3/16	
KD140CP0*RBC	14.0000 355.600	15.0000 381.000	0.5000 12.700	14.375 365.13	14.625 371.48	0.060 1.52	1/4	
KF140CP0*RBC	14.0000 355.600	15.5000 393.700	0.7500 19.050	14.563 369.90	14.938 379.43	0.080 2.03	3/8	
KG140CP0*RBC	14.0000 355.600	16.0000 406.400	1.0000 25.400	14.750 374.65	15.250 387.35	0.080 2.03	1/2	
KB160CP0*RBC	16.0000 406.400	16.6250 422.275	0.3125 7.938	16.234 412.34	16.391 416.33	0.032 0.81	5/32	
KC160CP0*RBC	16.0000 406.400	16.7500 425.450	0.3750 9.525	16.281 413.54	16.469 418.31	0.040 1.02	3/16	
KD160CP0*RBC	16.0000 406.400	17.0000 431.800	0.5000 12.700	16.375 415.93	16.625 422.28	0.060 1.52	1/4	
KF160CP0*RBC	16.0000 406.400	17.5000 444.500	0.7500 19.050	16.563 420.70	16.938 430.23	0.080 2.03	3/8	
KG160CP0*RBC	16.0000 406.400	18.0000 457.200	1.0000 25.400	16.750 425.45	17.250 438.15	0.080 2.03	1/2	
KB180CP0*RBC	18.0000 457.200	18.6250 473.075	0.3125 7.938	18.234 463.14	18.391 467.13	0.032 0.81	5/32	
KC180CP0*RBC	18.0000 457.200	18.7500 476.250	0.3750 9.525	18.281 464.34	18.469 469.11	0.040 1.02	3/16	
KD180CP0*RBC	18.0000 457.200	19.0000 482.600	0.5000 12.700	18.375 466.73	18.625 473.08	0.060 1.52	1/4	
KF180CP0*RBC	18.0000 457.200	19.5000 495.300	0.7500 19.050	18.563 471.50	18.938 481.03	0.080 2.03	3/8	
KG180CP0*RBC	18.0000 457.200	20.0000 508.000	1.0000 25.400	18.750 476.25	19.250 488.95	0.080 2.03	1/2	
KB200CP0*RBC	20.0000 508.000	20.6250 523.875	0.3125 7.938	20.234 513.94	20.391 517.93	0.032 0.81	5/32	
KC200CP0*RBC	20.0000 508.000	20.7500 527.050	0.3750 9.525	20.281 515.14	20.469 519.91	0.040 1.02	3/16	
KD200CP0*RBC	20.0000 508.000	21.0000 533.400	0.5000 12.700	20.375 517.53	20.625 523.88	0.060 1.52	1/4	
KF200CP0*RBC	20.0000 508.000	21.5000 546.100	0.7500 19.050	20.563 522.30	20.938 531.83	0.080 2.03	3/8	
KG200CP0*RBC	20.0000 508.000	22.0000 558.800	1.0000 25.400	20.750 527.05	21.250 539.75	0.080 2.03	1/2	
KC250CP0*RBC	25.0000 635.000	25.7500 654.050	0.3750 9.525	25.281 642.14	25.469 646.91	0.040 1.02	3/16	
KD250CP0*RBC	25.0000 635.000	26.0000 660.400	0.5000 12.700	25.375 644.53	25.625 650.88	0.060 1.52	1/4	
KF250CP0*RBC	25.0000 635.000	26.5000 673.100	0.7500 19.050	25.563 649.30	25.938 658.83	0.080 2.03	3/8	
KG250CP0*RBC	25.0000 635.000	27.0000 685.800	1.0000 25.400	25.750 654.05	26.250 666.75	0.080 2.03	1/2	
KC300CP0*RBC	30.0000 762.000	30.7500 781.050	0.3750 9.525	30.281 769.14	30.469 773.91	0.040 1.02	3/16	
KD300CP0*RBC	30.0000 762.000	31.0000 787.400	0.5000 12.700	30.375 771.53	30.625 777.88	0.060 1.52	1/4	
KF300CP0*RBC	30.0000 762.000	31.5000 800.100	0.7500 19.050	30.563 776.30	30.938 785.83	0.080 2.03	3/8	
KG300CP0*RBC	30.0000 762.000	32.0000 812.800	1.0000 25.400	30.750 781.05	31.250 793.75	0.080 2.03	1/2	
KF350CP0*RBC	35.0000 889.000	36.5000 927.100	0.7500 19.050	35.563 903.30	35.938 912.83	0.080 2.03	3/8	
KG350CP0*RBC	35.0000 889.000	37.0000 939.800	1.0000 25.400	35.750 <u>908.05</u>	36.250 920.75	0.080 2.03	1/2	
KF400CP0*RBC	40.0000 1016.000	41.5000 1054.100	0.7500 19.050	40.563 1030.30	40.938 1039.83	0.080 2.03	3/8	
KG400CP0*RBC	40.0000 1016.000	42.0000 1066.800	1.0000 25.400	40.750 1035.05	41.250 1047.75	0.080 2.03	1/2	
The alphanumeric identi	I ification system is used u	nder license			@3000 ppc	Bearings Incorporated A	Il righta regeried	

^{*}The alphanumeric identification system is used under license.

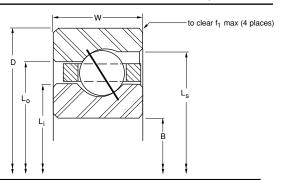
- 52100 steel
- Large diameter
- Light weight
- Small cross-section
- Snap-over ball separator


								LOAD F	RATINGS	3					Limiting
Ball	Ap	prox.		Rac	lial			Thr	rust			Mon	nent		Speed
Quantity		eight	Sta		Dyna	mic	St	atic	_	namic	Sta		Dyna	mic	(RPM)
	lbs.	kg	lbf	N	lbf	N	lbf	N	lbf	N	lbf - in	Nm	lbf - in	Nm	,
135	0.52	0.236	3,410	15,170	1,030	4,580	5,110	22,730	2,980	13,260	11,500	1,300	6,700	760	1,780
113	0.75	0.340	4,590	20,420	1,464	6,510	6,700	29,800	4,130	18,370	15,160	1,710	9,340	1,060	1,770
91	1.16	0.526	5,470	24,330	1,879	8,360	7,800	34,700	5,280	23,490	17,750	2,010	12,020	1,360	1,760
69	2.06	0.934	7,870	35,010	3,180	14,150	12,100	53,820	9,220	41,010	27,830	3,140	21,210	2,400	1,740
47	4.80	2.177	13,260	58,980	5,833	25,950	18,790	83,580	16,610	73,880	44,160	4,990	39,040	4,410	1,700
36	8.60	3.901	19,700	87,630	10,360	46,080	29,980	133,360	30,060	133,710	71,940	8,130	72,140	8,150	1,670
147	0.56	0.254	3,720	16,550	1,078	4,800	5,560	24,730	3,080	13,700	13,620	1,540	7,550	850	1,630
123	0.83	0.376	5,000	22,240	1,539	6,850	7,290	32,430	4,270	18,990	17,940	2,030	10,530	1,190	1,620
99	1.25	0.567	5,950	26,470	1,974	8,780	8,480	37,720	5,470	24,330	20,980	2,370	13,550	1,530	1,620
75	2.25	1.021	8,550	38,030	3,320	14,770	13,140	58,450	9,630	42,840	32,840	3,710	24,070	2,720	1,600
51	5.20	2.359	14,390	64,010	6,105	27,160	20,340	90,480	17,200	76,510	51,860	5,860	43,850	4,950	1,570
39	9.30	4.218	21,340	94,930	10,690	47,550	32,350	143,900	30,990	137,850	84,100	9,500	80,580	9,100	1,540
143	1.05	0.476	5,810	25,840	1,680	7,470	8,450	37,590	4,520	20,110	24,180	2,730	12,930	1,460	1,400
115	1.52	0.689	6,910	30,740	2,154	9,580	9,820	43,680	5,800	25,800	28,240	3,190	16,680	1,880	1,390
87	2.73	1.238	9,920	44,130	3,460	15,390	15,180	67,520	10,030	44,620	44,020	4,970	29,100	3,290	1,380
59	6.00	2.722	16,650	74,060	6,620	29,450	23,410	104.130	18,090	80,470	69,050	7,800	53,380	6,030	1,360
45	10.80	4.899		109,520	11,280	50,180	37,080	164,940	32,710	145,500	111,250	12,570	98,140	11,090	1,330
163	1.20	0.544	6,620	29,450	1,812	8,060	9,620	42,790	4,800	21,350	31,370	3,540	15,670	1,770	1,230
131	1.73	0.785	7,880	35,050	2,321	10,320	11,160	49,640	6,050	26,910	36,550	4,130	19,830	2,240	1,220
99	3.10	1.406	11,290	50,220	3,688	16,410	17,230	76,640	10,500	46,710	56,850	6,420	34,660	3,920	1,210
67	7.10	3.221	18,900	84,070	7,104	31,600	26,480	117,790	19,000	84,520	88,690		63,630	7,190	1,190
51	12.30	5.579		124,150	11,820	52,580	41,810	185,980	34,270	152,440		16,060	116,530	13,170	1,180
183	1.35	0.612	7,440	33,090	1,936	8,610	10,780	47,950	5,050	22,460	39,490	4,460	18,490	2,090	1,090
147	1.94	0.880	8,840	39,320	2,478	11,020	12,510	55,650	6,390	28,420	45,960	5,190	23,480	2,650	1,090
111	3.48	1.579	12,650	56,270	3,933	17,490	19,260	85,670	10,870	48,350	71,270	8,050	40,200	4,540	1,080
75	7.90	3.583	21,160	94,120	7,557	33,620	29,560	131,490	19,980	88,880	110,840	12,520	74,910	8,460	1,000
57	13.70	6.214		138,740	12,367	55,010	46,540	207,020	35,660	158,620	176,870			15,310	1,050
203	1.50	0.680	8,250	36,700	2,053	9,130	11,940	53,110	5,260	23,400	48,520	5,480	21,370	2,410	980
163	2.16	0.980	9,800	43,590	2,626	11,680	13,850	61,610	6,670	29,670	56,430	6,380	27,170	3,070	980
123	3.85	1.746	14,020	62,360	4,164	18,520	21,320	94,840	11,380	50,620	87,400	9,870	46,680	5,270	980
83	8.90	4.037		104,180	7,986	35,520	32,620	145,100	20,570	91,500		15,300	85,380	9,650	960
63	15.80	7.167		153,330	13,044	58,020	51,240	227,930	36,780	163,610	215,210		154,490	17,460	950
203	2.69	1.220	12,200	54,270	2,962	13,180	17,200	76,510	7,300	32,470	87,290	9,860	37,070	4,190	790
153	4.79	2.173	17,440	77,580	4,689	20,860	26,410	117,480	12,260	54,540	134,690		62,530	7,060	790 780
103	10.90	4.944	29,060		8,963	39,870	40,270	179,130	21,910	97,460	207,390		112,830	12,750	780 780
78	19.50	8.845		189,850	14,591	64,900	63,110	280,730		178,370	328,150		208,540		770
243	3.21	1.456		64,990		14,500	20,560	91,460	8,000	35,590 50,780	124,910		48,610		660 660
183 123	5.73 13.00	2.599 5.897	20,860	92,790		22,920 43,720	31,540	140,300	13,440	59,780	192,420 294,970		82,010 145,270	9,270	660 650
				154,350				213,340		105,070					650
93	23.30	10.569		226,370	15,963			333,350	1 .	189,090	464,640		263,580		650
143	15.10	6.849	40,350		10,603			247,370	1	111,070	397,620		178,510		560 560
108		12.292	59,100		17,195			385,570		196,260	624,100		317,650		560
163	17.20	7.802		204,570	11,302			281,570		118,010	515,930		216,240		490
123	30.80	13.971	67,310	299,410	18,307	81,430	98,590	438,550	47,080	209,420	808,420	91,340	386,040	43,620	490

Refer to the Engineering section for load and speed limitations.

1.000

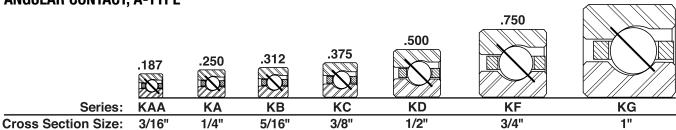
ANGULAR CONTACT, A-TYPE


DADT						NO	MINAL	DIME	NSIONS	5						
PART Number*		В		D	V	V			Land	Diamete	er		f ₁		Ball	
NOWIDEN	В	ore	Outside	Diameter	Wid	dth	L _i -Inno	er Ring	Lo -Ou	ter Ring	L _s -Cou	nter Bore	Housing	Fillet	Diameter	
	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	
KAA10AG0*RBC	1.0000	25.400	1.3750	34.925	0.1875	4.763	1.141	28.98	1.234	31.34	1.235	31.37	0.015	0.38	3/32	
KAA15AG0*RBC	1.5000	38.100	1.8750	47.625	0.1875	4.763	1.641	41.68	1.734	44.04	1.735	44.07	0.015	0.38	3/32	
KA020AR0*RBC	2.0000	50.800	2.5000	63.500	0.2500	6.350	2.188	55.58	2.313	58.75	2.375	60.33	0.025	0.64	1/8	
KB020AR0*RBC	2.0000	50.800	2.6250	66.675	0.3125	7.938	2.234	56.74	2.391	60.73	2.469	62.71	0.032	0.81	5/32	
KA025AR0*RBC	2.5000	63.500	3.0000	76.200	0.2500	6.350	2.688	68.28	2.813	71.45	2.875	73.03	0.025	0.64	1/8	
KB025AR0*RBC	2.5000	63.500	3.1250	79.375	0.3125	7.938	2.734	69.44	2.891	73.43	2.969	75.41	0.032	0.81	5/32	
KA030AR0*RBC	3.0000	76.200	3.5000	88.900	0.2500	6.350	3.188	80.98	3.313	84.15	3.375	85.73	0.025	0.64	1/8	
KB030AR0*RBC	3.0000	76.200	3.6250	92.075	0.3125	7.938	3.234	82.14	3.391	86.13	3.469	88.11	0.032	0.81	5/32	
KA035AR0*RBC	3.5000	88.900	4.0000	101.600	0.2500	6.350	3.688	93.68	3.813	96.85	3.875	98.43	0.025	0.64	1/8	
KB035AR0*RBC	3.5000	88.900	4.1250	104.775	0.3125	7.938	3.734	94.84	3.891	98.83	3.969	100.81	0.032	0.81	5/32	
KA040AR0*RBC	4.0000	101.600	4.5000	114.300	0.2500	6.350		106.38	4.313	109.55	4.375	111.13	0.025	0.64	1/8	
KB040AR0*RBC	4.0000	101.600	4.6250	117.475	0.3125	7.938		107.54	4.391	111.53	4.469	113.51	0.032	0.81	5/32	
KC040AR0*RBC		101.600	4.7500	120.650	0.3750	9.525		108.74	4.469	113.51	4.563	115.90	0.040	1.02	3/16	
KD040AR0*RBC	4.0000	101.600	5.0000	127.000	0.5000			111.13	4.625	117.48	4.750	120.65	0.060	1.52	1/4	
KF040AR0*RBC	4.0000	101.600	5.5000	139.700		19.050		115.90	4.938	125.43	5.125	130.18	0.080	2.03	3/8	
KG040AR0*RBC		101.600	6.0000	152.400	1.0000		4.750	120.65	5.250	133.35	5.500	139.70	0.080	2.03	1/2	
KA042AR0*RBC		107.950	4.7500	120.650	0.2500	6.350	l	112.73		115.90	4.625	117.48	0.025	0.64	1/8	
KB042AR0*RBC		107.950	4.8750	123.825	0.3125	7.938	l	113.89		117.88	4.719	119.86	0.032	0.81	5/32	
KC042AR0*RBC		107.950	5.0000	127.000	0.3750	9.525		115.09		119.86	4.813	122.25	0.040	1.02	3/16	
KD042AR0*RBC		107.950	5.2500	133.350	0.5000		l	117.48		123.83	5.000	127.00	0.060	1.52	1/4	
KF042AR0*RBC	4.2500	107.950	5.7500	146.050	0.7500		l	122.25	5.188	131.78	5.375	136.53	0.080	2.03	3/8	
KG042AR0*RBC		107.950	6.2500	158.750	1.0000			127.00		139.70	5.750	146.05	0.080	2.03	1/2	
KA045AR0*RBC		114.300	5.0000	127.000	0.2500	6.350		119.08		122.25	4.875	123.83	0.025	0.64	1/8	
KB045AR0*RBC		114.300	5.1250	130.175	0.3125	7.938		120.24	4.891	124.23	4.969	126.21	0.032	0.81	5/32	
KC045AR0*RBC		114.300	5.2500	133.350	0.3750	9.525		121.44		126.21	5.063	128.60	0.040	1.02	3/16	
KD045AR0*RBC		114.300	5.5000	139.700	0.5000			123.83	5.125	130.18	5.250	133.35	0.060	1.52	1/4	
KF045AR0*RBC		114.300	6.0000	152.400		19.050		128.60	5.438	138.13	5.625	142.88	0.080	2.03	3/8	
KG045AR0*RBC		114.300	6.5000	165.100	1.0000			133.35		146.05	6.000	152.40	0.080	2.03	1/2	
KA047AR0*RBC		120.650	5.2500	133.350	0.2500	6.350	l	125.43		128.60	5.125	130.18	0.025	0.64	1/8	
KB047AR0*RBC		120.650	5.3750	136.525	0.3125	7.938	l	126.59		130.58	5.219	132.56	0.032	0.81	5/32	
KC047AR0*RBC		120.650	5.5000	139.700	0.3750	9.525	l	127.79		132.56	5.313	134.95	0.040	1.02	3/16	
KD047AR0*RBC		120.650	5.7500	146.050	0.5000			130.18		136.53	5.500	139.70	0.060	1.52	1/4	
KF047AR0*RBC		120.650	6.2500	158.750		19.050	l	134.95	5.688	144.48	5.875	149.23	0.080	2.03	3/8	
KG047AR0*RBC		120.650	6.7500	171.450	1.0000			139.70		152.40	6.250	158.75	0.080	2.03	1/2	
KA050AR0*RBC		127.000	5.5000	139.700	0.2500	6.350		131.78	5.313	134.95	5.375	136.53	0.025	0.64	1/8	
KB050AR0*RBC		127.000	5.6250	142.875	0.3125	7.938		132.94		136.93	5.469	138.91	0.032	0.81	5/32	
KC050AR0*RBC		127.000	5.7500	146.050	0.3750			134.14		138.91		141.30	0.040	1.02	3/16	
KD050AR0*RBC		127.000	6.0000	152.400	0.5000			136.53		142.88		146.05	0.060	1.52	1/4	
KF050AR0*RBC		127.000	6.5000	165.100	0.7500			141.30		150.83		155.58	0.080	2.03	3/8	
KG050AR0*RBC		127.000	7.0000	177.800	1.0000			146.05		158.75		165.10	0.080	2.03	1/2	
KA055AR0*RBC		139.700	6.0000	152.400	0.2500			144.48		147.65		149.23	0.025	0.64	1/8	
KB055AR0*RBC		139.700	6.1250	155.575		7.938		145.64		149.63		151.61	0.032	0.81	5/32	
KC055AR0*RBC		139.700	6.2500	158.750	0.3750		l	146.84		151.61		154.00	0.040	1.02	3/16	
KD055AR0*RBC		139.700	6.5000	165.100	0.5000			149.23		155.58		158.75	0.060	1.52	1/4	
KF055AR0*RBC		139.700	7.0000	177.800	0.7500			154.00		163.53		168.28	0.080	2.03	3/8	
KG055AR0*RBC	5.5000	139.700	7.5000	190.500	1.0000	25.400	6.250	158.75	6.750	171.45	7.000	177.80	0.080	2.03	1/2	

^{*}The alphanumeric identification system is used under license.

- 52100 steel
- Large diameter
- Light weight
- Small cross-section
- Circular pocket ball separator

								LOAD F	PATINGS						Limiting
Ball	Ap	prox.		Rad	lial			Thr	ust			Mor	ment		Speed
Quantity	W	eight	Sta	tic	Dyna	amic	Sta	ntic	Dyn	amic	Sta	tic	Dyna	mic	(RPM)
	lbs.	kg	lbf	N	lbf	N	lbf	N	lbf	N	lbf - in	Nm	lbf - in	Nm	
28	0.03	0.014	340	1,510	330	1,470	970	4,310	960	4,270	N/A	N/A	N/A	N/A	16,840
40	0.04	0.018	480	2,140	380	1,690	1,380	6,140	1,100	4,890	N/A	N/A	N/A	N/A	11,850
36	0.10	0.045	790	3,510	6,600	29,360	2,280	10,140	1,730	7,700	N/A	N/A	N/A	N/A	8,890
31	0.16	0.073	1,090	4,850	850	3,780	3,150	14,010	2,460	10,940	N/A	N/A	N/A	N/A	8,650
44	0.13	0.059	960	4,270	640	2,850	2,780	12,370	1,860	8,270	N/A	N/A	N/A	N/A	7,270
38	0.20	0.091	1,340	5,960	920	4,090	3,860	17,170	2,680	11,920	N/A	N/A	N/A	N/A	7,110
52	0.15	0.068	1,140	5,070	680	3,020	3,290	14,630	1,980	8,810	N/A	N/A	N/A	N/A	6,150
44	0.24	0.109	1,550	6,890	970	4,310	4,470	19,880	2,800	12,460	N/A	N/A	N/A	N/A	6,040
60	0.18	0.082	1,310	5,830	720	3,200	3,790	16,860	2,070	9,210	N/A	N/A	N/A	N/A	5,330
51	0.27	0.122	1,790	7,960	1,020	4,540	5,180	23,040	2,970	13,210	N/A	N/A	N/A	N/A	5,250
68	0.19	0.086	1,490	6,630	750	3,340	4,300	19,130	2,180	9,700	N/A	N/A	N/A	N/A	4,710
58	0.30	0.136	2,040	9,070	1,080	4,800	5,890		3,130	13,920	N/A	N/A	N/A	N/A	4,640
49	0.45	0.204	2,550	11,340	1,410	6,270	7,360	32,740	4,080	18,150	N/A	N/A	N/A	N/A	4,570
36	0.78	0.354	3,550	15,790	2,070	9,210	10,260	45,640	6,020	26,780	N/A	N/A	N/A	N/A	4,440
26	1.90	0.862	6,350	28,250	4,350	19,350	18,340	81,580	12,620	56,140	N/A	N/A	N/A	N/A	4,210
20	3.60	1.633	9,480	42,170	7,340	32,650	27,360	121,700	21,290	94,700	N/A	N/A	N/A	N/A	4,000
72	0.20	0.091	1,580	7,030	770	3,430	4,550	20,240	2,240	9,960	N/A	N/A	N/A	N/A	4,440
61	0.31	0.141	2,150	9,560	1,090	4,850	6,200		3,170	14,100	N/A	N/A	N/A	N/A	4,380
52	0.47	0.213	2,710	12,050	1,440	6,410	7,820	34,790	4,180	18,590	N/A	N/A	N/A	N/A	4,320
38	0.83	0.376	3,750	16,680	2,410	10,720	10,830	48,170	6,990	31,090	N/A	N/A	N/A	N/A	4,210
27	2.00	0.907	6,600	29,360	4,390	19,530	19,050		12,740	56,670	N/A	N/A	N/A	N/A	4,000
21	3.80	1.724	9,950	44,260	7,580	33,720		127,800	21,990	97,820	N/A	N/A	N/A	N/A	3,810
76	0.22	0.100	1,660	7,380	780	3,470	4,810		2,260	10,050	N/A	N/A	N/A	N/A	4,210
64	0.33	0.150	16,801	74,730	1,120	4,980	6,500		3,240	14,410	N/A	N/A	N/A	N/A	4,160
55	0.48	0.218	2,860	12,720	1,470	6,540	8,270	36,790	4,260	18,950	N/A	N/A	N/A	N/A	4,100
40	0.88	0.399	3,950	17,570	2,460	10,940	11,400		7,140	31,760	N/A	N/A	N/A	N/A	4,000
29	2.10	0.953	7,090	31,540	4,550	20,240	20,460		13,200	58,720	N/A	N/A	N/A	N/A	3,810
22	4.00	1.814	10,430	46,390	7,820	34,790		133,890		100,930	N/A	N/A	N/A	N/A	3,640
80	0.23	0.104	1,750	7,780	800	3,560	5,060		2,310	10,280	N/A	N/A	N/A	N/A	4,000
68	0.34	0.154	2,390	10,630	1,140	5,070	6,910		3,290	14,630	N/A	N/A	N/A	N/A	3,950
58	0.50	0.227	3,020	13,430	1,500	6,670	8,720	38,790	4,340	19,310	N/A	N/A	N/A	N/A	3,900
42	0.94	0.426	4,150	18,460	2,510	11,170	11,970	53,250	7,280	32,380	N/A	N/A	N/A	N/A	3,810
30	2.20	0.998	7,330	32,610	4,610	20,510	21,160		13,380	59,520	N/A	N/A	N/A	N/A	3,640
23	4.10	1.860	10,900	48,490	8,060	35,850		139,940		103,950	N/A	N/A	N/A	N/A	3,480
84	0.24	0.109	1,840	8,180	810	3,600	5,310		2,360	10,500	N/A	N/A	N/A	N/A	3,810
71	0.38	0.172	2,500	11,120	1,160	5,160			3,350	14,900	N/A	N/A	N/A	N/A	3,760
61	0.58	0.263	3,180	14,150	1,540	6,850		40,790		19,790	N/A	N/A	N/A	N/A	3,720
44	1.00	0.454	4,340	19,310		11,340		55,780		32,920	N/A	N/A	N/A	N/A	3,640
31	2.30	1.043	7,570	33,670	4,650	20,680		97,280		59,960	N/A	N/A	N/A	N/A	3,480
24	4.30	1.950	11,370	50,580	8,290	36,880		146,040		106,940	N/A	N/A	N/A	N/A	3,330
92	0.25	0.113	2,020	8,990	830	3,690		25,890	l .	10,720	N/A	N/A	N/A	N/A	3,480
78	0.41	0.186	2,740	12,190	1,200	5,340		35,230		15,480	N/A	N/A	N/A	N/A	3,440
66	0.59	0.268	3,440	15,300	1,560	6,940		44,130		20,190	N/A	N/A	N/A	N/A	3,400
48	1.06	0.481	4,740	21,080	2,640	11,740		60,850		34,070	N/A	N/A	N/A	N/A	3,330
34	2.50	1.134	8,310	36,960	4,820	21,440		106,670		62,190	N/A	N/A	N/A	N/A	3,200
26	4.70	2.132	12,320	54,800	8,610	38,300	ან,5/0	158,220	24,960	111,030	N/A	N/A	N/A	N/A	3,080

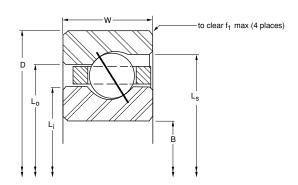

Refer to the Engineering section for load and speed limitations.

1.000

ANGULAR CONTACT, A-TYPE

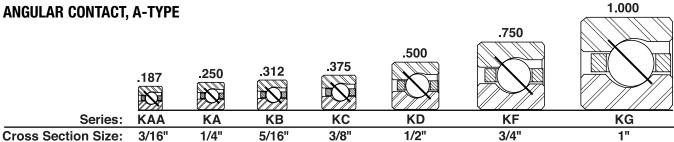
PART

NOMINAL DIMENSIONS


PART	В		D	W W	MINAL DIME	Land Diamete	er	f ₁	Ball	
NUMBER*	Bore	Outsi	de Diameter	Width	L _i -Inner Ring	Lo -Outer Ring	L _s -Counter Bore	Housing Fillet	Diameter	
	in. mn	in.	mm	in. mm	in. mm	in. mm	in. mm	in. mm	in.	
KA060AR0*RBC	6.0000 152.4	00 6.500	0 165.100	0.2500 6.350	6.188 157.18	6.313 160.35	6.375 161.93	0.025	1/8	
KB060AR0*RBC	6.0000 152.4	00 6.625	0 168.275	0.3125 7.938	6.234 158.34	6.391 162.33	6.469 164.31	0.032 0.81	5/32	
KC060AR0*RBC	6.0000 152.4	6.750	0 171.450	0.3750 9.525	6.281 159.54	6.469 164.31	6.563 166.70	0.040 1.02	3/16	
KD060AR0*RBC	6.0000 152.4	7.000	0 177.800	0.5000 12.700	6.375 161.93	6.625 168.28	6.750 171.45	0.060 1.52	1/4	
KF060AR0*RBC	6.0000 152.4	7.500	0 190.500	0.7500 19.050	6.563 166.70	6.938 176.23	7.125 180.98	0.080 2.03	3/8	
KG060AR0*RBC	6.0000 152.4	8.000	0 203.200	1.0000 25.400	6.750 171.45	7.250 184.15	7.500 190.50	0.080 2.03	1/2	
KA065AR0*RBC	6.5000 165.1	7.000	0 177.800	0.2500 6.350	6.688 169.88	6.813 173.05	6.875 174.63	0.025 0.64	1/8	
KB065AR0*RBC	6.5000 165.1	7.125	0 180.975	0.3125 7.938	6.734 171.04	6.891 175.03	6.969 177.01	0.032 0.81	5/32	
KC065AR0*RBC	6.5000 165.1	7.250	0 184.150	0.3750 9.525	6.781 172.24	6.969 177.01	7.063 179.40	0.040 1.02	3/16	
KD065AR0*RBC	6.5000 165.1	7.500	0 190.500	0.5000 12.700	6.875 174.63	7.125 180.98	7.250 184.15	0.060 1.52	1/4	
KF065AR0*RBC	6.5000 165.1	8.000	0 203.200	0.7500 19.050	7.063 179.40	7.438 188.93	7.625 193.68	0.080 2.03	3/8	
KG065AR0*RBC	6.5000 165.1	8.500	0 215.900	1.0000 25.400	7.250 184.15	7.750 196.85	8.000 203.20	0.080 2.03	1/2	
KA070AR0*RBC	7.0000 177.8			0.2500 6.350	7.188 182.58	7.313 185.75	7.375 187.33	0.025 0.64	1/8	
KB070AR0*RBC	7.0000 177.8			0.3125 7.938	7.234 183.74	7.391 187.73	7.469 189.71	0.032 0.81	5/32	
KC070AR0*RBC	7.0000 177.8			0.3750 9.525	7.281 184.94	7.469 189.71	7.563 192.10	0.040 1.02	3/16	
KD070AR0*RBC	7.0000 177.8			0.5000 12.700	7.375 187.33	7.625 193.68	7.750 196.85	0.060 1.52	1/4	
KF070AR0*RBC	7.0000 177.8			0.7500 19.050	7.563 192.10	7.938 201.63	8.125 206.38	0.080 2.03	3/8	
KG070AR0*RBC	7.0000 177.8			1.0000 25.400	7.750 196.85	8.250 209.55	8.500 215.90	0.080 2.03	1/2	
KA075AR0*RBC	7.5000 190.5			0.2500 6.350	7.688 195.28	7.813 198.45	7.875 200.03	0.025 0.64	1/8	
KB075AR0*RBC	7.5000 190.5			0.3125 7.938	7.734 196.44	7.891 200.43	7.969 202.41	0.032 0.81	5/32	
KC075AR0*RBC	7.5000 190.5			0.3750 9.525	7.781 197.64	7.969 202.41	8.063 204.80	0.040 1.02	3/16	
KD075AR0*RBC	7.5000 190.5			0.5000 12.700	7.875 200.03	8.125 206.38	8.250 209.55	0.060 1.52	1/4	
KF075AR0*RBC	7.5000 190.5			0.7500 19.050	8.063 204.80	8.438 214.33	8.625 219.08	0.080 2.03	3/8	
KG075AR0*RBC	7.5000 190.5			1.0000 25.400	8.250 209.55	8.750 222.25	9.000 228.60	0.080 2.03	1/2	
KA080AR0*RBC	8.0000 203.2			0.2500 6.350	8.188 207.98	8.313 211.15	8.375 212.73	0.025 0.64	1/8	
KB080AR0*RBC	8.0000 203.2			0.3125 7.938	8.234 209.14	8.391 213.13	8.469 215.11	0.032 0.81	5/32	
KC080AR0*RBC	8.0000 203.2			0.3750 9.525	8.281 210.34	8.469 215.11	8.563 217.50	0.040 1.02	3/16	
KD080AR0*RBC	8.0000 203.2			0.5000 12.700	8.375 212.73	8.625 219.08	8.750 222.25	0.060 1.52	1/4	
KF080AR0*RBC	8.0000 203.2			0.7500 19.050	8.563 217.50	8.938 227.03	9.125 231.78 9.500 241.30	0.080 2.03 0.080 2.03	3/8 1/2	
KG080AR0*RBC	8.0000 203.2			1.0000 25.400 0.2500 6.350	8.750 222.25	9.250 234.95 9.313 236.55				
KA090AR0*RBC KB090AR0*RBC	9.0000 228.6			0.2500 6.350 0.3125 7.938	9.188 233.38 9.234 234.54	9.313 238.53	9.375 238.13 9.469 240.51	0.025	1/8 5/32	
KC090AR0*RBC	9.0000 228.6 9.0000 228.6			0.3750 9.525	9.281 235.74	9.469 240.51	9.563 242.90	0.032 0.81	3/32	
KD090AR0*RBC	9.0000 228.6			0.5730 9.523	9.375 238.13	9.625 244.48	9.750 247.65	0.040 1.02	1/4	
KF090AR0*RBC	9.0000 228.6			0.7500 12.700	9.563 242.90	9.938 252.43	10.125 257.18	0.080 2.03	3/8	
KG090AR0*RBC	9.0000 228.6			1.0000 25.400	9.750 247.65	10.250 260.35	10.500 266.70	0.080 2.03	1/2	
KA100AR0*RBC	10.0000 254.0			0.2500 6.350	10.188 258.78	10.230 260.35	10.375 263.53	0.000 2.03	1/2	
KB100AR0*RBC	10.0000 254.0			0.3125 7.938	10.100 250.70	10.313 201.93	10.469 265.91	0.023 0.04	5/32	
KC100AR0*RBC	10.0000 254.0			0.3750 9.525	10.281 261.14	10.469 265.91	10.563 268.30	0.040 1.02	3/16	
KD100AR0*RBC	10.0000 254.0			0.5000 12.700	10.375 263.53	10.625 269.88	10.750 273.05	0.060 1.52	1/4	
KF100AR0*RBC	10.0000 254.0			0.7500 19.050	10.563 268.30	10.938 277.83	11.125 282.58	0.080 2.03	3/8	
KG100AR0*RBC				1.0000 25.400	10.750 273.05	11.250 285.75	11.500 292.10	0.080 2.03	1/2	
*The alphanumaria id	<u>!</u>				,		@2000 DBC Bassins			

^{*}The alphanumeric identification system is used under license.

- 52100 steel
- Large diameter
- Light weight
- Small cross-sectionCircular pocket ball separator

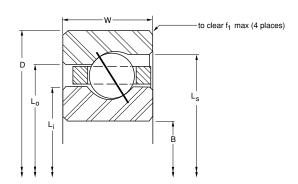

								LOAD R	PATINGS	6					Limiting
Ball	Ар	prox.		Rac	lial			Thr	ust			Mor	nent		Speed
Quantity	We	eight	Sta			amic	Sta	atic	Dyn	amic	Sta	tic	Dyna	mic	(RPM)
	lbs.	kg	lbf	N	lbf	N	lbf	N	lbf	N	lbf - in	Nm	lbf - in	Nm	
100	0.28	0.127	2,190	9,740	860	3,830	6,320	28,110	2,500	11,120	N/A	N/A	N/A	N/A	3,200
85	0.44	0.200	2,990	13,300	1,240	5,520	8,630	38,390	3,600	16,010	N/A	N/A	N/A	N/A	3,170
72	0.63	0.286	3,750	16,680	1,620	7,210	10,820	48,130	4,690	20,860	N/A	N/A	N/A	N/A	3,140
52	1.16	0.526	5,130	22,820	2,720	12,100	14,820	65,920	7,880	35,050	N/A	N/A	N/A	N/A	3,080
37	2.70	1.225	9,040	40,210	5,010	22,290	26,100	116,100	14,530	64,630	N/A	N/A	N/A	N/A	2,960
28	5.10	2.313	13,270	59,030	8,860	39,410	38,300	170,370	25,700	114,320	N/A	N/A	N/A	N/A	2,860
108	0.30	0.136	2,370	10,540	890	3,960	6,830	30,380	2,580	11,480	N/A	N/A	N/A	N/A	2,960
91	0.47	0.213	3,200	14,230	1,260	5,600	9,240	41,100	3,650	16,240	N/A	N/A	N/A	N/A	2,940
78	0.68	0.308	4,060	18,060	1,670	7,430	11,720	52,130	4,830	21,480	N/A	N/A	N/A	N/A	2,910
56	1.22	0.553	5,530	24,600	2,780	12,370	15,960	70,990	8,070	35,900	N/A	N/A	N/A	N/A	2,860
40	2.90	1.315	9,770	43,460	5,140	22,860	28,220	125,530	14,920	66,370	N/A	N/A	N/A	N/A	2,760
30	5.40	2.449	14,220	63,250	9,110	40,520	41,040	182,560	26,410	117,480	N/A	N/A	N/A	N/A	2,670
116	0.31	0.141	2,540	11,300	900	4,000	7,340	32,650	2,600	11,570	N/A	N/A	N/A	N/A	2,760
98	0.50	0.227	3,450	15,350	1,300	5,780	9,960	44,300	3,760	16,730	N/A	N/A	N/A	N/A	2,740
83	0.73	0.331	4,320	19,220	1,720	7,650	12,470	55,470	4,980	22,150	N/A	N/A	N/A	N/A	2,710
60	1.31	0.594	5,920	26,330	2,850	12,680	17,100	76,060	8,260	36,740	N/A	N/A	N/A	N/A	2,670
43	3.20	1.451	10,510	46,750	5,290	23,530	30,330	134,910	15,350	68,280	N/A	N/A	N/A	N/A	2,580
32	5.80	2.631	15,160	67,440	9,370	41,680	43,780	194,740	27,160	120,810	N/A	N/A	N/A	N/A	2,500
124	0.34	0.154	2,720	12,100	920	4,090	7,840	34,870	2,660	11,830	N/A	N/A	N/A	N/A	2,580
105	0.53	0.240	3,700	16,460	1,330	5,920	10,670	47,460	3,860	17,170	N/A	N/A	N/A	N/A	2,560
89	0.78	0.354	4,630	20,600	1,750	7,780	13,380	59,520	5,090	22,640	N/A	N/A	N/A	N/A	2,540
64	1.41	0.640	6,320	28,110	2,940	13,080	18,240	81,140	8,520	37,900	N/A	N/A	N/A	N/A	2,500
45	3.40	1.542	11,000	48,930	5,380	23,930	31,740	141,190	15,590	69,350	N/A	N/A	N/A	N/A	2,420
34	6.10	2.767	16,110	71,660	9,560	42,530	46,510	206,890	27,710	123,260	N/A	N/A	N/A	N/A	2,350
132	0.38	0.172	2,890	12,860	960	4,270	8,350	37,140	2,770	12,320	N/A	N/A	N/A	N/A	2,420
112	0.57	0.259	3,940	17,530	1,360	6,050	11,380	50,620	3,950	17,570	N/A	N/A	N/A	N/A	2,410
95	0.84	0.381	4,950	22,020	1,800	8,010	14,280	63,520	5,210	23,180	N/A	N/A	N/A	N/A	2,390
68	1.53	0.694	6,710	29,850	2,990	13,300	19,380	86,210	8,670	38,570	N/A	N/A	N/A	N/A	2,350
48	3.50	1.588	11,730	52,180	5,520	24,550	33,860	150,620	16,020	71,260	N/A	N/A	N/A	N/A	2,290
36	6.50	2.948	17,060	75,890	9,800	43,590	49,250	219,070	28,430	126,460	N/A	N/A	N/A	N/A	2,220
148	0.44	0.200	3,240	14,410	990	4,400	9,360		2,860	12,720	N/A	N/A	N/A	N/A	2,160
125	0.66	0.299	4,400	19,570	1,410	6,270	12,700		4,080	18,150	N/A	N/A	N/A	N/A	2,150
106	0.94	0.426	5,520	24,550	1,860	8,270	15,930	70,860	5,400	24,020	N/A	N/A	N/A	N/A	2,130
76	1.72	0.780	7,500	33,360	3,100	13,790	21,660	96,350	9,000	40,030	N/A	N/A	N/A	N/A	2,110
54	3.90	1.769	13,190	58,670	5,780	25,710	38,090	169,430	16,760	74,550	N/A	N/A	N/A	N/A	2,050
40	7.20	3.266	18,960	84,340	10,190	45,330	54,720	243,410		131,400	N/A	N/A	N/A	N/A	2,000
164	0.50	0.227	3,590	15,970	1,030	4,580	10,370		3,000	13,340	N/A	N/A	N/A	N/A	1,950
139	0.73	0.331	4,890	21,750	1,480	6,580	14,120	62,810	4,290	19,080	N/A	N/A	N/A	N/A	1,940
118	1.06	0.481	6,140	27,310	1,942	8,640	17,730	78,870	5,570	24,780	N/A	N/A	N/A	N/A	1,930
84	1.88	0.853	8,290	36,880	3,240	14,410	23,940	106,490	9,390	41,770	N/A	N/A	N/A	N/A	1,900
59	4.30	1.950	14,420	64,140	5,980	26,600	41,620	185,130	17,330	77,090	N/A	N/A	N/A	N/A	1,860
44	7.90	3.583	20,850	92,750	10,560	46,970	60,190	267,740	30,620	136,200	N/A	N/A	N/A	N/A	1,820

Refer to the Engineering section for load and speed limitations.

ANGULAR CONTACT, A-TYPE

PART

NOMINAL DIMENSIONS


NUMBER*	В	D	W		Land Diamete	r	f ₁	Ball
	Bore	Outside Diameter	Width	L _i -Inner Ring	L _o -Outer Ring	L _s -Counter Bore	Housing Fillet	Diameter
	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in.
KA110AR0*RBC	11.0000 279.400	11.5000 292.100	0.2500 6.350	11.188 284.18	11.313 287.35	11.375 288.93	0.025 0.64	1/8
KB110AR0*RBC	11.0000 279.400	11.6250 295.275	0.3125 7.938	11.234 285.34	11.391 289.33	11.469 291.31	0.032 0.81	5/32
KC110AR0*RBC	11.0000 279.400	11.7500 298.450	0.3750 9.525	11.281 286.54	11.469 291.31	11.563 293.70	0.040 1.02	3/16
KD110AR0*RBC	11.0000 279.400	12.0000 304.800	0.5000 12.700	11.375 288.93	11.625 295.28	11.750 298.45	0.060 1.52	1/4
KF110AR0*RBC	11.0000 279.400	12.5000 317.500	0.7500 19.050	11.563 293.70	11.938 303.23	12.125 307.98	0.080 2.03	3/8
KG110AR0*RBC	11.0000 279.400	13.0000 330.200	1.0000 25.400	11.750 298.45	12.250 311.15	12.500 317.50	0.080 2.03	1/2
KA120AR0*RBC	12.0000 304.800	12.5000 317.500	0.2500 6.350	12.188 309.58	12.313 312.75	12.375 314.33	0.025 0.64	1/8
KB120AR0*RBC	12.0000 304.800	12.6250 320.675	0.3125 7.938	12.234 310.74	12.391 314.73	12.469 316.71	0.032 0.81	5/32
KC120AR0*RBC	12.0000 304.800	12.7500 323.850	0.3750 9.525	12.281 311.94	12.469 316.71	12.563 319.10	0.040 1.02	3/16
KD120AR0*RBC	12.0000 304.800	13.0000 330.200	0.5000 12.700	12.375 314.33	12.625 320.68	12.750 323.85	0.060 1.52	1/4
KF120AR0*RBC	12.0000 304.800	13.5000 342.900	0.7500 19.050	12.563 319.10	12.938 328.63	13.125 333.38	0.080 2.03	3/8
KG120AR0*RBC	12.0000 304.800	14.0000 355.600	1.0000 25.400	12.750 323.85	13.250 336.55	13.500 342.90	0.080 2.03	1/2
KB140AR0*RBC	14.0000 355.600	14.6250 371.475	0.3125 7.938	14.234 361.54	14.391 365.53	14.469 367.51	0.032 0.81	5/32
KC140AR0*RBC	14.0000 355.600	14.7500 374.650	0.3750 9.525	14.281 362.74	14.469 367.51	14.563 369.90	0.040 1.02	3/16
KD140AR0*RBC	14.0000 355.600	15.0000 381.000	0.5000 12.700	14.375 365.13	14.625 371.48	14.750 374.65	0.060 1.52	1/4
KF140AR0*RBC	14.0000 355.600	15.5000 393.700	0.7500 19.050	14.563 369.90	14.938 379.43	15.125 384.18	0.080 2.03	3/8
KG140AR0*RBC	14.0000 355.600	16.0000 406.400	1.0000 25.400	14.750 374.65	15.250 387.35	15.500 393.70	0.080 2.03	1/2
KB160AR0*RBC	16.0000 406.400	16.6250 422.275	0.3125 7.938	16.234 412.34	16.391 416.33	16.469 418.31	0.032 0.81	5/32
KC160AR0*RBC	16.0000 406.400	16.7500 425.450	0.3750 9.525	16.281 413.54	16.469 418.31	16.563 420.70	0.040 1.02	3/16
KD160AR0*RBC	16.0000 406.400	17.0000 431.800	0.5000 12.700	16.375 415.93	16.625 422.28	16.750 425.45	0.060 1.52	1/4
KF160AR0*RBC	16.0000 406.400	17.5000 444.500	0.7500 19.050	16.563 420.70	16.938 430.23	17.125 434.98	0.080 2.03	3/8
KG160AR0*RBC	16.0000 406.400	18.0000 457.200	1.0000 25.400	16.750 425.45	17.250 438.15	17.500 444.50	0.080 2.03	1/2
KB180AR0*RBC	18.0000 457.200	18.6250 473.075	0.3125 7.938	18.234 463.14	18.391 467.13	18.469 469.11	0.032 0.81	5/32
KC180AR0*RBC	18.0000 457.200	18.7500 476.250	0.3750 9.525	18.281 464.34	18.469 469.11	18.563 471.50	0.040 1.02	3/16
KD180AR0*RBC	18.0000 457.200	19.0000 482.600	0.5000 12.700	18.375 466.73	18.625 473.08	18.750 476.25	0.060 1.52	1/4
KF180AR0*RBC	18.0000 457.200	19.5000 495.300	0.7500 19.050	18.563 471.50	18.938 481.03	19.125 485.78	0.080 2.03	3/8
KG180AR0*RBC	18.0000 457.200	20.0000 508.000	1.0000 25.400	18.750 476.25	19.250 488.95	19.500 495.30	0.080 2.03	1/2
KB200AR0*RBC	20.0000 508.000	20.6250 523.875	0.3125 7.938	20.234 513.94	20.391 517.93	20.469 519.91	0.032 0.81	5/32
KC200AR0*RBC	20.0000 508.000	20.7500 527.050	0.3750 9.525	20.281 515.14	20.469 519.91	20.563 522.30	0.040 1.02	3/16
KD200AR0*RBC	20.0000 508.000	21.0000 533.400	0.5000 12.700	20.375 517.53	20.625 523.88	20.750 527.05	0.060 1.52	1/4
KF200AR0*RBC	20.0000 508.000	21.5000 546.100	0.7500 19.050	20.563 522.30	20.938 531.83	21.125 536.58	0.080 2.03	3/8
KG200AR0*RBC	20.0000 508.000	22.0000 558.800	1.0000 25.400	20.750 527.05	21.250 539.75	21.500 546.10	0.080 2.03	1/2
KC250AR0*RBC	25.0000 635.000	25.7500 654.050	0.3750 9.525	25.281 642.14	25.469 646.91	25.563 649.30	0.040 1.02	3/16
KD250AR0*RBC	25.0000 635.000	26.0000 660.400	0.5000 12.700	25.375 644.53	25.625 650.88	25.750 654.05	0.060 1.52	1/4
KF250AR0*RBC	25.0000 635.000	26.5000 673.100	0.7500 19.050	25.563 649.30	25.938 658.83	26.125 663.58	0.080 2.03	3/8
KG250AR0*RBC	25.0000 635.000	27.0000 685.800	1.0000 25.400	25.750 654.05	26.250 666.75	26.500 673.10	0.080 2.03	1/2
KC300AR0*RBC	30.0000 762.000	30.7500 781.050	0.3750 9.525	30.281 769.14	30.469 773.91	30.563 776.30	0.040 1.02	3/16
KD300AR0*RBC	30.0000 762.000	31.0000 787.400		30.375 771.53	30.625 777.88	30.750 781.05	0.060 1.52	1/4
KF300AR0*RBC	30.0000 762.000		0.7500 19.050		30.938 785.83	31.125 790.58	0.080 2.03	3/8
KG300AR0*RBC	30.0000 762.000		1.0000 25.400	30.750 781.05		31.500 800.10	0.080 2.03	1/2
KF350AR0*RBC	35.0000 889.000		0.7500 19.050	35.563 903.30		36.125 917.58	0.080 2.03	3/8
KG350AR0*RBC	35.0000 889.000	37.0000 939.800	1.0000 25.400	35.750 908.05	36.250 920.75	36.500 927.10	0.080 2.03	1/2
KF400AR0*RBC	40.0000 1016.000		0.7500 19.050	40.563 1030.30	40.938 1039.83	41.125 1044.58	0.080 2.03	3/8
KG400AR0*RBC	40.0000 1016.000	42.0000 1066.800	1.0000 25.400	40.750 1035.05	41.250 1047.75	41.500 1054.10	0.080 2.03	1/2
				.3 00 1000.00	200 1011.110			
*The alphanumeric ide						⊜2000 DDC Dooring		

^{*}The alphanumeric identification system is used under license.

- 52100 steel
- Large diameter
- Light weight
- Small cross-sectionCircular pocket ball separator

Ball Quantity Weight International Static Dynamic International	Limiting						ATINGS	LOAD R									
	Speed		nent	Mon			ust	Thr			dial	Rac		prox.	Ap	Ball	
	(RPM)	mic			Sta	amic			Sta	amic	_		Sta			Quantity	
152	` '		•								_			kg	lbs.		
129	1,780	N/A	N/A	N/A	N/A	13,790	3,100	50,620	11,380	4,770	1,072	17,530	3,940	0.236	0.52	180	
92	1,770	N/A	N/A	N/A	N/A	19,350	4,350	68,680	15,440	6,850	1,540	23,800	5,350	0.340	0.75	152	
65 4.80 2.177 15.880 70.640 6.227 27.700 45.850 203.950 17.870 79.490 N/A N/A N/A N/A N/A 196 0.56 0.254 4.290 19.080 1.128 5.020 12.390 55.110 3.200 14.230 N/A N/A N/A N/A N/A 140 1.25 0.567 7.290 32.430 2.147 9.550 21.040 93.590 5.980 26.600 N/A N/A N/A N/A N/A N/A N/A 140 1.25 0.567 7.290 32.430 2.147 9.550 21.040 93.590 5.980 26.600 N/A N/A N/A N/A N/A N/A N/A 140 1.25 0.567 7.290 32.430 2.147 9.550 21.040 93.590 5.980 26.600 N/A N/A N/A N/A N/A N/A N/A N/A N/A 140 1.25 0.567 7.290 32.430 11.230 49.950 126.770 9.500 46.260 N/A N/A N/A N/A N/A N/A N/A 5.2 9.30 4.218 24.640 109.600 11.230 49.950 71.140 316.450 32.570 144.880 N/A N/A N/A N/A N/A 192 1.05 0.476 6.760 30.070 1.767 7.860 19.500 86.740 4.840 21.350 N/A N/A N/A N/A N/A 166 1.52 0.689 8.490 37.770 2.347 10.440 24.500 108.980 6.330 28.160 N/A N/A N/A N/A N/A N/A N/A 166 1.030 4.899 28.430 126.640 1.900 3.3582 15.930 3.300 6.147.060 10.340 45.990 N/A N/A N/A N/A N/A N/A 132 3.10 1.406 13.030 57.980 1.907 8.860 12.533 11.270 27.950 124.330 6.730 29.940 N/A N/A N/A N/A N/A 132 3.110 1.406 13.030 57.980 1.907 8.886 2.2550 124.330 6.730 29.940 N/A N/A N/A N/A N/A N/A 132 3.110 1.406 13.030 57.980 38.580 2.533 11.270 27.950 124.330 6.730 29.940 N/A N/A N/A N/A N/A N/A 148 3.48 1.579 14.610 64.990 7.563 38.640 64.890 88.650 20.310 90.340 40.000 N/A N/A N/A N/A N/A N/A 148 3.48 1.579 14.610 64.990 7.563 38.640 64.890 88.665 20.310 90.340 N/A N/A N/A N/A N/A N/A 148 3.48 1.579 14.610 64.990 7.563 36.860 20.310 36.630 12.210 94.550 N/A N/A N/A N/A N/A N/A 148 3.48 1.579 14.610 64.990 7.563 36.860 7.563 36.860 20.303 9.300 9.300 9.300 N/A N/A N/A N/A N/A N/A 148 3.48 1.579 14.610 64.990 7.563 36.860 20.310 36.900 32.330 N/A N/A N/A N/A N/A N/A 148 3.48 1.579 14.610 64.990 7.563 36.860 20.310 36.900 32.330 N/A N/A N/A N/A N/A N/A 148 3.800 7.5790 32.220 143.320 12.380 57.900 32.380 17.2720 9.300 0.000 7.563 36.860 0.000 7.563 36.860 0.000 7.563 36.860 0.000 7.563 36.860 0.000 7.563 36.860 0.000 7.563 36.860 0.000 7.563 36.860 0.000 7.563 36.860 0.000 7.563 36.86	1,760	N/A	N/A	N/A	N/A	25,710	5,780	86,250	19,390	9,110	2,047	29,890	6,720	0.526	1.16	129	
48	1,740	N/A	N/A	N/A	N/A	42,700	9,600	116,630	26,220	14,720	3,310	40,390	9,080	0.934	2.06	92	
196	1,700	N/A	N/A	N/A	N/A	79,490	17,870	203,950	45,850	27,700	6,227	70,640	15,880	2.177	4.80	65	
166	1,670	N/A		N/A		140,830	31,660	292,070				101,200	22,750		8.60	48	
140	1,630	N/A		N/A													
100	1,620	N/A		N/A								25,980	5,840			166	
To	1,620	N/A		N/A	N/A		l '				· '					140	
52	1,600	N/A		N/A													
192	1,570																
163	1,540																
116	1,400															1	
81	1,390						1									1	
60	1,380						1									1	
219	1,360						1				· '					1	
186	1,330							-									
132	1,230																
92 7.10 3.221 22,480 100,000 7,563 33,640 64,890 288,650 20,310 90,340 N/A	1,220																
68 12.30 5.579 32,220 143,320 12,360 54,980 93,020 413,770 35,850 159,470 N/A N/A <t< td=""><td>1,210</td><td></td><td></td><td></td><td></td><td></td><td>l '</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	1,210						l '										
246 1.35 0.612 8,660 38,520 2,038 9,070 24,990 111,160 5,510 24,510 N/A N/A<	1,190							· · · · · ·									
209 1.94 0.880 10,880 48,400 2,707 12,040 31,410 139,720 7,280 32,380 N/A N/	1,180								· '								
148 3.48 1.579 14,610 64,990 4,113 18,300 42,180 187,630 11,390 50,670 N/A	1,090						l									1	
104	1,090															1	
76 13.70 6.214 36,020 160,220 12,898 57,370 104,000 462,620 37,230 165,610 N/A <	1,080						l '									1	
273 1.50 0.680 9,610 42,750 2,162 9,620 27,730 123,350 5,900 26,240 N/A N/A<	1,070						1				· '					1	
231	1,050																
164 3.85 1.746 16,190 72,020 4,356 19,380 46,740 207,910 11,920 53,020 N/A	980										· '						
115 8.90 4.037 28,100 125,000 8,562 38,090 81,120 360,840 22,680 100,890 N/A	980																
84 15.80 7.167 39,810 177,080 13,612 60,550 114,900 511,100 38,830 172,720 N/A	980 960																
288						1											
204 4.79 2.173 20,140 89,590 4,908 21,830 58,140 258,620 13,540 60,230 N/A	950 790							-									
142 10.90 4.944 34,700 154,350 9,585 42,640 100,200 445,710 26,100 116,100 N/A	780															1	
104 19.50 8.845 49,280 219,210 15,239 67,790 142,300 632,980 41,420 184,250 N/A	780						1				· '		1			1	
345 3.21 1.456 17,960 79,890 3,561 15,840 51,850 230,640 10,160 45,190 N/A	770						· ·									1	
244 5.73 2.599 24,090 107,160 5,397 24,010 69,540 309,330 15,260 67,880 N/A																L .	
170 13.00 5.897 41,540 184,780 10,533 46,850 119,900 533,340 29,430 130,910 N/A N/A N/A N/A																	
198 15.10 6.849 48,380 215,200 11,382 50,630 139,700 621,420 32,580 144,920 N/A N/A	560																
144 27.10 12.292 68,240 303,550 17,982 79,990 197,000 876,300 50,840 226,150 N/A N/A N/A N/A	560										l .					1	
226 17.20 7.802 55,220 245,630 12,147 54,030 159,400 709,050 35,580 158,270 N/A N/A N/A N/A																	
164 30.80 13.971 77,720 345,720 19,153 85,200 224,400 998,180 55,440 246,610 N/A N/A N/A N/A																	

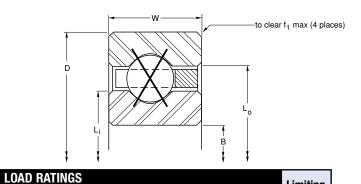
Refer to the Engineering section for load and speed limitations.

1.000

4-POINT CONTACT, X-TYPE

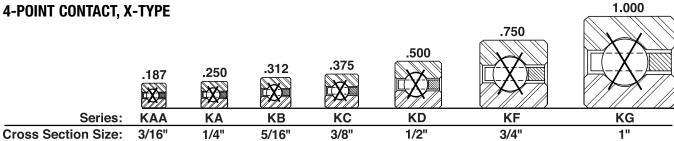
Series: KAA KA KB KC KD KF KG

Cross Section Size: 3/16" 1/4" 5/16" 3/8" 1/2" 3/4" 1"


						NOMIN	AL DIMI	ENSIONS	5					
PART	F	В		D	W				Diameter		f	1	Ball	
NUMBER*		ore		Diameter	Wid		L: -Inn	er Ring	L _o -Out	er Rina		g Fillet	Diameter	
	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	
KAA10XL0*RBC	1.0000	25.400	1.3750	34.925	0.1875	4.763	1.141	28.98	1.234	31.34	0.015	0.38	3/32	
KAA15XL0*RBC	1.5000	38.100	1.8750	47.625	0.1875	4.763	1.641	41.68	1.734	44.04	0.015	0.38	3/32	
KA020XP0*RBC	2.0000	50.800	2.5000	63.500	0.2500	6.350	2.188	55.58	2.313	58.75	0.025	0.64	1/8	
KB020XP0*RBC	2.0000	50.800	2.6250	66.675	0.3125	7.938	2.234	56.74	2.391	60.73	0.032	0.81	5/32	
KA025XP0*RBC	2.5000	63.500	3.0000	76.200	0.2500	6.350	2.688	68.28	2.813	71.45	0.025	0.64	1/8	
KB025XP0*RBC	2.5000	63.500	3.1250	79.375	0.3125	7.938	2.734	69.44	2.891	73.43	0.040	1.02	5/32	
KA030XP0*RBC	3.0000	76.200	3.5000	88.900	0.2500	6.350	3.188	80.98	3.313	84.15	0.025	0.64	1/8	
KB030XP0*RBC	3.0000	76.200	3.6250	92.075	0.3125	7.938	3.234	82.14	3.391	86.13	0.032	0.81	5/32	
KA035XP0*RBC	3.5000	88.900	4.0000	101.600	0.2500	6.350	3.688	93.68	3.813	96.85	0.025	0.64	1/8	
KB035XP0*RBC	3.5000	88.900	4.1250	104.775	0.3125	7.938	3.734	94.84	3.891	98.83	0.032	0.81	5/32	
KA040XP0*RBC	4.0000	101.600	4.5000	114.300	0.2500	6.350	4.188	106.38	4.313	109.55	0.025	0.64	1/8	
KB040XP0*RBC	4.0000	101.600	4.6250	117.475	0.3125	7.938	4.234	107.54	4.391	111.53	0.032	0.81	5/32	
KC040XP0*RBC	4.0000	101.600	4.7500	120.650	0.3750	9.525	4.281	108.74	4.469	113.51	0.040	1.02	3/16	
KD040XP0*RBC	4.0000	101.600	5.0000	127.000	0.5000	12.700	4.375	111.13	4.625	117.48	0.060	1.52	1/4	
KF040XP0*RBC	4.0000	101.600	5.5000	139.700	0.7500	19.050	4.563	115.90	4.938	125.43	0.080	2.03	3/8	
KG040XP0*RBC	4.0000	101.600	6.0000	152.400	1.0000	25.400	4.750	120.65	5.250	133.35	0.080	2.03	1/2	
KA042XP0*RBC	4.2500	107.950	4.7500	120.650	0.2500	6.350	4.438	112.73	4.563	115.90	0.025	0.64	1/8	
KB042XP0*RBC	4.2500	107.950	4.8750	123.825	0.3125	7.938	4.484	113.89	4.641	117.88	0.032	0.81	5/32	
KC042XP0*RBC	4.2500	107.950	5.0000	127.000	0.3750	9.525	4.531	115.09	4.719	119.86	0.040	1.02	3/16	
KD042XP0*RBC	4.2500	107.950	5.2500	133.350	0.5000	12.700	4.625	117.48	4.875	123.83	0.060	1.52	1/4	
KF042XP0*RBC	4.2500	107.950	5.7500	146.050	0.7500	19.050	4.813	122.25	5.188	131.78	0.080	2.03	3/8	
KG042XP0*RBC	4.2500	107.950	6.2500	158.750	1.0000	25.400	5.000	127.00	5.500	139.70	0.080	2.03	1/2	
KA045XP0*RBC	4.5000	114.300	5.0000	127.000	0.2500	6.350	4.688	119.08	4.813	122.25	0.025	0.64	1/8	
KB045XP0*RBC	4.5000	114.300	5.1250	130.175	0.3125	7.938	4.734	120.24	4.891	124.23	0.032	0.81	5/32	
KC045XP0*RBC	4.5000	114.300	5.2500	133.350	0.3750	9.525	4.781	121.44	4.969	126.21	0.040	1.02	3/16	
KD045XP0*RBC	4.5000	114.300	5.5000	139.700	0.5000	12.700	4.875	123.83	5.125	130.18	0.060	1.52	1/4	
KF045XP0*RBC		114.300	6.0000	152.400	0.7500	19.050	5.063	128.60	5.438	138.13	0.080	2.03	3/8	
KG045XP0*RBC	4.5000	114.300	6.5000	165.100	1.0000	25.400	5.250	133.35	5.750	146.05	0.080	2.03	1/2	
KA047XP0*RBC	4.7500	120.650	5.2500	133.350	0.2500	6.350	4.938	125.43	5.063	128.60	0.025	0.64	1/8	
KB047XP0*RBC	1	120.650	5.3750	136.525	0.3125	7.938	4.984	126.59	5.141	130.58	0.032	0.81	5/32	
KC047XP0*RBC		120.650	5.5000	139.700	0.3750	9.525	5.031	127.79	5.219	132.56	0.040	1.02	3/16	
KD047XP0*RBC		120.650	5.7500	146.050	0.5000	12.700	5.125	130.18	5.375	136.53	0.060	1.52	1/4	
KF047XP0*RBC	4.7500	120.650	6.2500	158.750	0.7500	19.050	5.313	134.95	5.688	144.48	0.080	2.03	3/8	
KG047XP0*RBC	4.7500	120.650	6.7500	171.450	1.0000	25.400	5.500	139.70	6.000	152.40	0.080	2.03	1/2	
KA050XP0*RBC	5.0000	127.000	5.5000	139.700	0.2500	6.350	5.188	131.78	5.313	134.95	0.025	0.64	1/8	
KB050XP0*RBC		127.000	5.6250	142.875	0.3125	7.938	5.234	132.94		136.93	0.032	0.81	5/32	
KC050XP0*RBC		127.000		146.050	0.3750	9.525	5.281	134.14	1	138.91	0.040	1.02	3/16	
KD050XP0*RBC		127.000	6.0000	152.400		12.700	5.375	136.53		142.88	0.060	1.52	1/4	
KF050XP0*RBC		127.000	6.5000	165.100	0.7500		5.563	141.30		150.83	0.080	2.03	3/8	
KG050XP0*RBC		127.000	7.0000	177.800	1.0000		5.750	146.05		158.75	0.080	2.03	1/2	
KA055XP0*RBC	l	139.700	6.0000	152.400	0.2500	6.350	5.688	144.48	1	147.65	0.025	0.64	1/8	
KB055XP0*RBC		139.700	6.1250	155.575	0.3125	7.938	5.734	145.64	1	149.63	0.032	0.81	5/32	
KC055XP0*RBC	1	139.700	6.2500	158.750	0.3750	9.525	5.781	146.84	1	151.61	0.040	1.02	3/16	
KD055XP0*RBC	l	139.700	6.5000	165.100	0.5000		5.875	149.23	1	155.58	0.060	1.52	1/4	
KF055XP0*RBC		139.700	7.0000	177.800	0.7500		6.063	154.00		163.53	0.080	2.03	3/8	
KG055XP0*RBC	5.5000	139.700	7.5000	190.500	1.0000	25.400	6.250	158.75	6.750	171.45	0.080	2.03	1/2	

*The alphanumeric identification system is used under license.

- 52100 steel
- Large diameter
- Light weight
- Small cross-section
- Snap-over ball separator

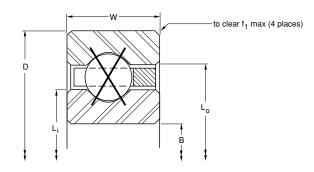

								LUAD K	ATINGS						Limiting
Ball		prox.		Rac	lial			Thr	ust			Moi	ment		Speed
Quantity	W	eight	Sta	tic	Dyna	amic	Sta	tic	Dyn	amic	Sta	atic	Dyna	amic	(RPM)
	lbs.	kg	lbf	N	lbf	N	lbf	N	lbf	N	lbf - in	Nm	lbf - in	Nm	
21	0.03	0.014	290	1,290	270	1,200	730	3,250	680	3,020	170	20	160	20	10,110
29	0.04	0.018	400	1,780	310	1,380	1,000	4,450	770	3,430	340	40	260	30	7,110
27	0.10	0.045	680	3,020	514	2,290	1,710	7,610	1,230	5,470	770	90	550	60	5,330
23	0.16	0.073	930	4,140	758	3,370	2,340	10,410	1,740	7,740	1,080	120	800	90	5,190
33	0.13	0.059	830	3,690	583	2,590	2,090	9,300	1,320	5,870	1,150	130	730	80	4,360
28	0.20	0.091	1,140	5,070	848	3,770	2,840	12,630	1,880	8,360	1,600	180	1,060	120	4,270
39	0.15	0.068	990	4,400	643	2,860	2,470	10,990	1,410	6,270	1,600	180	920	100	3,690
33	0.24	0.109	1,340	5,960	933	4,150	3,350	14,900	1,990	8,850	2,220	250	1,320	150	3,620
45	0.18	0.082	1,140	5,070	701	3,120	2,850	12,680	1,480	6,580	2,130	240	1,110	130	3,200
38	0.27	0.122	1,540	6,850	1,014	4,510	3,860	17,170	2,100	9,340	2,940	330	1,600	180	3,150
51	0.19	0.086	1,290	5,740	756	3,360	3,220	14,320	1,550	6,890	2,740	310	1,320	150	2,820
43	0.30	0.136	1,750	7,780	1,091	4,850	4,370	19,440	2,210	9,830	3,770	430	1,900	210	2,780
35	0.45	0.204	2,100	9,340	1,417	6,300	5,260	23,400	2,810	12,500	4,600	520	2,460	280	2,740
27	0.78	0.354	3,080	13,700	2,311	10,280	7,700	34,250	4,890	21,750	6,930	780	4,400	500	2,670
19	1.90	0.862	5,360	23,840	4,665	20,750	13,400	59,610	8,830	39,280	12,730	1,440	8,390	950	2,530
15	3.60	1.633	8,210	36,520	7,979	35,490	20,520	91,280	15,150	67,390	20,520	2,320	15,150	1,710	2,400
54	0.20	0.091	1,370	6,090	783	3,480	3,410	15,170	1,590	7,070	3,070	350	1,430	160	2,670
45	0.31	0.141	1,830	8,140	1,120	4,980	4,570	20,330	2,230	9,920	4,170	470	2,040	230	2,630
37	0.47	0.213	2,220	9,880	1,464	6,510	5,560	24,730	2,870	12,770	5,140	580	2,650	300	2,590
28	0.83	0.376	3,190	14,190	2,355	10,480	7,980	35,500	4,920	21,890	7,580	860	4,670	530	2,530
20	2.00	0.907	5,640	25,090	4,795	21,330	14,110	62,760	8,990	39,990	14,110	1,590	8,993	1,020	2,400
15	3.80	1.724	8,210	36,520	7,917	35,220	20,520	91,280	15,150	67,390	21,550	2,430	15,910	1,800	2,290
57	0.22	0.100	1,440	6,410	809	3,600	3,600	16,010	1,610	7,160	3,420	390	1,530	170	2,530
48	0.33	0.150	1,950	8,670	1,165	5,180	4,880	21,710	2,300	10,230	4,690	530	2,220	250	2,490
39	0.48	0.218	2,340	10,410	1,510	6,720	5,860	26,070	2,920	12,990	5,710	650	2,850	320	2,460
30	0.88	0.399	3,420	15,210	2,454	10,920	8,550	38,030	5,080	22,600	8,550	970	5,080	570	2,400
21	2.10	0.953	5,930	26,380	4,923	21,900	14,810	65,880	9,180	40,830	15,550	1,760	9,695	1,100	2,290
16	4.00	1.814	8,760	38,970	8,205	36,500	21,890	97,370	15,820	70,370	24,080	2,720	17,400	1,970	2,180
60	0.23	0.104	1,520	6,760	834	3,710	3,790	16,860	1,650	7,340	3,790	430	1,650	190	2,400
50	0.34	0.154	2,030	9,030	1,193	5,310	5,080	22,600	2,310	10,280	5,140	580	2,340	260	2,370
41	0.50	0.227	2,460	10,940	1,556	6,920	6,160	27,400	2,970	13,210	6,320	710	3,040	340	2,340
31	0.94	0.426	3,530	15,700	2,496	11,100	8,840	39,320	5,130	22,820	9,280	1,050	5,380	610	2,290
22	2.20	0.998	6,210	27,620	5,048	22,450	15,520	69,040	9,380	41,720	17,070	1,930	10,416	1,180	2,180
17	4.10	1.860	9,300	41,370	8,487	37,750	23,260		16,470	73,260	26,740	3,020	18,940	2,140	2,090
63	0.24	0.109	1,590	7,070	859	3,820	3,980	103,47	1,680	7,470	4,180	470	1,760	200	2,290
53	0.38	0.172	2,150	9,560	1,236	5,500	5,380	0	2,380	10,590	5,720	650	2,520	280	2,260
43	0.58	0.263	2,590	11,520	1,600	7,120	6,460	17,700	3,040	13,520	6,950	790	3,270	370	2,230
33	1.00	0.454	3,760	16,730	2,592	11,530	9,410	23,930	5,270	23,440	10,350	1,170	5,800	660	2,180
23	2.30	1.043	6,490	28,870	5,172			28,740	9,520	42,350	18,660		11,157	1,260	2,090
18	4.30	1.950	9,850	43,810	8,762		24,620		17,110	76,110	29,550		20,530	2,320	2,000
69	0.25	0.113	1,750	7,780	908	4,040		72,150	1,720	7,650	5,020	570	1,970	220	2,090
58	0.41	0.186	2,360	10,500	1,304	5,800	5,890	•	2,460	10,940	6,850	770	2,860	320	2,060
47	0.59	0.268	2,830	12,590	1,687	7,500		109,52	3,120	13,880	8,300	940	3,717	420	2,040
36	1.06	0.481	4,100	18,240	2,725	12,120	10,260	0	5,450	24,240	12,310		6,540	740	2,000
25	2.50	1.134	7,050	31,360		24,090	17,630		9,820	43,680	22,040		12,696	1,430	1,920
19	4.70	2.132	10,400	46,260		39,940	25,990		17,460		33,790		22,700	2,560	1,850
Refer to the En	l		<u> </u>	•		** *	L ,			•		-	·		All rights rose

Refer to the Engineering section for load and speed limitations.

4-POINT CONTACT, X-TYPE

PART

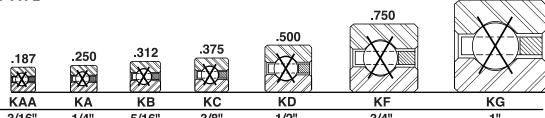
NOMINAL DIMENSIONS


PART Number*	В	D	W	Land D	Diameter	f ₁	Ball	
NUIVIDEN	Bore	Outside Diameter	Width	L _i -Inner Ring	Lo -Outer Ring	Housing Fillet	Diameter	
	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in.	
KA060XP0*RBC	6.0000 152.400	6.5000 165.100	0.2500 6.350	6.188 157.18	6.313 160.35	0.025 0.64	1/8	
KB060XP0*RBC	6.0000 152.400	6.6250 168.275	0.3125 7.938	6.234 158.34	6.391 162.33	0.032 0.81	5/32	
KC060XP0*RBC	6.0000 152.400	6.7500 171.450	0.3750 9.525	6.281 159.54	6.469 164.31	0.040 1.02	3/16	
KD060XP0*RBC	6.0000 152.400	7.0000 177.800	0.5000 12.700	6.375 161.93	6.625 168.28	0.060 1.52	1/4	
KF060XP0*RBC	6.0000 152.400	7.5000 190.500	0.7500 19.050	6.563 166.70	6.938 176.23	0.080 2.03	3/8	
KG060XP0*RBC	6.0000 152.400	8.0000 203.200	1.0000 25.400	6.750 171.45	7.250 184.15	0.080 2.03	1/2	
KA065XP0*RBC	6.5000 165.100	7.0000 177.800	0.2500 6.350	6.688 169.88	6.813 173.05	0.025 0.64	1/8	
KB065XP0*RBC	6.5000 165.100	7.1250 180.975	0.3125 7.938	6.734 171.04	6.891 175.03	0.032 0.81	5/32	
KC065XP0*RBC	6.5000 165.100	7.2500 184.150	0.3750 9.525	6.781 172.24	6.969 177.01	0.040 1.02	3/16	
KD065XP0*RBC	6.5000 165.100	7.5000 190.500	0.5000 12.700	6.875 174.63	7.125 180.98	0.060 1.52	1/4	
KF065XP0*RBC	6.5000 165.100	8.0000 203.200	0.7500 19.050	7.063 179.40	7.438 188.93	0.080 2.03	3/8	
KG065XP0*RBC	6.5000 165.100	8.5000 215.900	1.0000 25.400	7.250 184.15	7.750 196.85	0.080 2.03	1/2	
KA070XP0*RBC	7.0000 177.800	7.5000 190.500	0.2500 6.350	7.188 182.58	7.313 185.75	0.025 0.64	1/8	
KB070XP0*RBC	7.0000 177.800	7.6250 193.675	0.3125 7.938	7.234 183.74	7.391 187.73	0.032 0.81	5/32	
KC070XP0*RBC	7.0000 177.800	7.7500 196.850	0.3750 9.525	7.281 184.94	7.469 189.71	0.040 1.02	3/16	
KD070XP0*RBC	7.0000 177.800	8.0000 203.200	0.5000 12.700	7.375 187.33	7.625 193.68	0.060 1.52	1/4	
KF070XP0*RBC	7.0000 177.800	8.5000 215.900	0.7500 19.050	7.563 192.10	7.938 201.63	0.080 2.03	3/8	
KG070XP0*RBC	7.0000 177.800	9.0000 228.600	1.0000 25.400	7.750 196.85	8.250 209 .55	0.080 2.03	1/2	
KA075XP0*RBC	7.5000 190.500	8.0000 203.200	0.2500 6.350	7.688 195.28	7.813 198.45	0.025 0.64	1/8	
KB075XP0*RBC	7.5000 190.500	8.1250 206.375	0.3125 7.938	7.734 196.44	7.891 200.43	0.032 0.81	5/32	
KC075XP0*RBC	7.5000 190.500	8.2500 209.550	0.3750 9.525	7.781 197.64	7.969 202.41	0.040 1.02	3/16	
KD075XP0*RBC	7.5000 190.500	8.5000 215.900	0.5000 12.700	7.875 200.03	8.125 206.38	0.060 1.52	1/4	
KF075XP0*RBC	7.5000 190.500	9.0000 228.600	0.7500 19.050	8.063 204.80	8.438 214.33	0.080 2.03	3/8	
KG075XP0*RBC	7.5000 190.500	9.5000 241.300	1.0000 25.400	8.250 209.55	8.750 222.25	0.080 2.03	1/2	
KA080XP0*RBC	8.0000 203.200	8.5000 215.900	0.2500 6.350	8.188 207.98	8.313 211 .15	0.025 0.64	1/8	
KB080XP0*RBC	8.0000 203.200	8.6250 219.075	0.3125 7.938	8.234 209.14	8.391 213.13	0.032 0.81	5/32	
KC080XP0*RBC	8.0000 203.200	8.7500 222.250	0.3750 9.525	8.281 210 .34	8.469 215 .11	0.040 1.02	3/16	
KD080XP0*RBC	8.0000 203.200	9.0000 228.600	0.5000 12.700	8.375 212.73	8.625 219.08	0.060 1.52	1/4	
KF080XP0*RBC	8.0000 203.200	9.5000 241.300	0.7500 19.050	8.563 217.50	8.938 227.03	0.080 2.03	3/8	
KG080XP0*RBC	8.0000 203.200	10.0000 254.000	1.0000 25.400	8.750 222.25	9.250 234 .95	0.080 2.03	1/2	
KA090XP0*RBC	9.0000 228.600	9.5000 241.300	0.2500 6.350	9.188 233.38	9.313 236.55	0.025 0.64	1/8	
KB090XP0*RBC	9.0000 228.600	9.6250 244.475	0.3125 7.938	9.234 234.54	9.391 238.53	0.032 0.81	5/32	
KC090XP0*RBC	9.0000 228.600	9.7500 247.650	0.3750 9.525	9.281 235.74	9.469 240.51	0.040 1.02	3/16	
KD090XP0*RBC	9.0000 228.600	10.0000 254.000	0.5000 12.700	9.375 238.13	9.625 244.48	0.060 1.52	1/4	
KF090XP0*RBC	9.0000 228.600	10.5000 266.700	0.7500 19.050	9.563 242.90	9.938 252.43	0.080 2.03	3/8	
KG090XP0*RBC	9.0000 228.600	11.0000 279.400	1.0000 25.400	9.750 247.65	10.250 260.35	0.080 2.03	1/2	
KA100XP0*RBC	10.0000 254.000	10.5000 266.700	0.2500 6.350	10.188 258.78	10.313 261 .95	0.025 0.64	1/8	l
KB100XP0*RBC	10.0000 254.000	10.6250 269.875	0.3125 7.938	10.234 259.94	10.391 263.93	0.032 0.81	5/32	l
KC100XP0*RBC	10.0000 254.000	10.7500 273.050	0.3750 9.525	10.281 261.14	10.469 265.91	0.040 1.02	3/16	
KD100XP0*RBC	10.0000 254.000	11.0000 279.400	0.5000 12.700	10.375 263.53	10.625 269.88	0.060 1.52	1/4	l
KF100XP0*RBC	10.0000 254.000	11.5000 292.100	0.7500 19.050	10.563 268.30	10.938 277.83	0.080 2.03	3/8	
KG100XP0*RBC	10.0000 254.000	12.0000 304.800	1.0000 25.400	10.750 273.05	11.250 285.75	0.080 2.03	1/2	
*The alphanumaria ident			-			Doorings Insernerated A		

 $^{{}^{\}star}\mathrm{The}$ alphanumeric identification system is used under license.

- 52100 steel
- Large diameter
- Light weight
- Small cross-section
- Snap-over ball separator

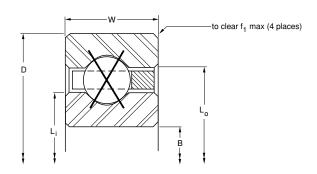
								LOAD R	RATINGS						Limiting
Ball		prox.		Rac	dial			Thi	rust			Mor	nent		Speed
Quantity	W	eight	Sta	tic	Dyna	amic	Sta	tic	Dyn	amic	Sta	atic	Dyna	mic	(RPM)
	lbs.	kg	lbf	N	lbf	N	lbf	N	lbf	N	lbf - in	Nm	lbf - in	Nm	
75	0.28	0.127	1,900	8,450	955	4,250	4,740	21,080	1,780	7,920	5,930	670	2,240	250	1,920
63	0.44	0.200	2,560	11,390	1,371	6,100	6,400	28,470	2,540	11,300	8,080	910	3,247	370	1,900
51	0.63	0.286	3,070	13,660	1,770	7,870	7,660	34,070	3,220	14,320	9,770	1,100	4,234	480	1,880
39	1.16	0.526	4,450	19,790	2,855	12,700	11,120	*	5,610	24,950	14,450	1,630	7,290	820	1,850
27	2.70	1.225	7,620	33,900	5,651	25,140	l '	84,740	10,150	45,150	25,710	2,900	14,311	1,620	1,780
21	5.10	2.313	11,490	51,110	9,503	42,270		127,800	18,290	81,360	40,220	4,540	25,610	2,890	1,710
81	0.30	0.136	2,050	9,120	1,001	4,450		22,770	1,840	8,180	6,910	780	2,535	290	1,780
68	0.47	0.213	2,760	12,280	1,435	6,380		30,740	2,590	11,520	9,410	1,060	3,668	410	1,760
55	0.68	0.308	3,310	14,720	1,851	8,230	8,270	36,790	3,300	14,680	11,370	1,280	4,775	540	1,750
42	1.22	0.553	4,790	21,310	2,980	13,260		53,250	5,740	25,530	16,760	1,890	8,040	910	1,710
29	2.90	1.315	8,180	36,390	5,880	26,160		91,010	10,380	46,170	29,660	3,350	15,993	1,810	1,660
22	5.40	2.449	12,040	53,560	9,713	43,210		133,890	18,520	82,380	45,140		27,770	3,140	1,600
87	0.31	0.141	2,200	9,790	1,046	4,650		24,470	1,850	8,230	7,980	900	2,844	320	1,660
73	0.50	0.227	2,970	13,210	1,498	6,660	7,420		2,660	11,830	10,850	1,230	4,109	460	1,640
59	0.73	0.331	3,550	15,790	1,931	8,590	8,870		3,420	15,210	13,080	1,480	5,341	600	1,630
45	1.31	0.594	5,130	22,820	3,103	13,800		57,070	5,880	26,160	19,240		8,810	1,000	1,600
31	3.20	1.451	8,750	38,920	6,103	27,150		97,280	10,640	47,330	33,890		17,744	2,000	1,550
24	5.80	2.631	13,130	58,410	10,208	45,410		146,040	19,330	85,980	52,530		30,930	3,490	1,500
93	0.34	0.154	2,350	10,450	1,089	4,840		26,160	1,890	8,410	9,120	1,030	3,165	360	1,550
78	0.53	0.240	3,170	14,100	1,559	6,930		35,230	2,730	12,140	12,380	1,400	4,568	520	1,540
63 48	0.78 1.41	0.354	3,790	16,860	2,007	8,930	9,470	42,120	3,480	15,480	14,910	1,680	5,930	670	1,520
33	3.40	0.640	5,470	24,330	3,222	14,330		60,850	6,060	26,960 48,620	21,890		9,700	1,100	1,500 1,450
33 25	6.10	1.542 2.767	9,310	41,410	6,323	28,130		103,550	10,930	· · · · · ·	38,410		19,568 33,196	2,210 3,750	
99	0.10	0.172	13,680 2,500	60,850	10,410	46,310 5,030		152,130 27,850	1,970	86,560 8,760	58,140 10,330		3,499	400	1,410
83	0.57	0.172	3,370	11,120 14,990	1,618	7,200		37,500	2,790	12,410	14,020	1,170	5,045	570	1,450 1,440
67	0.84	0.239	4,030	17,930	2,082	9,260		44,790	3,560	15,840	16,870		6,542	740	1,440
51	1.53	0.694	5,810	25,840	3,338	14,850	l '	64,680	6,170	27,450	24,710		10,643	1,200	1,410
35	3.50	1.588	9,880	43,950	6,535	29,070	l '	109,830	11,190	49,780	l '	*	21,453	2,420	1,370
27	6.50	2.948	14,770	65,700	10,882	48,410	l '	164,320	20,230	89,990	66,480	*	36,743	4,150	1,330
111	0.44	0.200	2,810	12,500	1,212	5,390	· '	31,230	2,040	9,070	12,990	1,470	4,204	470	1,300
93	0.66	0.299	3,780	16,810	1,732	7,700	· '	42,040	2,890	12,860	17,600	1,990	6,050	680	1,290
75	0.94	0.426	4,510	20,060	2,226	9,900		50,130	3,690	16,410	21,130		7,830	880	1,280
57	1.72	0.780	6,500	28,910	3,561	15,840		72,280	6,410	28,510	30,870		12,693	1,430	1,260
39	3.90	1.769	11,000	48,930	6,947	30,900	· '	122,370	11,630	51,730	53,640		25,410	2,870	1,230
30	7.20	3.266	16,420	73,040	11,526	51,270		182,560	21,020	93,500	82,080	*	43,240	4,890	1,200
123	0.50	0.227	3,110	13,830	1,289	5,730	·	34,610	2,180	9,700	15,940		4,956	560	1,170
103	0.73	0.331	4,190	18,640	1,841	8,190	10,460	46,530	3,080	13,700	21,580	2,440	7,121	800	1,160
83	1.06	0.481	4,990	22,200	2,364	10,520	l '	55,470	3,930	17,480	25,880		9,201	1,040	1,160
63	1.88		7,180	31,940	3,776	16,800	l '	79,890	6,680	29,710	37,710		14,872	1,680	1,140
43			12,130		7,342		1 ′	134,910	12,100	53,820			1 '	3,350	1,120
33	7.90	3.583	18,060	80,330	l '	54,030	l '	200,790	21,790	96,930	99,320		50,124	5,660	1,090
63 43	1.88 4.30	0.853 1.950	7,180 12,130	31,940 53,960	3,776 7,342	16,800 32,660	17,960 30,330	79,890 134,910	6,680 12,100	29,710 53,820	37,710 65,210	4,260 7,370	14,872 29,608	1,680 3,350	1,1 1,1


Refer to the Engineering section for load and speed limitations.

1.000

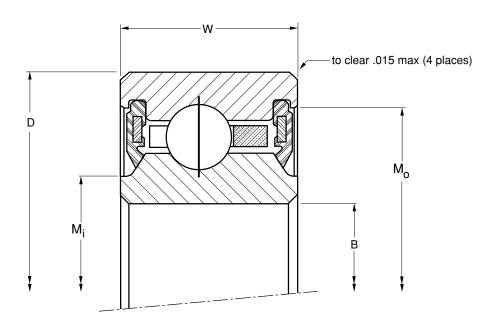
4-POINT CONTACT, X-TYPE

PART


PART	В	D	W	I and D	Diameter	f ₁	Ball	
NUMBER*	Bore	Outside Diameter	Width	L _i -Inner Ring	L _o -Outer Ring	Housing Fillet	Diameter	
	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in.	
KA110XP0*RBC	11.0000 279.400	11.5000 292.100	0.2500 6.350	11.188 284.18	11.313 287.35	0.025 0.64	1/8	
KB110XP0*RBC	11.0000 279.400	11.6250 295.275	0.3125 7.938	11.234	11.391 289.33	0.032 0.81	5/32	
KC110XP0*RBC	11.0000 279.400	11.7500 298.450	0.3750 9.525	11.281 286.54	11.469 291.31	0.040 1.02	3/16	
KD110XP0*RBC	11.0000 279.400	12.0000 304.800	0.5000 12.700	11.375 288.93	11.625 295.28	0.060 1.52	1/4	
KF110XP0*RBC	11.0000 279.400	12.5000 317.500	0.7500 19.050	11.563 293.70	11.938 303.23	0.080 2.03	3/8	
KG110XP0*RBC	11.0000 279.400	13.0000 330.200	1.0000 25.400	11.750 298.45	12.250 311.15	0.080 2.03	1/2	
KA120XP0*RBC	12.0000 304.800	12.5000 317.500	0.2500 6.350	12.188 309.58	12.313 312.75	0.025 0.64	1/8	
KB120XP0*RBC	12.0000 304.800	12.6250 320.675	0.3125 7.938	12.234 310.74	12.391 314.73	0.032 0.81	5/32	
KC120XP0*RBC	12.0000 304.800	12.7500 323.850	0.3750 <u>9.525</u>	12.281 311.94	12.469 316.71	0.040 1.02	3/16	
KD120XP0*RBC	12.0000 304.800	13.0000 330.200	0.5000 12.700	12.375 314.33	12.625 320.68	0.060 1.52	1/4	
KF120XP0*RBC	12.0000 304.800	13.5000 342.900	0.7500 19.050	12.563 319.10	12.938 328.63	0.080 2.03	3/8	
KG120XP0*RBC	12.0000 304.800	14.0000 355.600	1.0000 25.400	12.750 323.85	13.250 336.55	0.080 2.03	1/2	
KB140XP0*RBC	14.0000 355.600	14.6250 371.475	0.3125 7.938	14.234 361.54	14.391 365.53	0.032 0.81	5/32	
KC140XP0*RBC	14.0000 355.600	14.7500 374.650	0.3750 <u>9.525</u>	14.281 362.74	14.469 367.51	0.040 1.02	3/16	
KD140XP0*RBC	14.0000 355.600	15.0000 381.000	0.5000 12.700	14.375 365.13	14.625 371.48	0.060 1.52	1/4	
KF140XP0*RBC	14.0000 355.600	15.5000 393 .700	0.7500 19.050	14.563 369.90	14.938 379.43	0.080 2.03	3/8	
KG140XP0*RBC	14.0000 355.600	16.0000 406.400	1.0000 25.400	14.750 374.65	15.250 387.35	0.080 2.03	1/2	
KB160XP0*RBC	16.0000 406.400	16.6250 422.275	0.3125 7.938	16.234 412.34	16.391 416.33	0.032 0.81	5/32	
KC160XP0*RBC	16.0000 406.400	16.7500 425.450	0.3750 9.525	16.281 413.54	16.469 418.31	0.040 1.02	3/16	
KD160XP0*RBC	16.0000 406.400	17.0000 431.800	0.5000 12.700	16.375 415.93	16.625 422.28	0.060 1.52	1/4	
KF160XP0*RBC	16.0000 406.400	17.5000 444.500	0.7500 19.050	16.563 420.70	16.938 430.23	0.080 2.03	3/8	
KG160XP0*RBC	16.0000 406.400	18.0000 457.200	1.0000 25.400	16.750 425.45	17.250 438.15	0.080 2.03	1/2	
KB180XP0*RBC	18.0000 457.200	18.6250 473.075	0.3125 7.938	18.234 463 .14	18.391 467.13	0.032 0.81	5/32	
KC180XP0*RBC	18.0000 457.200	18.7500 476.250	0.3750 9.525	18.281 464.34	18.469 469.11	0.040 1.02	3/16	
KD180XP0*RBC	18.0000 457.200	19.0000 482.600	0.5000 12.700	18.375 466.73	18.625 473.08	0.060 1.52	1/4	
KF180XP0*RBC	18.0000 457.200	19.5000 495.300	0.7500 19.050	18.563 471.50	18.938 481.03	0.080 2.03	3/8	
KG180XP0*RBC	18.0000 457.200	20.0000 508.000	1.0000 25.400	18.750 476.25	19.250 488.95	0.080 2.03	1/2	
KB200XP0*RBC	20.0000 508.000	20.6250 523.875	0.3125 7.938	20.234 513.94	20.391 517.93	0.032 0.81	5/32	
KC200XP0*RBC	20.0000 508.000	20.7500 527.050	0.3750 9.525	20.281 515.14	20.469 519.91	0.040 1.02	3/16	
KD200XP0*RBC	20.0000 508.000	21.0000 533.400	0.5000 12.700	20.375 517.53	20.625 523.88	0.060 1.52	1/4	
KF200XP0*RBC	20.0000 508.000	21.5000 546.100	0.7500 19.050	20.563 522.30	20.938 531.83	0.080 2.03	3/8	
KG200XP0*RBC	20.0000 508.000	22.0000 558.800	1.0000 25.400	20.750 527.05	21.250 539.75	0.080 2.03	1/2	
KC250XP0*RBC	25.0000 635.000	25.7500 654.050	0.3750 9.525	25.281 642.14	25.469 646.91	0.040 1.02	3/16	
KD250XP0*RBC	25.0000 635.000	26.0000 660.400	0.5000 12.700	25.375 644.53	25.625 650.88	0.060 1.52	1/4	
KF250XP0*RBC	25.0000 635.000	26.5000 673.100	0.7500 19.050	25.563 649.30	25.938 658.83	0.080 2.03	3/8	
KG250XP0*RBC	25.0000 635.000	27.0000 685.800	1.0000 25.400	25.750 654.05	26.250 666.75	0.080 2.03	1/2	
KC300XP0*RBC	30.0000 762.000	30.7500 781.050	0.3750 9.525	30.281 769.14	30.469 773.91	0.040 1.02	3/16	
KD300XP0*RBC	30.0000 762.000	31.0000 787.400	0.5000 12.700	30.375 771.53	30.625 777.88	0.060 1.52	1/4	
KF300XP0*RBC	30.0000 762.000	31.5000 800.100	0.7500 19.050	30.563 776.30	30.938 785.83	0.080 2.03	3/8	
KG300XP0*RBC	30.0000 762.000	32.0000 812.800	1.0000 25.400	30.750 781.05	31.250 793.75	0.080 2.03	1/2	
KF350XP0*RBC	35.0000 889.000	36.5000 927.100	0.7500 19.050	35.563 903.30	35.938 912.83	0.080 2.03	3/8	
KG350XP0*RBC	35.0000 889.000	37.0000 939.800	1.0000 25.400	35.750 908.05	36.250 920.75	0.080 2.03	1/2	
KF400XP0*RBC	40.0000 1016.000	41.5000 1054.100	0.7500 19.050	40.563 1030.30	40.938 1039.83	0.080 2.03	3/8	
KG400XP0*RBC	40.0000 1016.000	42.0000 1066.800	1.0000 25.400	40.750 1035.05	41.250 1047.75	0.080 2.03	1/2	

 $^{{}^{\}star}\mathrm{The}$ alphanumeric identification system is used under license.

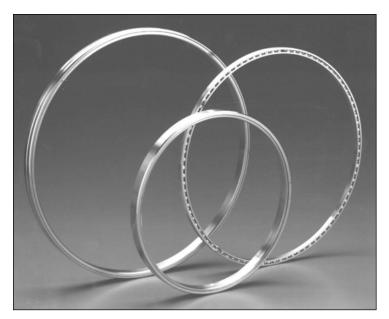
- 52100 steel
- Large diameter
- Light weight
- Small cross-section
- Snap-over ball separator



Ball Approx. Velepht Weight Weight Weight Will Wi	Limiting
	Speed
	(RPM)
113	\
91	1,070
669	1,060
47	1,050
36	1,040
147	1,020
123	1,000
99 1.25 0.567 5,950 26,470 2,622 11,660 14,880 66,190 4,420 19,660 36,830 4,160 12,174 1,380 75 2.25 1,021 8,550 38,030 4,178 18,580 21,380 95,100 7,080 31,949 53,440 6,040 19,590 2,210 39 9.30 4,218 21,340 94,930 13,315 59,230 53,350 237,310 23,180 103,110 138,700 15,670 64,935 7,340 143 1.05 0.476 5,810 25,840 2,234 9,940 14,530 64,630 3,840 17,080 41,580 4,700 11,994 1,360 115 1.52 0.689 6,910 30,740 2,862 12,730 17,280 76,870 4,890 21,750 49,690 5,610 15,434 1,740 87 2.73 1,238 9,920 44,130 4,551 20,240 24,800 110,320 7,670 34,120 71,910 8,120 24,755 2,800 45 10.80 4,899 24,620 109,520 14,404 64,070 61,560 27,3830 24,300 18,600 18,4700 20,870 81,056 9,160 131 1.73 0.785 7,880 35,050 3,086 13,730 19,690 87,590 5,330 23,710 64,480 7,290 18,955 2,140 99 3.10 1.406 11,290 50,220 4,899 21,790 28,220 125,530 8,360 37,190 93,110 10,520 30,325 3,430 67 7,10 3.221 18,900 84,070 9,421 41,910 47,260 210,220 15,650 7,560 2,510 113,470 237,200 26,800 98,373 11,110 183 1.35 0.612 7,440 33,090 2,576 11,460 18,590 82,690 4,520 20,100 99,371 11,10 88,00 7,690 17,690 3,490 14,77 11,94 8,800 3,490 14,77 11,94 8,800 3,490 14,77 11,94 8,800 3,490 14,790 14,790 14,910 14,750 14,660 22,000 14,77 11,94 14,910 47,260 210,220 15,650 7,560 25,600 3,800 7,690 3,800 14,910 10,520 30,325 3,430 14,77 11,94 8,800 3	980
75 2.25 1.021 8,550 38,030 4,178 18,580 21,380 95,100 7,080 31,490 53,440 6,040 19,590 2,210 51 5.20 2.359 14,390 64,010 8,084 35,960 35,970 160,000 13,190 58,070 10,301 13,810 103,110 138,700 15,670 64,395 7,340 143 1.05 0.476 5,810 25,840 2,234 9,940 14,530 64,630 3,840 17,080 41,580 4,70 11,934 1,360 4,890 21,750 48,960 5,610 15,434 1,740 1,750 4,890 21,750 48,960 5,610 15,434 1,740 1,750 4,890 21,750 48,960 5,610 15,434 1,740 1,750 4,890 21,750 48,960 3,170 14,174 1,740 41,520 6,620 4,620 1,511 1,750 4,620 8,174 1,740 4,620 1,610	970
51	970
39 9.30 4.218 21,340 94,930 13,315 59,230 53,350 237,310 23,180 103,110 138,700 15,670 64,935 7,340 143 1.05 0.689 6,910 30,740 2,862 12,730 17,280 76,870 4,890 21,750 49,690 5,610 15,434 1,740 87 2.73 1.238 9,920 44,130 4,551 20,240 24,800 110,320 7,670 34,120 71,910 8,120 24,755 2,800 45 10.80 4.899 24,620 199,520 14,404 64,070 61,560 273,830 24,300 108,090 184,700 20,870 81,656 5,490 45 10.80 4.899 24,620 199,520 14,404 64,070 61,560 273,830 24,300 108,090 184,700 20,870 81,656 9,160 163 1.20 0.544 6,620 29,450 2,410 10,720 16,560 73,660 4,190 18,640 54,020 61,000 14,750 1,670 131 1.73 0.785 7,880 35,050 3,086 13,730 19,690 87,590 5,330 23,710 64,480 7,299 18,955 2,140 99 3.10 1.406 11,290 50,220 4,899 21,790 28,220 15,820 70,370 158,300 7,890 18,955 2,400 183 1.35 0.612 7,440 33,090 2,576 11,460 18,590 82,690 4,520 20,110 68,090 7,690 17,694 2,000 147 1.94 0.880 8,840 39,320 3,295 14,660 22,090 8,260 5,760 25,620 81,190 91,700 22,2712 2,570 111 3.48 1.579 12,650 56,270 5,226 23,250 31,640 140,740 9,030 40,170 117,000 13,220 36,268 4,100 75 7,90 3,583 21,160 94,120 10,028 44,610 52,900 235,310 7,000 7,690 7,690 7,690 7,697 7,597 7,790 34,870 7,400 12,930 2,240 7,400 2,241 7,240	960
143	940
115	920
87	840
59 6.00 2.722 16,650 74,060 3,775 39,030 41,620 185,130 14,530 64,630 12,800 13,870 48,556 5,490 45 10,80 4,899 24,620 109,520 14,404 64,070 16,560 273,830 24,300 108,090 184,700 20,870 81,056 9,160 131 1.73 0.785 7,880 35,050 3,086 13,730 19,690 87,590 5,330 23,710 64,480 7,290 18,955 2,140 99 3.10 1.406 11,290 50,220 4,899 21,790 28,220 125,530 8,360 37,190 93,110 10,520 30,325 3,430 67 7.10 3.221 18,900 84,070 9,421 41,910 47,260 210,220 15,820 70,370 158,800 17,890 59,200 6,690 147 1.94 0.880 8,840 39,320 14,660 22,990 98,26	830
45	830
163	810
131	800
99 3.10 1.406 11,290 50,220 4,899 21,790 28,220 125,530 8,360 37,190 93,110 10,520 30,325 3,430 67 7.10 3.221 18,900 84,070 9,421 41,910 47,260 210,220 15,820 70,370 158,300 17,890 59,200 6,690 51 12.30 5.579 27,910 124,150 15,425 68,610 69,770 310,350 25,510 113,470 237,200 26,800 98,373 11,110 183 1.35 0.612 7,440 33,090 2,576 11,460 18,590 82,690 4,520 20,110 68,090 7,690 17,694 2,000 147 1.94 0.880 8,840 39,320 3,295 14,660 22,090 98,260 5,760 25,620 81,190 91,70 22,712 2,570 111 3.48 1.579 12,650 56,270 5,226 23,250 31,640 140,740 9,030 40,170 117,000 13,220 36,268 4,100 75 7.90 3.583 21,160 94,120 10,028 44,610 52,900 235,310 17,660 75,890 198,400 22,420 70,537 7,970 57 13.70 6.214 31,130 138,740 16,386 72,890 77,980 346,870 27,410 121,930 296,300 33,480 116,793 13,200 203 1.50 0.680 8,250 36,700 2,731 12,150 20,620 91,720 4,850 21,570 83,780 9,470 20,813 2,350 163 2.16 0.980 9,800 43,590 3,492 15,530 24,500 108,980 6,170 27,450 99,830 11,280 26,695 3,020 123 3.85 1.746 14,020 62,360 5,534 24,620 35,060 155,950 9,670 43,010 143,700 16,240 42,561 4,810 83 8.90 4.037 23,420 104,180 10,602 47,160 58,550 260,440 18,250 81,180 243,000 27,460 82,528 9,320 63 15.80 7.167 34,470 153,330 17,293 76,920 86,180 383,350 29,300 130,330 362,000 40,900 136,238 15,390 203 2.69 1.220 12,200 54,270 3,941 17,530 33,510 135,720 7,140 31,760 154,800 17,490 37,518 4,240 153 4.79 2.173 17,440 77,580 6,235 27,730 43,610 193,990 11,180 49,730 222,400 25,130 59,649 6,740 183 5.73 2.599 20,860 129,270 11,909 52,970 72,650 323,160 21,070 93,720 374,200 42,280 115,037 13,000 243 3.21 1.456 14,610 64,990 4,338 19,300 36,520 162,450 8,050 35,810 221,900 25,070 49,436 5,590 123 13.00 5.897 34,700 154,350 13,065 58,120 86,760 385,330 23,720 105,510 533,600 60,290 150,708 17,030	740
67 7.10 3.221 18,900 84,070 9,421 41,910 47,260 210,220 15,820 70,370 158,300 17,890 59,200 6,690 51 12.30 5.579 27,910 124,150 15,425 68,610 69,770 310,350 25,510 113,470 237,200 26,800 98,373 11,110 183 1.35 0.612 7,440 33,090 2,576 11,460 18,590 82,690 4,520 20,110 68,090 7,690 17,694 2,000 111 3.48 1.579 12,650 56,270 5,226 23,250 31,640 140,740 9,030 40,170 117,000 13,220 36,268 4,100 75 7.90 3.583 21,160 94,120 10,028 44,610 52,900 235,310 17,060 75,890 198,400 22,420 70,537 7,970 57 13.70 6.214 31,190 138,740 16,386 72,890 <t< td=""><td>730</td></t<>	730
51 12.30 5.579 27,910 124,150 15,425 68,610 69,770 310,350 25,510 113,470 237,200 26,800 98,373 11,110 183 1.35 0.612 7,440 33,090 2,576 11,460 18,590 82,690 4,520 20,110 68,090 7,690 17,694 2,000 147 1.94 0.880 8,840 39,320 3,295 14,660 22,090 98,260 5,760 25,620 81,190 9,170 22,712 2,570 111 3.48 1.579 12,650 56,270 5,226 23,250 31,640 140,740 9,030 40,170 117,000 13,220 36,268 4,100 75 7.90 3.583 21,160 94,120 10,028 44,610 52,900 235,310 17,060 75,890 198,400 22,420 70,537 7,970 57 13.70 6.214 31,190 138,740 16,386 72,890 77	730
183 1.35 0.612 7,440 33,090 2,576 11,460 18,590 82,690 4,520 20,110 68,090 7,690 17,694 2,000 147 1.94 0.880 8,840 39,320 3,295 14,660 22,090 98,260 5,760 25,620 81,190 9,170 22,712 2,570 111 3.48 1.579 12,650 56,270 5,226 23,250 31,640 140,740 9,030 40,170 117,000 13,220 36,268 4,100 75 7.90 3.583 21,160 94,120 10,028 44,610 52,900 235,310 17,060 75,890 198,400 22,420 70,537 7,970 57 13.70 6.214 31,190 138,740 16,386 72,890 77,980 346,870 27,410 121,930 296,300 33,480 116,793 13,200 203 1.50 0.680 8,250 36,700 2,731 12,150 20,620 91,720 4,850 21,570 83,780 9,470 20,813 2,350 <td>720</td>	720
147 1.94 0.880 8,840 33,320 3,295 14,660 22,090 98,260 5,760 25,620 81,190 9,170 22,712 2,570 111 3.48 1.579 12,650 56,270 5,226 23,250 31,640 140,740 9,030 40,170 117,000 13,220 36,268 4,100 75 7.90 3.583 21,160 94,120 10,028 44,610 52,900 235,310 17,060 75,890 198,400 22,420 70,537 7,970 57 13.70 6.214 31,190 138,740 16,386 72,890 77,980 346,870 27,410 121,930 296,300 33,480 116,793 13,200 203 1.50 0.680 8,250 36,700 2,731 12,150 20,620 91,720 4,850 21,570 83,780 9,470 20,813 2,350 163 2.16 0.980 9,800 43,590 3,492 15,530 24,500 108,980 6,170 27,450 99,830 11,280 26,695 3,020<	710
111 3.48 1.579 12,650 56,270 5,226 23,250 31,640 140,740 9,030 40,170 117,000 13,220 36,268 4,100 75 7.90 3.583 21,160 94,120 10,028 44,610 52,900 235,310 17,060 75,890 198,400 22,420 70,537 7,970 57 13.70 6.214 31,190 138,740 16,386 72,890 77,980 346,870 27,410 121,930 296,300 33,480 116,793 13,200 203 1.50 0.680 8,250 36,700 2,731 12,150 20,620 91,720 4,850 21,570 83,780 9,470 20,813 2,350 163 2.16 0.980 9,800 43,590 3,492 15,530 24,500 108,980 6,170 27,450 99,830 11,280 26,695 3,020 123 3.85 1.746 14,020 62,360 5,534 24,620 35,060 155,950 9,670 43,010 143,700 16,240 42,561 4,	660
75 7.90 3.583 21,160 94,120 10,028 44,610 52,900 235,310 17,060 75,890 198,400 22,420 70,537 7,970 57 13.70 6.214 31,190 138,740 16,386 72,890 77,980 346,870 27,410 121,930 296,300 33,480 116,793 13,200 203 1.50 0.680 8,250 36,700 2,731 12,150 20,620 91,720 4,850 21,570 83,780 9,470 20,813 2,350 163 2.16 0.980 9,800 43,590 3,492 15,530 24,500 108,980 6,170 27,450 99,830 11,280 26,695 3,020 123 3.85 1.746 14,020 62,360 5,534 24,620 35,060 155,950 9,670 43,010 143,700 16,240 42,561 4,810 83 8.90 4.037 23,420 104,180 10,602 47,160	650
57 13.70 6.214 31,190 138,740 16,386 72,890 77,980 346,870 27,410 121,930 296,300 33,480 116,793 13,200 203 1.50 0.680 8,250 36,700 2,731 12,150 20,620 91,720 4,850 21,570 83,780 9,470 20,813 2,350 163 2.16 0.980 9,800 43,590 3,492 15,530 24,500 108,980 6,170 27,450 99,830 11,280 26,695 3,020 123 3.85 1.746 14,020 62,360 5,534 24,620 35,060 155,950 9,670 43,010 143,700 16,240 42,561 4,810 83 8.90 4.037 23,420 104,180 10,602 47,160 58,550 260,440 18,250 81,180 243,000 27,460 82,528 9,320 63 15.80 7,167 34,470 153,330 17,293 76,920 86,180 383,350 29,300 130,333 362,000 40,900 136,238	650
203 1.50 0.680 8,250 36,700 2,731 12,150 20,620 91,720 4,850 21,570 83,780 9,470 20,813 2,350 163 2.16 0.980 9,800 43,590 3,492 15,530 24,500 108,980 6,170 27,450 99,830 11,280 26,695 3,020 123 3.85 1.746 14,020 62,360 5,534 24,620 35,060 155,950 9,670 43,010 143,700 16,240 42,561 4,810 83 8.90 4.037 23,420 104,180 10,602 47,160 58,550 260,440 18,250 81,180 243,000 27,460 82,528 9,320 63 15.80 7.167 34,470 153,330 17,293 76,920 86,180 383,350 29,300 130,330 362,000 40,900 136,238 15,390 203 2.69 1.220 12,200 54,270 3,941 17,530	640
163 2.16 0.980 9,800 43,590 3,492 15,530 24,500 108,980 6,170 27,450 99,830 11,280 26,695 3,020 123 3.85 1.746 14,020 62,360 5,534 24,620 35,060 155,950 9,670 43,010 143,700 16,240 42,561 4,810 83 8.90 4.037 23,420 104,180 10,602 47,160 58,550 260,440 18,250 81,180 243,000 27,460 82,528 9,320 63 15.80 7.167 34,470 153,330 17,293 76,920 86,180 383,350 29,300 130,330 362,000 40,900 136,238 15,390 203 2.69 1.220 12,200 54,270 3,941 17,530 30,510 135,720 7,140 31,760 154,800 17,490 37,518 4,240 153 4.79 2.173 17,440 77,580 6,235 27,730 43,610 193,990 11,180 49,730 222,400 25,130 59,649	630
123	590
83 8.90 4.037 23,420 104,180 10,602 47,160 58,550 260,440 18,250 81,180 243,000 27,460 82,528 9,320 63 15.80 7.167 34,470 153,330 17,293 76,920 86,180 383,350 29,300 130,330 362,000 40,900 136,238 15,390 203 2.69 1.220 12,200 54,270 3,941 17,530 30,510 135,720 7,140 31,760 154,800 17,490 37,518 4,240 153 4.79 2.173 17,440 77,580 6,235 27,730 43,610 193,990 11,180 49,730 222,400 25,130 59,649 6,740 103 10.90 4.944 29,060 129,270 11,909 52,970 72,650 323,160 21,070 93,720 374,200 42,280 115,037 13,000 78 19.50 8.845 42,680 189,850 19,360 86,120 106,700 474,630 33,780 150,260 554,900 62,700 188,8	590
63 15.80 7.167 34,470 153,330 17,293 76,920 86,180 383,350 29,300 130,330 362,000 40,900 136,238 15,390 203 2.69 1.220 12,200 54,270 3,941 17,530 30,510 135,720 7,140 31,760 154,800 17,490 37,518 4,240 153 4.79 2.173 17,440 77,580 6,235 27,730 43,610 193,990 11,180 49,730 222,400 25,130 59,649 6,740 103 10.90 4.944 29,060 129,270 11,909 52,970 72,650 323,160 21,070 93,720 374,200 42,280 115,037 13,000 78 19.50 8.845 42,680 189,850 19,360 86,120 106,700 474,630 33,780 150,260 554,900 62,700 188,838 21,340 243 3.21 1.456 14,610 64,990 4,338 19,300 36,520 162,450 8,050 35,810 221,900 25,070 49,43	590
203 2.69 1.220 12,200 54,270 3,941 17,530 30,510 135,720 7,140 31,760 154,800 17,490 37,518 4,240 153 4.79 2.173 17,440 77,580 6,235 27,730 43,610 193,990 11,180 49,730 222,400 25,130 59,649 6,740 103 10.90 4.944 29,060 129,270 11,909 52,970 72,650 323,160 21,070 93,720 374,200 42,280 115,037 13,000 78 19.50 8.845 42,680 189,850 19,360 86,120 106,700 474,630 33,780 150,260 554,900 62,700 188,838 21,340 243 3.21 1.456 14,610 64,990 4,338 19,300 36,520 162,450 8,050 35,810 221,900 25,070 49,436 5,590 183 5.73 2.599 20,860 92,790 6,856 30,500 52,160 232,020 12,600 56,050 318,100 35,940 78,447 <td>580</td>	580
153 4.79 2.173 17,440 77,580 6,235 27,730 43,610 193,990 11,180 49,730 222,400 25,130 59,649 6,740 103 10.90 4.944 29,060 129,270 11,909 52,970 72,650 323,160 21,070 93,720 374,200 42,280 115,037 13,000 78 19.50 8.845 42,680 189,850 19,360 86,120 106,700 474,630 33,780 150,260 554,900 62,700 188,838 21,340 243 3.21 1.456 14,610 64,990 4,338 19,300 36,520 162,450 8,050 35,810 221,900 25,070 49,436 5,590 183 5.73 2.599 20,860 92,790 6,856 30,500 52,160 232,020 12,600 56,050 318,100 35,940 78,447 8,860 123 13.00 5.897 34,700 154,350 13,065 58,120 86,760 385,930 23,720 105,510 533,600 60,290 150,7	570
103 10.90 4.944 29,060 129,270 11,909 52,970 72,650 323,160 21,070 93,720 374,200 42,280 115,037 13,000 78 19.50 8.845 42,680 189,850 19,360 86,120 106,700 474,630 33,780 150,260 554,900 62,700 188,838 21,340 243 3.21 1.456 14,610 64,990 4,338 19,300 36,520 162,450 8,050 35,810 221,900 25,070 49,436 5,590 183 5.73 2.599 20,860 92,790 6,856 30,500 52,160 232,020 12,600 56,050 318,100 35,940 78,447 8,860 123 13.00 5.897 34,700 154,350 13,065 58,120 86,760 385,930 23,720 105,510 533,600 60,290 150,708 17,030	470
78 19.50 8.845 42,680 189,850 19,360 86,120 106,700 474,630 33,780 150,260 554,900 62,700 188,838 21,340 243 3.21 1.456 14,610 64,990 4,338 19,300 36,520 162,450 8,050 35,810 221,900 25,070 49,436 5,590 183 5.73 2.599 20,860 92,790 6,856 30,500 52,160 232,020 12,600 56,050 318,100 35,940 78,447 8,860 123 13.00 5.897 34,700 154,350 13,065 58,120 86,760 385,930 23,720 105,510 533,600 60,290 150,708 17,030	470
243 3.21 1.456 14,610 64,990 4,338 19,300 36,520 162,450 8,050 35,810 221,900 25,070 49,436 5,590 183 5.73 2.599 20,860 92,790 6,856 30,500 52,160 232,020 12,600 56,050 318,100 35,940 78,447 8,860 123 13.00 5.897 34,700 154,350 13,065 58,120 86,760 385,930 23,720 105,510 533,600 60,290 150,708 17,030	470
183 5.73 2.599 20,860 92,790 6,856 30,500 52,160 232,020 12,600 56,050 318,100 35,940 78,447 8,860 123 13.00 5.897 34,700 154,350 13,065 58,120 86,760 385,930 23,720 105,510 533,600 60,290 150,708 17,030	460
123 13.00 5.897 34,700 154,350 13,065 58,120 86,760 385,930 23,720 105,510 533,600 60,290 150,708 17,030	
	390
93 23.30 10.569 50.890 226.370 21.200 94.300 127.200 565.810 37.980 168.940 788.800 89.120 246.541 27.860	
	390
143 15.10 6.849 40,350 179,490 14,100 62,720 100,900 448,830 26,220 116,630 721,200 81,480 189,106 21,370	
108 27.10 12.292 59,100 262,890 22,845 101,620 147,700 657,000 41,970 186,690 1,064,000 120,220 308,527 34,860	
163 17.20 7.802 45,990 204,570 15,034 66,870 115,000 511,550 28,620 127,310 937,100 105,880 229,832 25,970	
123 30.80 13.971 67,310 299,410 24,332 108,230 168,300 748,640 45,770 203,600 1,380,000 155,920 374,256 42,290	290

Refer to the Engineering section for load and speed limitations.

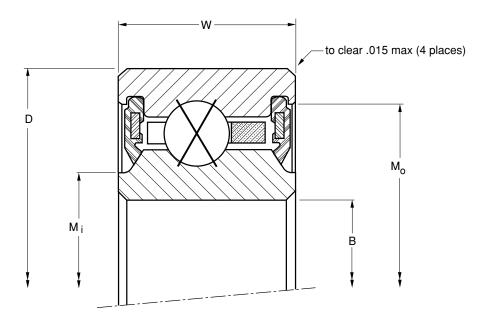
SEALED RADIAL CONTACT, C-TYPE



PART			NOMINAL I	DIMENSIONS				
NUMBER*	B Bore	D Outside Diameter	W Width	M,	M,	Ball Diameter	Ball Quantity	
	in. mm	in. mm	in. mm	in. mm	in. mm	in.		
JU040CP0*RBC	4.0000 101.600	4.7500 120.650	0.5000 12.700	4.155 105.54	4.550 115.57	3/16	35	
JU042CP0*RBC	4.2500 107.950	5.0000 127.000	0.5000 12.700	4.405 111.89	4.800 121.92	3/16	37	
JU045CP0*RBC	4.5000 114.300	5.2500 133.350	0.5000 12.700	4.655 118.24	5.050 128.27	3/16	39	
JU047CP0*RBC	4.7500 120.650	5.5000 139.700	0.5000 12.700	4.905 124.59	5.300 134.62	3/16	41	
JU050CP0*RBC	5.0000 127.000	5.7500 146.050	0.5000 12.700	5.155 130.94	5.550 140.97	3/16	43	
JU055CP0*RBC	5.5000 139.700	6.2500 158.750	0.5000 12.700	5.655 143.64	6.050 153.67	3/16	47	
JU060CP0*RBC	6.0000 152.400	6.7500 171.450	0.5000 12.700	6.155 156.34	6.550 166.37	3/16	51	
JU065CP0*RBC	6.5000 165.100	7.2500 184.150	0.5000 12.700	6.655 169.04	7.050 179.07	3/16	55	
JU070CP0*RBC	7.0000 177.800	7.7500 196.850	0.5000 12.700	7.155 181.74	7.550 191.77	3/16	59	
JU075CP0*RBC	7.5000 190.500	8.2500 209.550	0.5000 12.700	7.655 194.44	8.050 204.47	3/16	63	
JU080CP0*RBC	8.0000 203.200	8.7500 222.250	0.5000 12.700	8.155 207.14	8.550 217.17	3/16	67	
JU090CP0*RBC	9.0000 228.600	9.7500 247.650	0.5000 12.700	9.155 232.54	9.550 242.57	3/16	75	
JU100CP0*RBC	10.0000 254.000	10.7500 273.050	0.5000 12.700	10.155 257.94	10.550 267.97	3/16	83	
JU110CP0*RBC	11.0000 279.400	11.7500 298.450	0.5000 12.700	11.155 283.34	11.550 293.37	3/16	91	
JU120CP0*RBC	12.0000 304.800	12.7500	0.5000 12.700	12.155 308.74	12.550 318.77	3/16	99	

 $^{{}^{\}star}$ The alphanumeric identification system is used under license.

JU Series are also available in low-torque design using PTFE seals.



							LOAD R	ATINGS						Limiting
App	rox.		Rac	dial			Thr	ust			Mon	nent		Speed
We	ight	Sta	atic	Dyna	mic	St	atic	Dyn	amic	St	atic	Dyna	mic	(RPM)
lbs.	kg	lbf	N	lbf	N	lbf	N	lbf	N	lbf - in	Nm	lbf - in	Nm	
0.55	0.249	2,100	9,340	1,290	5,740	3,110	13,830	3,740	16,640	2,720	310	3,280	370	3,660
0.58	0.263	2,220	9,880	1,320	5,870	3,270	14,550	3,830	17,040	3,030	340	3,550	400	3,460
0.61	0.277	2,340	10,410	1,350	6,010	3,440	15,300	3,910	17,390	3,360	380	3,810	430	3,280
0.65	0.295	2,460	10,940	1,370	6,090	3,610	16,060	3,970	17,660	3,700	420	4,070	460	3,120
0.68	0.308	2,590	11,520	1,390	6,180	3,780	16,810	4,040	17,970	4,060	460	4,340	490	2,980
0.74	0.336	2,830	12,590	1,440	6,410	4,110	18,280	4,170	18,550	4,830	550	4,900	550	2,720
0.81	0.367	3,070	13,660	1,490	6,630	4,450	19,790	4,320	19,220	5,670	640	5,510	620	2,510
0.87	0.395	3,315	14,750	1,530	6,810	4,790	21,310	4,440	19,750	6,580	740	6,110	690	2,330
0.93	0.422	3,550	15,790	1,570	6,980	5,120	22,770	4,550	20,240	7,550	850	6,710	760	2,170
0.99	0.449	3,790	16,860	1,600	7,120	5,450	24,240	4,640	20,640	8,590	970	7,300	820	2,030
1.06	0.481	4,030	17,930	1,650	7,340	5,790	25,760	4,770	21,220	9,700	1,100	7,990	900	1,910
1.18	0.535	4,510	20,060	1,730	7,700	6,470	28,780	5,020	22,330	12,120	1,370	9,410	1,060	1,700
1.31	0.594	4,990	22,200	1,781	7,920	7,140	31,760	5,170	23,000	14,810	1,670	10,730	1,210	1,540
1.43	0.649	5,470	24,330	1,879	8,360	7,800	34,700	5,280	23,490	17,750	2,010	12,020	1,360	1,410
1.56	0.708	5,950	26,470	1,974	8,780	8,480	37,720	5,470	24,330	20,980	2,370	13,550	1,530	1,300

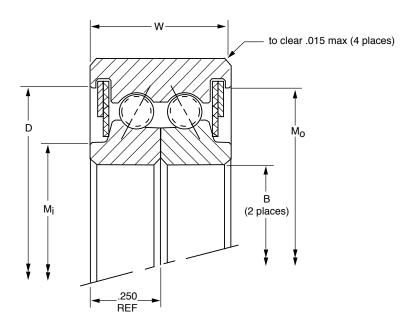
Refer to the Engineering section for load and speed limitations.

SEALED RADIAL CONTACT, X-TYPE

PART			NOMINAL I	DIMENSIONS				
NUMBER*	B Bore	D Outside Diameter	W Width	Mi	M _o	Ball Diameter	Ball Quantity	
	in. mm	in. mm	in. mm	in. mm	in. mm	in.		
JU040XP0*RBC	4.0000 101.600	4.7500 120.650	0.5000 12.700	4.155 105.54	4.550 115.57	3/16	35	
JU042XP0*RBC	4.2500 107.950	5.0000 127.000	0.5000 12.700	4.405 111.89	4.800 121.92	3/16	37	
JU045XP0*RBC	4.5000 114.300	5.2500 133.350	0.5000 12.700	4.655 118.24	5.050 128.27	3/16	39	
JU047XP0*RBC	4.7500 120.650	5.5000 139.700	0.5000 12.700	4.905 124.59	5.300 134.62	3/16	41	
JU050XP0*RBC	5.0000 127.000	5.7500 146.050	0.5000 12.700	5.155 130.94	5.550 140.97	3/16	43	
JU055XP0*RBC	5.5000 139.700	6.2500 158.750	0.5000 12.700	5.655 143.64	6.050 153.67	3/16	47	
JU060XP0*RBC	6.0000 152.400	6.7500 171.450	0.5000 12.700	6.155 156.34	6.550 166.37	3/16	51	
JU065XP0*RBC	6.5000 165.100	7.2500 184.150	0.5000 12.700	6.655 169.04	7.050 179.07	3/16	55	
JU070XP0*RBC	7.0000 177.800	7.7500 196.850	0.5000 12.700	7.155 181.74	7.550 191.77	3/16	59	
JU075XP0*RBC	7.5000 190.500	8.2500 209.550	0.5000 12.700	7.655 194.44	8.050 204.47	3/16	63	
JU080XP0*RBC	8.0000 203.200	8.7500 222.250	0.5000 12.700	8.155 207.14	8.550 217.17	3/16	67	
JU090XP0*RBC	9.0000 228.600	9.7500 247.650	0.5000 12.700	9.155 232.54	9.550 242.57	3/16	75	
JU100XP0*RBC	10.0000 254.000	10.7500 273.050	0.5000 12.700	10.155 257.94	10.550 267.97	3/16	83	
JU110XP0*RBC	11.0000 279.400	11.7500 298.450	0.5000 12.700	11.155 283.34	11.550 293.37	3/16	91	
JU120XP0*RBC	12.0000 304.800	12.7500 323.850	0.5000 12.700	12.155 308.74	12.550 318.77	3/16	99	

^{*}The alphanumeric identification system is used under license.

JU Series are also available in low-torque design using PTFE seals.



							LOAD R	ATINGS						Limiting
App	rox.		Rac	dial			Thr	ust			Mon	nent		Speed
We	ight	St	atic	Dyna	amic	St	atic	Dyn	amic	Sta	atic	Dyna	mic	(RPM)
lbs.	kg	lbf	N	lbf	N	lbf	N	lbf	N	lbf - in	Nm	lbf - in	Nm	
0.55	0.249	2,100	9,340	1,417	6,300	5,260	23,400	2,810	12,500	4,600	520	2,460	280	2,280
0.58	0.263	2,220	9,880	1,464	6,510	5,560	24,730	2,870	12,770	5,140	580	2,650	300	2,160
0.61	0.277	2,340	10,410	1,510	6,720	5,860	26,070	2,920	12,990	5,710	650	2,850	320	2,050
0.65	0.295	2,460	10,940	1,556	6,920	6,160	27,400	2,970	13,210	6,320	710	3,040	340	1,950
0.68	0.308	2,590	11,520	1,600	7,120	6,460	28,740	3,040	13,520	6,950	790	3,270	370	1,860
0.74	0.336	2,830	12,590	1,687	7,500	7,060	31,400	3,120	13,880	8,300	940	3,717	420	1,700
0.81	0.367	3,070	13,660	1,770	7,870	7,660	34,070	3,220	14,320	9,770	1,100	4,234	480	1,570
0.87	0.395	3,310	14,720	1,851	8,230	8,270	36,790	3,300	14,680	11,370	1,280	4,775	540	1,460
0.93	0.422	3,550	15,790	1,931	8,590	8,870	39,460	3,420	15,210	13,080	1,480	5,341	600	1,360
0.99	0.449	3,790	16,860	2,007	8,930	9,470	42,120	3,480	15,480	14,910	1,680	5,930	670	1,270
1.06	0.481	4,030	17,930	2,082	9,260	10,070	44,790	3,560	15,840	16,870	1,910	6,542	740	1,190
1.18	0.535	4,510	20,060	2,226	9,900	11,270	50,130	3,690	16,410	21,130	2,390	7,830	880	1,070
1.31	0.594	4,990	22,200	2,364	10,520	12,470	55,470	3,930	17,480	25,880	2,920	9,201	1,040	970
1.43	0.649	5,470	24,330	2,496	11,100	13,680	60,850	4,180	18,590	31,110	3,510	10,651	1,200	880
1.56	0.708	5,950	26,470	2,622	11,660	14,880	66,190	4,420	19,660	36,830	4,160	12,174	1,380	810

Refer to the Engineering section for load and speed limitations.

SIMPLEX™ BEARING SERIES — SUPERDUPLEX™ SEALED BEARINGS

PART					N	OMINAL I	DIMENSI	ONS					
NUMBER*		B ore		D Diameter	_	V dth	N	N _i	N	l _o	Ball Diameter	Ball Quantity	
	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	per row	
ZU040MZ3*RBC	4.0000	101.600	4.7500	120.650	0.5000	12.700	4.155	105.54	4.550	115.57	1/8	54	
ZU042MZ3*RBC	4.2500	107.950	5.0000	127.000	0.5000	12.700	4.405	111.89	4.800	121.92	1/8	57	
ZU045MZ3*RBC	4.5000	114.300	5.2500	133.350	0.5000	12.700	4.655	118.24	5.050	128.27	1/8	60	
ZU047MZ3*RBC	4.7500	120.650	5.5000	139.700	0.5000	12.700	4.905	124.59	5.300	134.62	1/8	63	
ZU050MZ3*RBC	5.0000	127.000	5.7500	146.050	0.5000	12.700	5.155	130.94	5.550	140.97	1/8	66	
ZU055MZ3*RBC	5.5000	139.700	6.2500	158.750	0.5000	12.700	5.655	143.64	6.050	153.67	1/8	72	
ZU060MZ3*RBC	6.0000	152.400	6.7500	171.450	0.5000	12.700	6.155	156.34	6.550	166.37	1/8	79	
ZU065MZ3*RBC	6.5000	165.100	7.2500	184.150	0.5000	12.700	6.655	169.04	7.050	179.07	1/8	85	
ZU070MZ3*RBC	7.0000	177.800	7.7500	196.850	0.5000	12.700	7.155	181.74	7.550	191.77	1/8	91	
ZU075MZ3*RBC	7.5000	190.500	8.2500	209.550	0.5000	12.700	7.655	194.44	8.050	204.47	1/8	97	
ZU080MZ3*RBC	8.0000	203.200	8.7500	222.250	0.5000	12.700	8.155	207.14	8.550	217.17	1/8	104	
ZU090MZ3*RBC	9.0000	228.600	9.7500	247.650	0.5000	12.700	9.155	232.54	9.550	242.57	1/8	116	
ZU100MZ3*RBC	10.0000	254.000	10.7500	273.050	0.5000	12.700	10.155	257.94	10.550	267.97	1/8	129	
ZU110MZ3*RBC	11.0000	279.400	11.7500	298.450	0.5000	12.700	11.155	283.34	11.550	293.37	1/8	141	
ZU120MZ3*RBC	12.0000	304.800	12.7500	323.850	0.5000	12.700	12.155	308.74	12.550	318.77	1/8	154	

 $^{{}^\}star\!\text{The}$ alphanumeric identification system is used under license.

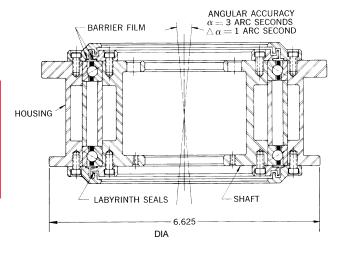
JU Series are also available in low-torque design using PTFE seals.

			LOAD RATIN	IGS			Limiting
Approx.	Rad	ial [†]	Thr	ust	Mom	ent	Speed
Weight	Static	Dynamic	Static	Dynamic	Static	Dynamic	(RPM)
lbs. kg	lbf N	lbf N	lbf N	lbf N	lbf - in Nm	lbf - in Nm	
0.55 0.249	(2x) 905 (2x) 4,030	(2x) 640 (2x) 2,850	2,710 12,050	1,850 8,230	4,130 470	1,555 180	3,660
0.58 0.263	(2x) 950 (2x) 4,230	(2x) 655 (2x) 2,910	2,850 12,680	1,900 8,450	4,540 510	1,670 190	3,460
0.61 0.277	(2x) 995 (2x) 4,430	(2x) 660 (2x) 2,940	2,990 13,300	1,915 <mark>8,520</mark>	5,070 570	1,840 210	3,280
0.65 0.295	(2x) 1,050 (2x) 4,670	(2x) 675 (2x) 3,000	3,140 13,970	1,955 8,700	5,575 630	1,990 220	3,120
0.68 0.308	(2x) 1,090 (2x) 4,850	(2x) 685 (2x) 3,050	3,285 14,610	1,995 8,870	6,105 690	2,130 240	2,980
0.74 0.336	(2x) 1,190 (2x) 5,290	(2x) 700 (2x) 3,110	3,580 15,920	2,035 9,050	7,235 <mark>820</mark>	2,450 280	2,720
0.81 0.367	(2x) 1,305 (2x) 5,800	(2x) 730 (2x) 3,250	3,925 17,460	2,125 9,450	8,575 970	2,835 320	2,510
0.87 0.395	(2x) 1,400 (2x) 6,230	(2x) 755 (2x) 3,360	4,210 18,730	2,185 9,720	9,910 1,120	3,200 360	2,330
0.93 0.422	(2x) 1,500 (2x) 6,670	(2x) 760 (2x) 3,380	4,495 1 <mark>9,990</mark>	2,200 9,790	11,340 1, <mark>280</mark>	3,565 400	2,170
0.99 0.449	(2x) 1,600 (2x) 7,120	(2x) 775 (2x) 3,450	4,780 21,260	2,250 10,010	12,870 1,450	3,950 450	2,030
1.06 0.481	(2x) 1,710 (2x) 7,610	(2x) 815 (2x) 3,630	5,130 22,820	2,350 10,450	14,630 1,650	4,405 500	1,910
1.18 0.535	(2x) 1,905 (2x) 8,470	(2x) 840 (2x) 3,740	5,705 25,380	2,420 10,760	18,180 2,050	5,275 600	1,700
1.31 0.594	(2x) 2,110 (2x) 9,390	(2x) 875 (2x) 3,890	6,330 28,160	2,550 11,340	22,290 2,520	6,250 710	1,540
1.43 0.649	(2x) 2,300 (2x) 10,230	(2x) 905 (2x) 4,030	6,915 30,760	2,625 11,680	26,620 3,010	7,235 <mark>820</mark>	1,410
1.56 0.708	(2x) 2,515 (2x) 11,190	(2x) 935 (2x) 4,160	7,545 33,560	2,720 12,100	31,560 3,570	8,330 940	1,300

 $^{^{\}dagger}\text{Radial}$ load rating is two times the value per row ideally if both rows share load equally.

Refer to the Engineering section for load and speed limitations.

EXTREME ANGULAR ACCURACY BEARINGS Problem


The customer needed a set of bearings that maintained an extreme precise angular accuracy of the center line of the shaft to the housing. The angular accuracy requirement was a non-repeatable error (α) of one arc second, and a repeatable error (α) of three arc seconds.

Recommendation

Bearings should be made to the most precise geometric tolerances possible. The bearings should be pre-loaded to overcome the minor surface imperfections of the balls and raceways. They should also be part of a cartridge incorporating the housing and shaft.

Solution

Bearings were made as part of the cartridge assembly and all angular measurements for accuracy were made relative to the housing and shaft. Bearings were preloaded and spaced axially to help overcome geometric inaccuracies of the bearing. The bearing raceways and balls were made from consumable electrode vacuum melted AISI 440C material. As the bearings had to operate in a vacuum, the separator material necessitated a special open weave phenolic material impregnated with a special silicone oil. To prevent migration of the oil from the cartridge assembly, the labyrinth seal was coated with a barrier film.

INTEGRAL BEARING ASSEMBLY

Problem

Save space and weight in an application involving a power take-off drive from a high speed gear box.

Recommendation

Make the races of the bearing integral with the housing and possibly with the gear shaft.

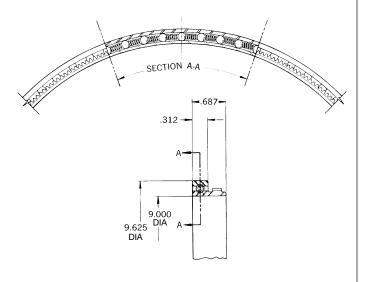
Solution

The bearing housing was designed to incorporate the outer raceway of the roller bearing and the outer raceway of the split inner race ball bearing. In order to increase the reliability of the rolling contact surfaces in the housing, the housing was manufactured from AISI M-50 material consumable electrode vacuum melted. The gear was made integral with the shaft which also contained the inner raceway of the roller bearing. The gear shaft was manufactured from consumable electrode vacuum melted AISI-9310 material; case hardened to Rc 61-64 on the gear tooth surface and in the roller bearing raceway. In order to facilitate lubrication of the bearings in the restricted area, lubrication holes were drilled through the housing into the space between the two bearings. The lubrication was fed through these holes from an annular groove in the housing.

The two halves of the split inner race were retained to the gear shaft by the use of a lock nut, clamping the races axially. The combined integral assembly of bearings, gear shaft and housing provided the desired space and weight reduction and gained improved operational accuracy. In addition, it afforded easier installation into the gear box.

THIN SECTION GEARED BEARING

Problem


A radar antenna drive had only limited space available for its support bearings.

Recommendation

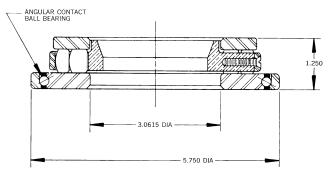
Use a thin section rather than a standard section radial ball bearing, thus achieving a significant weight reduction. Incorporate a gear as part of the inner ring to obtain improved accuracy and simplify the assembly.

Solution

The thin section bearing utilizes coil springs as spacers between the balls instead of a conventional separator to further reduce weight and lower bearing torque. The inner race of the bearing was extended and the gear was cut on this extended portion of the inner race. The incorporation of the gear into the inner race eliminated the necessity of a shaft clamping mechanism, etc., which would be required if the gear were separate from the bearing. Integrating the gear profile into the inner race increased the accuracy of the gear to bearing concentricity. The bearing was manufactured of the following materials: the balls and outer race are from AISI-440-material; the inner race manufactured from AISI-8620 material, carburized, and hardened in the raceway area to Rc 58-60.

ROLLER, THRUST AND ANGULAR CONTACT BALL BEARING

Problem


A customer was trying to reduce costs of an existing hydraulic pump swash plate assembly.

Recommendation

Utilize an integral bearing assembly which combines a roller thrust bearing and an angular contact ball bearing.

Solution

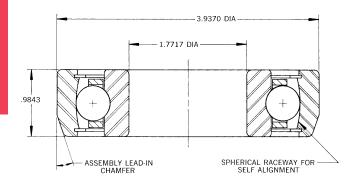
The original swash plate design in the hydraulic pump utilized a roller thrust bearing to handle the thrust load and a separate angular contact radial ball bearing to handle radial loads and radially locate the swash plate assembly. The usage of two separate bearings required complex machining of the housing and swash plate with close control of tolerances, to eliminate excessive radial eccentricity of the swash plate assembly. In the original design, which utilized two separate bearings, it was necessary to mount the bearings axially adjacent to each other. The recommended bearing design decreased the axial space required for bearings, resulting in a size and weight savings. A combined bearing assembly is usually lower in cost than two separate bearings. The technique of integrating two bearings usually simplifies an assembly where two bearings had been utilized, or where problems have arisen relative to running accuracy, overall size or weight.

SELF-ALIGNING BEARING OPERATING IN LIQUID POLYETHYLENE

Problem

A rolling contact bearing was required on a vertical shaft which rotated in a catalytic-polyethylene autoclave. Blind assembly of the bearing and shaft which weighed approximately 10,000 pounds was necessary, due to the autoclave design.

Recommendation


Use radial ball bearing incorporating a self-aligning raceway made from corrosion resistant materials. The bearings should be capable of withstanding operating temperatures as high as 650°F, and capable of operating with liquid polyethylene as the lubricant.

Solution

The bearing was manufactured from AISI-440C material, specially heat treated to resist softening at high operating temperatures. The separator material was L-605 cobalt alloy which offered the necessary wear resistance.

To solve the client's problem of inserting the 18-footlong assembly into a blind housing, a large lead-in chamfer was formed on the outside of the bearing. This lead-in chamfer allowed easy insertion of the bearing into the housing.

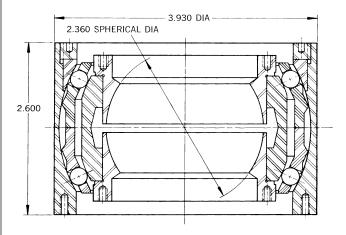
The previous bearing installation did not allow any shaft misalignment, resulting in bent shafts that were then unacceptable for further use. The self-aligning feature of the outer raceway permitted the bearing to misalign while rotating, allowing for shaft distortion as the shaft went through critical speeds.

SENBAL BEARING

Problem

A fluidic gyroscope required a gimballing, self-aligning bearing that would rotate at high speed. The bore of the bearing was to form part of the fluidic metering and sensing system.

Recommendation


Use a double row, self-aligning spherical ball bearing with spherical outer and inner raceways. The two rows of balls should be pre-loaded to obtain the running accuracy needed for the fluidic metering system in the bore of the bearing.

Solution

The double row spherical self-aligning ball bearing was designed with a removable portion of the spherical outer raceway to allow for pre-loading of the two rows of balls.

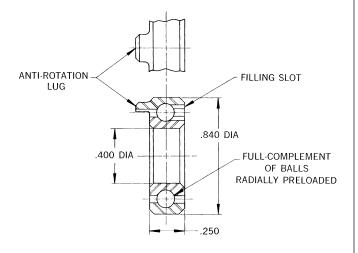
With the possibility of different rotational speeds of the two rows of balls, each row of balls had its own separator. To guide the separators, a special configuration was machined on the outside of the separator to allow for each separator to be guided at two points of contact with the spherical outer raceway.

The fluidic metering portion was made as a separate unit, press fitted into the bore of the bearing.

1200°F OSCILLATING BEARING

Problem

The customer required a high temperature rolling contact, oscillating bearing for operation at 1200°F, subjected to high vibration loads.


Recommendation

Design a rolling contact bearing with radial pre-load to overcome false brinelling that may occur in the high vibration environment. Bearings should be made from a corrosion resistant, high-temperature alloy.

Solution

The bearing was manufactured of Stellite® 6B material which was cold worked by an RBC proprietary process to obtain a hardness of Rockwell C-53 minimum in the raceway areas. The balls of this bearing were made from L-605 cobalt alloy. The bearing was of full complement design with a filling slot for insertion of the balls, and negative radial clearance of line to line to .0003 in. tight.

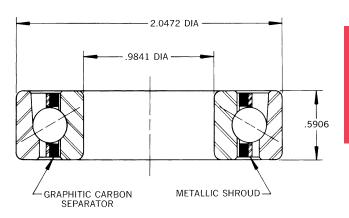
The lubricating film which is generated by the cobalt alloy races and balls permitted this bearing to operate without any additional lubricant. The increased hardness of the raceways to Rockwell C-53 minimum produced a bearing which was capable of operating up to 1200°F with extreme wear resistance.

GEARBOX BEARINGS WITH SELF LUBRICATING SEPARATORS

Problem

Bearings were needed for operation in high-temperature gear boxes at 600°F to 650°F.

Conventional lubrication such as oil was not available, therefore, the bearings would have to be self-lubricating.


Recommendation

Use bearings of high-temperature, heat treated AISI-440C material. Incorporate in these bearings RBC-developed proprietary graphitic carbon separators, to act as the bearing lubricant.

Solution

Angular contact ball bearings were designed, utilizing an inner land guided separator of graphitic carbon material. The separator was reinforced on its outside diameter with a metallic shroud to withstand the centrifugal forces from high operating speeds and resist fracturing, which could result from the tremendous acceleration rate of the bearing rotation.

To facilitate a break-in period required for transfer of the self-lubricating material from the graphitic carbon separator to the rolling contact surfaces, the balls and raceways were coated with an impinged, tungstendisulfide dry-film lubricant of approximately .000020 in. in thickness. With the dry film lubricant on the raceways and balls, the bearings were capable of operating at the required speed without any break-in period normally required for bearings incorporating dry, self-lubricating separators.

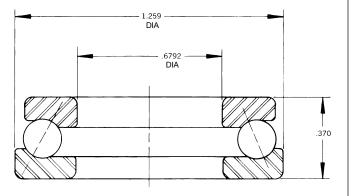
Stellite® is a registered trademark of the Deloro Stellite Company. Inc.

HIGH TEMPERATURE, ACTUATOR THRUST BEARINGS

Problem

A high temperature thrust bearing was needed to support the reactive thrust of a ball screw actuator. Bearings had to be capable of operating at approximately 850°F.

Recommendation


Use bearings of high temperature tool steel to withstand the applied loads at the high operating temperature.

Solution

Bearings were manufactured from CEVM M-2 tool steel with a full complement of sixteen .187 in. diameter tungsten carbide balls. The bearing was designed having a contact angle of 60° to handle the high thrust load and some radial loading.

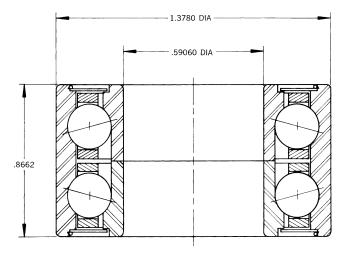
The races were coated with a proprietary dry-film lubricant applied to the raceways of the bearings prior to installation of the bearing in the application.

The significant design feature which allows the bearings to operate at 850°F and at speeds up to 750 RPM without excessive wear is the combination of the tungsten carbide balls running against the M-2 tool steel raceways. Similar designs using M-2 tool steel balls had worn very rapidly at relatively short periods of application at the operating temperatures.

NON-MAGNETIC BEARING

Problem

A newly designed rotating magnetometer for ore analysis required a non-magnetic bearing.


Recommendation

Use a bearing with the raceways and balls made of a material capable of operating under the loads and possess the lowest magnetic permeability. The loading combined thrust, radial, and moment loads which required a duplex pair of bearings.

Solution

Manufactured the bearing from Berylco 25* material. This material was used for the inner and outer races, balls and shields. The separator was manufactured of a phenolic material.

The bearing was designed as a common outer duplex DB pair, lightly pre-loaded. To reduce contamination possibility, shields were incorporated. The bearing was lubricated by grease plating the raceways with MIL-PRF-23827 lubricant.

©2008 RBC Bearings Incorporated. All rights reserved.

*Berylco 25: NGK Berylco, a UK Company.

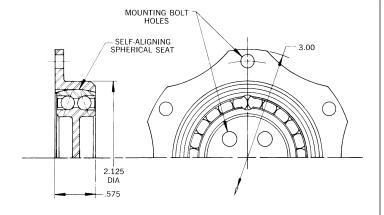
1400°F SELF-ALIGNING BALL BEARING

Problem

The customer needed a hinge bearing on the exhaust ducts of a jet engine used to propel and lift a ground effect vehicle machine.

Recommendation

Use a double row angular contact ball bearing in a self-aligning housing. Bearing materials to be made of corrosion and heat resistant material.


Solution

The double row ball bearing cartridge unit utilizes L-605 material for the raceway and balls. The bearing was mounted in a self-contained spherical housing to compensate for misalignment of the shaft during operation, which occurs due to temperature differentials between the frame and the exhaust nozzles.

The races were made by a special RBC-developed proprietary race hardening technique.

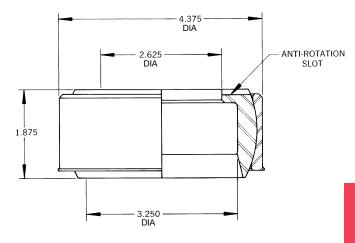
With this technique, the L-605 cobalt alloy material is work hardened and then heat treated to a Rockwell C-53 minimum.

The bearing operated for 50 hours with 1400°F exhaust gas passing through the bearing without any significant wear.

SPHERICAL, METAL-TO-METAL BEARINGS

Problem

A manufacturer of commercial aircraft required a landing gear support trunnion bearing.


Bearing must have low radial and axial clearances.

Recommendation

Use a metal-to-metal spherical plain bearing. It should have a dry-film lubricant on its spherical bearing surfaces. The bearing should be fabricated from corrosion resistant material.

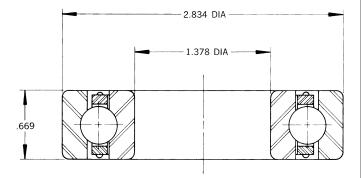
Solution

With the clearances required, .0010/.0030 in. radial and .009 in. max. axial, assembly of match ground components was necessary. Swaging a bearing of this size would not result in reliable clearance control. The outer race was assembled to the ball by deforming it under radial pressure to an elliptical shape to allow the insertion of the ball. Once the ball is inserted, the pressure is removed from the outer race, allowing it to return to its original shape.

FOOD PROCESSING EQUIPMENT BEARINGS Problem

Relatively short life was obtained on bearings made of 316 stainless steel in food processing equipment. 316 stainless steel was required to prevent contamination of the food products.

Recommendation


Use a harder, more wear resistant material that would still be resistant to the corrosive fluids of the processed food and prevent contamination.

Solution

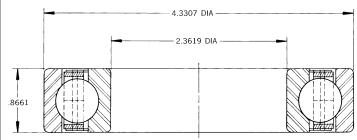
A search of various materials that were resistant to the food products handled by this particular piece of equipment brought to light that certain cobalt alloys could be used without any fear of contamination or corrosion.

In order to increase the wear resistance of the cobalt alloys, they were cold worked in the raceways to increase the hardness and, thereby, increase the wear resistance.

The alloy used for the raceways and the balls was L-605. Separator material was 17-4PH.

CHEMICAL PROCESSING EQUIPMENT BEARINGS

Problem


Bearings exposed to photographic-processing chemical solutions were failing. Bearings being used were made of AISI 440C material, sealed, and grease lubricated.

Recommendation

Use a bearing of a different alloy; make the separator self-lubricating and run the bearing in the chemical solutions.

Solution

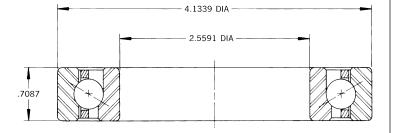
The bearing used cobalt alloy balls and races and a self-lubricating separator of fiberglass reinforced TFE. To give additional strength to the riveted separator in this bearing, side plates of 300 series stainless steel were added to the separator.

CRYOGENIC BEARINGS

Problem

The customer needed a high speed ball and roller bearings for use in cryogenic equipment. Bearings should also operate in cryogenic liquid or gaseous environment.

Recommendation


Use bearings of a corrosion resistant material such as AISI 440C and incorporate a self-lubricating material for the separators.

Solution

Ball and roller bearings of ABEC-5 tolerance grade were made of AISI 440C material, with special sub-zero treatment in liquid nitrogen. This sub-zero treatment gave the bearings the dimensional stability necessary for operating in cryogenic equipment.

The bearing separators were made of Teflon® reinforced fiberglass.

This basic bearing design criterion has been used in almost all liquid hydrogen and oxygen turbo pumps used in present day rocket engines.

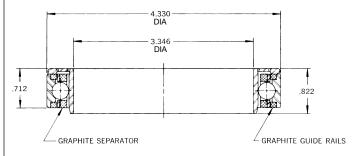
SELF-LUBRICATING MAIN SHAFT BEARING

Problem

The customer was looking for a mainshaft bearing for a vertical lift engine. For weight reduction, the bearing needed to be self-lubricating to eliminate a portion of the engine lubricating system.

Speed of the 85mm bore bearing was 16,000 RPM. The bearing, located in turbine end of the jet engine, accommodates axial shaft expansion.

Recommendation


Use a ball bearing with races and balls made from wear-resistant materials. Lubricate the bearing with a shrouded self-lubricating graphite separator. Make the inner race cylindrical to accommodate the axial shaft expansion.

Solution

Bearing was manufactured from CEVM AISI-M50 material for the races and balls.

The separator of shrouded graphite was outer land guided on two graphite rings, pressed into the outer race ring.

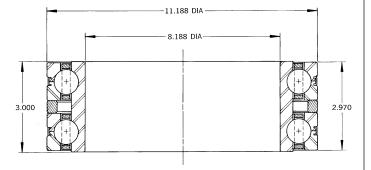
To prevent damage to the graphite while inserting the shaft into the bearing, a side plate was added that prevented any accidental contact of the shaft with the graphite separator. To allow for the excess graphite to purge from the bearing, holes were put in the protective side plate.

Teflon® is a registered trademark of DuPont.

NUCLEAR REACTOR BEARING

Problem

The application called for a bearing to accommodate the thrust load in a control rod drive mechanism. The bearing is lubricated with chemically pure water, de-ionized, and de-oxygenated.


Recommendation

Use a double row ball bearing, tandem ground for thrust sharing to obtain the life required. Because radial support of the inner race is marginal, the inner race for both rows should be ground on the same ring.

Solution

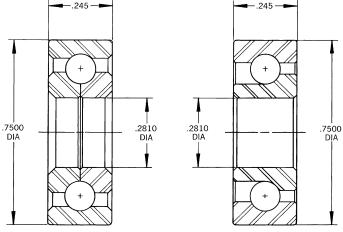
The double row ball bearing was made of cobalt alloy materials, and the separator of 17-4PH.

To obtain the maximum capacity in this double gothic arch thrust bearing, the outer races are split, permitting the maximum quantity of balls in each row. Thrust sharing of two rows is accomplished by accurate match grinding of the spacer ring to fit the gap between the outer races, and by matching the contact angle in both rows equal within two degrees.

BALL BEARINGS FOR VACUUM OPERATION

Problem

The customer wanted a high speed ball bearing, to run at temperatures up to 1000°F.


Recommendation

Use bearing of wear resistant, high temperature tool steel. Bearing lubricant should be dry and not sublimate.

Solution

The bearings were made of T-5 tool steel which has high hardness and wear resistance at 1000°F. The bearings contain a full complement of balls and no separator.

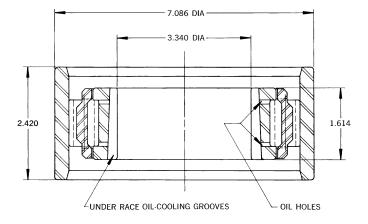
The lubricant was an ultra-thin layer of silver deposited on the balls. The bearings were manufactured without any snap, which may abrade the silver on the balls.

TURBO-MACHINERY ROLLER BEARING

Problem

A high speed mainshaft roller bearing was failing due to skidding. Insufficient load on the bearing was the cause.

Recommendation


Use a pre-loaded roller bearing to overcome the skidding problem.

Solution

The roller bearing was designed with hollow rollers, providing a radial internal pre-load between the inner and outer races.

The bearing has an inner land guided separator. The viscous drag between the separator and the inner race land diameter promotes the rotation of the separator.

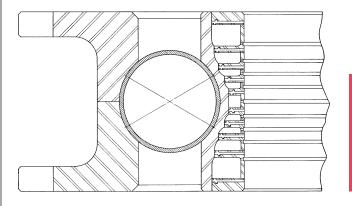
To provide for cooling the inner race, under race cooling grooves were located in the bore of the inner race.

DRUSBA BEARING

Problem

A large diameter bearing to support a platform. The platform and portion of the bearing operate in an anisotropic quantum electrodynamic field, while in a vacuum.

Recommendation


A 4-point contact pre-loaded ball bearing was recommended. Provide means for heat addition or removal to maintain the desired pre-load. Temperature variations occur due to the field; the outer ring normally has a higher temperature than the inner ring.

Solution

A split outer race, full-complement ball bearing to be made of Cobenium rings, and sodium filled Cobenium balls. The raceways and balls were gold plated. The gold is the lubricant.

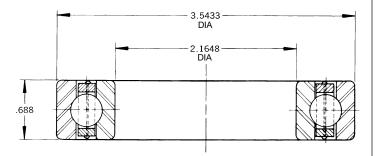
The inner ring of the bearing contains heating or cooling chambers. These are formed by electron beam welding the annular members to the ring. The fluid flowing through the chambers is controlled relative to rate of flow and temperature, depending upon the specific race area temperature serviced by that chamber. This permits control of the geometric configuration of the inner race and pre-load.

The sodium filled balls are used for heat transfer between the rings.

WATER-LUBRICATED BEARINGS

Problem

Long-life, wear-resistant bearings for running in water.


Recommendation

Use bearings of cobalt alloys for maximum corrosion and wear resistance. Design the bearing with race curvatures and clearances to compensate for the lack of lubricity of the water.

Solution

Bearing rings were made of L-605 cobalt alloy. An RBC-developed cold working technique was used to increase the hardness of the alloy to Rc 53 minimum after heat treatment, for increased wear resistance. Normal cold worked and heat treated hardness of this alloy is Rc 47.

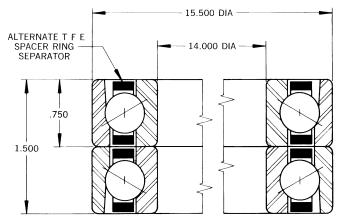
The separators in the bearings were made from 17-4PH corrosion resistant material, heat treated to increase wear resistance.

OPTICAL PRECISION BEARINGS

Problem

The customer wanted to support a 14 in. diameter rotating tube that contained lenses. Minimal radial runout was required to prevent distortion of the image by the lenses. Bearings should be low in torque and corrosion resistant, pre-lubricated, and suitable for a vacuum operation.

Recommendation


The rotating tube should be supported with duplex pairs of bearings, DB mounted, pre-loaded, with minimal lubrication of a low vapor pressure lubricant.

Solution

Duplex DB pair of bearings, pre-loaded, were manufactured of passivated AISI 440C corrosion resistant steel.

The radial and axial runouts were held to the following: radial runout, inner, .0002 T.I.R.; outer, .0003 T.I.R.; axial runout, inner, .0002 T.I.R.; outer, .0003 T.I.R. The separator consisted of TFE separator around alternate balls for low starting and running torque.

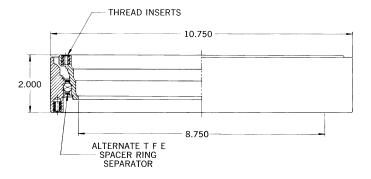
Bearings were lubricated with a special lubricant and then centrifuged at 100 g's for 10 minutes to remove the excess oil.

CAMERA MOUNT BEARING

Problem

There was a need for a lightweight, low torque bearing for use in an aerial camera assembly.

Recommendation


Use a bearing with rings made of aluminum, and hard anodize the raceway areas.

Solution

The original steel bearing design — a double row angular contact ball bearing in an aluminum housing — was replaced with a single row, 4-point contact bearing, with the rings manufactured of 7075-T-651 aluminum. The raceways of both rings were hard anodized and ground after hard anodizing. Balls were of passivated AISI 440C.

This construction utilizing the aluminum material, reduced the overall weight of the bearing assembly from over 7 lbs. in the original design to 3.8 lbs. in the finished unit.

In order to obtain a low running and starting torque, alternate balls in the raceway were surrounded with TFE separator and the raceways were grease-plated. The bearing running torque was below 1 inch lbs. with the starting torque being below 2 inch lbs.

TURBO-MACHINERY BALL BEARING

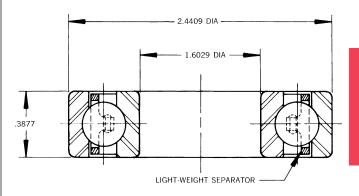
Problem

A ball bearing running at 2.2 million DN*, with no load, was failing due to the fatigue of the outer race, and ball skidding. Fatigue failures had been occurring due to the large number of stress cycles, caused solely by the centrifugal force of the balls.

Recommendation

Reduce the number of balls in the bearing, thereby reducing the number of stress cycles on the outer race.

Make the separator a lightweight steel design. Reduction of the separator and ball mass would reduce the inertial resistance, thereby reducing skidding. Change material from AISI-52100 to a tool steel to increase resistance to skid damage.


Solution

Bearing races and balls were made from CEVM AISI-M50 tool steel. The separator was manufactured from AISI-4340 material, hardened to Rc 26-32 and silver plated.

The number of balls was reduced from twenty to eight balls, reducing the number of stress cycles by sixty percent.

The separator configuration permitted an increase of lubricant flow through the bearing for cooling and lubrication.

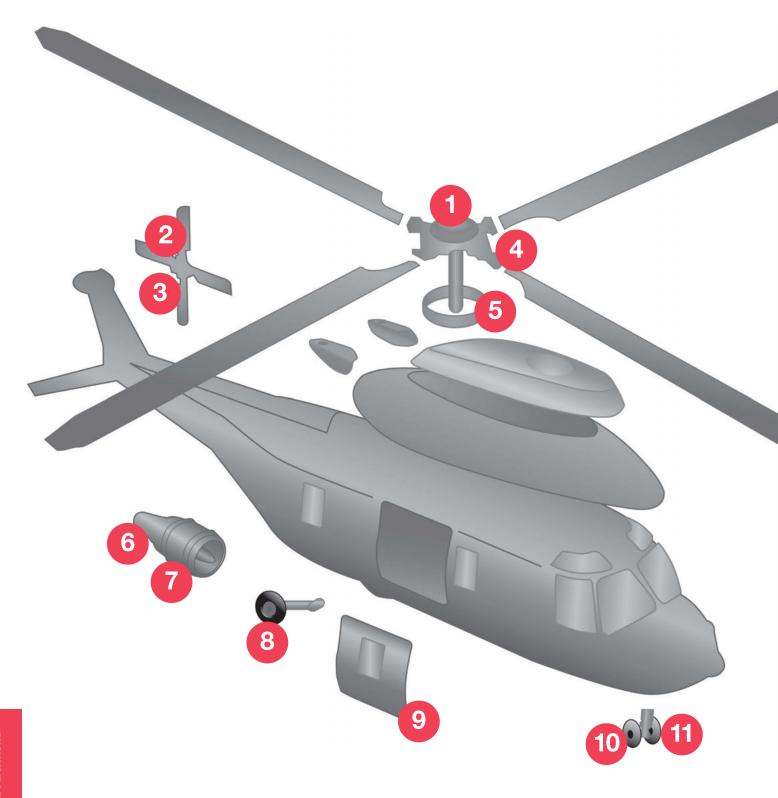
*DN = D, bearing bore in (mm) - N, shaft speed in (RPM).

THIN SECTION BALL BEARINGS AVAILABILITY CHART

BEARING TYPI													BORE	SIZE I	N INCH	IES													
Cross Section		1.00	1.50	1.75	2.00	2.50	3.00	3.50	4.00	4.25	4.50	4.75	5.00	5.50	6.00	6.50	7.00	7.50	8.00	9.00	10.00	11.00	12.00	14.00	16.00	18.00	20.00	25.00	30.00
KAA Series	Α	A	lack	•																									
3/16"	С	A	A	•																									
	Х	A	A	A																									
**JA Series	Α																												
1/4"	С				~	V	~	~	V	~			V	~	V														
	Х				~	V	~	~	V	~				~	V														
KA Series	Α				A	A	A	A	A	~	~	~	A	~	V	~	~	A	~	~	~		~						
1/4"	С				A	A	•	A	A	A	A	A	A	•	•	A	A	A	A	A	A		A						
	Х				A	A	A	A	A	~	A	A	A	•	•	A	A	~	~	~	A		A						
**JB Series	Α																												
5/16"	C						•	~						~															
	Х							~																					
KB Series	Α				A	A	A	A	A	~	~		~	A		~				~									
5/16"	C						•			~	1		•	~		~													
	Х				A	A	•	A	A	A	•		A	•		A			A	•									
KC Series	Α								A		A		•		•	~	~	~	~	~	~	~	~						
3/8"	С												A						~	~	A	V	~						
	Х								A		•		•	•		A	A	1	A		A	•	A						
**JU Series	Α																												
1/2"	С								A		•		•	•	•	A	A	A	A		A	A	~						
	X										•		•	•		A	~		•	~	•	•							
KD Series	Α									~			A								V	A	~	~		~			
1/2"	С										١		•				A		•		A	~				1			
	Х									1	•		•				A				A	•	A						
KF Series	Α								~		~	A	A	•	~	A	A	A	~	•	~	~	~	A					
3/4"	С								A		•	A	•	•	•	A	A	A	A		A	A	A	A					
	Х								A		~		A		A		A	A	A		A	A	A	A					
KG Series	Α												~		~	~	~	A	lack		~	~	A	A	A	A	~	~	~
1"	С												A		~	A	1	A	A	•	A	A	A	A	A	A	~	A	
	Х												A		•	A	A				A	A	A	•	A	A	•	~	
		1.00	1.50	1.75	2.00	2.50	3.00	3.50	4.00	4.25	4.50	4.75	5.00	5.50	6.00	6.50	7.00	7.50	8.00	9.00	10.00	11.00	12.00	14.00	16.00	18.00	20.00	25.00	30.00

	LOAD CONDITION										
Bearing Reversing Combined Type Contact Radial Axial Moment Axial Radial-Thrust											
Α	Angular	Good	Excellent	Do Not Use	Do Not Use	Good					
С	Radial	Excellent	Good	Good	Good	Good					
Х	4-Point	Fair	Good	Excellent	Excellent	Fair					

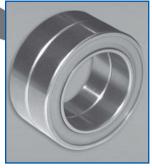
** Sealed bearings


▲ Bearings in stock

✓ Bearings with limited availability

All other bearings check availability

Helicopter Applications

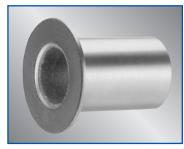

AEROSPACE Applications

1. Main Rotor Bearings

2. Tail Rotor Pitch Link Bearings

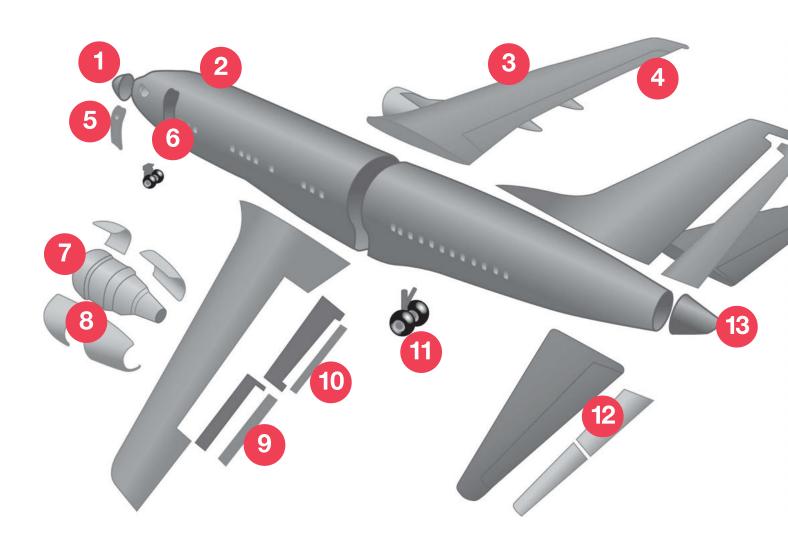
3. Tail Rotor Bearings

4. Main Rotor Pitch Link Bearings


5. Main Rotor Swashplate Slider Bearings

6. Engine Gear Box and Transmission Bearings

7 & 8. Rod Ends, Sphericals, and Journal Bearings for Landing Gear and Engines


9 & 10. Self-lubricating Bushings for Doors and Landing Gear

11. Landing Gear Bearings

Airframe Applications

1. Radar Gimbal Thin Section Bearings

2. Stowage Bin Support Bearings

3. Airframe Control Bearings

4. Spherical Plain and Ball Bearing Rod Ends used in **Actuator and Aircraft Control** Linkages

7. Engine Bearings

Linkage Bearings

9. Ball and Roller Rod Ends used on Control Surfaces

10. Track Rollers

11. Landing Gear Trunnion Bearings

12. Horizontal Stabilizer **Bearings**

5. Door Locking Mechanism and Landing Gear Bushings,

Actuator Bearings

6. Door Linkage Bearings

13. APU Bearings

CONVERSION TABLES

TO CONVERT FROM	T0		MULTIPLY BY
Acceleration foot/second ²	meter/second2	m/s2	0 3048
inch/second ²	meter/second ²	m/s²	0.0254
Area			
foot ²	meter2	m2	0.00200304
nch ²	meter ²	m ²	0.00250504
nch ²	millimeter2	mm ²	645.16
/ard ²	meter ²	m ²	0.836127
nile² (U.S. statute)	meter ²	m ²	2589988
Bending Moment or Torque			
dyne-centimeter	newton-meter	N • m	0.0000001
kilogram-force-meter			
pound-force-inch pound-force-foot			
E nergy 3.T.U. (International Table)	ioule	.I	1055 056
oot-pound-force			
kilowatt-hour			
Force			
kilogram-force	newton	N	9.806650
kilopond-force	newton	N	9.806650
oound-force (lbf avoirdupois).	newton	N	4.448222
Length			
athom	meter	m	1.8288
foot			
nch			
microinch			
micron (_n) mile (U.S. statute)	millimeter	mm	
vard	meter	m	0 9144 n
nautical mile (UK)			
Mass			
Kilogram-force-second ² /mete	r		
(mass)	kilogram	kg	9.806650
kilogram-mass			
pound-mass			
ton (long, 2240 lbm)	kilogram	kg	1016.04/
ton (short, 2000 lbm)tonne			
	tilogram		1000.000
Power B.T.U. (International Table)/hou	ır wott	14/	0.202071
B.T.U. (International Table)/mir	มwaแ าเปอ watt	VV W	
horsepower (550 ft lbf/s)	kilowatt	kW	0.745700
B.T.U. (thermochemical)/minu			
Pressure or Stress (Force/A	roo\		
newton/meter ²	nascal	Pa	1.0000
newton/meter ²	pascal		
newton/meter² kilogram-force/centimeter² kilogram-force/meter²	pascal pascal pascal	Pa Pa	98066.50 9.806650
newton/meter²kilogram-force/centimeter² kilogram-force/meter²kilogram-force/millimeter²kilogram-force/millimeter²	pascal pascalpascal pascal	Pa Pa Pa	98066.50 9.806650 9806650
newton/meter ² kilogram-force/centimeter ² kilogram-force/meter ² kilogram-force/millimeter ² pound-force/foot ²	pascalpascalpascalpascalpascalpascalpascalpascalpascal	Pa Pa Pa Pa	98066.50 9.806650 9806650 47.88026
newton/meter² kilogram-force/centimeter²	pascalpascalpascalpascalpascalpascalpascalpascalpascal	Pa Pa Pa Pa	98066.50 9.806650 9806650 47.88026
newton/meter ² kilogram-force/centimeter ² kilogram-force/meter ² kilogram-force/millimeter ² pound-force/foot ² pound-force/inch ² (psi)	pascal megapascal	Pa Pa Pa Pa MPa	
newton/meter?	pascal pascal pascal pascal pascal pascal pascal pascal degree Kelvin	Pa Pa Pa Pa MPa	
newton/meter?	pascal pascal pascal pascal pascal pascal pascal pascal degree Kelvin	Pa Pa Pa Pa MPa	
newton/meter?	pascal pascal pascal pascal pascal pascal pascal pascal degree Kelvin	Pa Pa Pa Pa MPa	
newton/meter? kilogram-force/centimeter2 kilogram-force/meter2 kilogram-force/millimeter2 pound-force/foot2 pound-force/inch2 (psi) femperature degree Celsius degree Fahrenheit Velocity	pascal pascal pascal pascal pascal pascal pascal degree Kelvin degree Kelvin degree Celsius	Pa	$\begin{array}{c}$
newton/meter2 kilogram-force/centimeter2 kilogram-force/meter2 kilogram-force/millimeter2 pound-force/foot2 pound-force/inch2 (psi) Temperature degree Celsius degree Fahrenheit degree Fahrenheit Velocity foot/minute	pascal pascal pascal pascal pascal pascal pascal degree Kelvin degree Kelvin degree Celsius meter/second	PaPaPaPaPaPaPaPaPa	$\begin{array}{c}$
newton/meter? kilogram-force/centimeter2 kilogram-force/meter2 kilogram-force/millimeter2 pound-force/foot2 pound-force/inch2 (psi) Temperature degree Celsius degree Fahrenheit degree Fahrenheit velocity foot/minute foot/second	pascal pascal pascal pascal pascal pascal pascal pascal degree Kelvin degree Kelvin degree Celsius meter/second meter/second	Pa	$\begin{array}{c}$
newton/meter? kilogram-force/centimeter2 kilogram-force/meter2 kilogram-force/meter2 pound-force/foot2 pound-force/inch2 (psi) Temperature degree Celsius degree Fahrenheit degree Fahrenheit Velocity foot/minute foot/second inch/second	pascal pascal pascal pascal pascal pascal pascal pascal degree Kelvin degree Kelvin degree Celsius meter/second meter/second meter/second	PaPaPaPaPaMPa	$\begin{array}{c}$
newton/meter? kilogram-force/centimeter2 kilogram-force/meter2 kilogram-force/meter2 pound-force/foot2 pound-force/foot2 pound-force/inch2 (psi) Temperature degree Celsius degree Fahrenheit degree Fahrenheit Velocity foot/second kilometer/hour mile/hour (U.S. statute)	pascal pascal pascal pascal pascal pascal pascal pascal pascal degree Kelvin degree Kelvin degree Celsius meter/second meter/second meter/second meter/second meter/second	Pa	$\begin{array}{c}$
newton/meter² idlogram-force/centimeter² idlogram-force/centimeter² idlogram-force/meter² cound-force/foot² cound-force/inch² (psi) femperature degree Celsius degree Fahrenheit degree Fahrenheit felocity foot/second nch/second idlometer/hour mile/hour (U.S. statute)	pascal pascal pascal pascal pascal pascal pascal pascal pascal degree Kelvin degree Kelvin degree Celsius meter/second meter/second meter/second meter/second meter/second	Pa	$\begin{array}{c}$
newton/meter² idlogram-force/centimeter² idlogram-force/centimeter² idlogram-force/meter² idlogram-force/millimeter² cound-force/foot² cound-force/inch² (psi) femperature degree Celsius degree Fahrenheit degree Fahrenheit velocity ioot/minute ioot/second nch/second idlometer/hour mile/hour (U.S. statute) mile/hour (U.S. statute)	pascal pascal pascal pascal pascal pascal pascal pascal pascal degree Kelvin degree Kelvin degree Celsius meter/second meter/second meter/second meter/second meter/second	Pa	$\begin{array}{c}$
newton/meter? kilogram-force/centimeter2 kilogram-force/centimeter2 kilogram-force/millimeter2 pound-force/foot2 pound-force/inch2 (psi) Temperature degree Celsius degree Fahrenheit degree Fahrenheit degree Fahrenheit degree Fahrenheit foot/second inch/second mile/hour (U.S. statute) mile/hour (U.S. statute) Volume foot3	pascal pascal pascal pascal pascal pascal pascal pascal pascal degree Kelvin degree Celsius meter/second	Pa	$\begin{array}{c}$
newton/meter? kilogram-force/centimeter2 kilogram-force/meter2 kilogram-force/meter2 pound-force/foot2 pound-force/inch2 (psi) Temperature degree Celsius degree Fahrenheit degree Fahrenheit foot/minute foot/second inch/second kilometer/hour mile/hour (U.S. statute) Wolume foot3 gallon (U.S. liquid)	pascal pascal pascal pascal pascal pascal pascal pascal pascal degree Kelvin degree Kelvin degree Celsius meter/second meter/second meter/second meter/second meter/second meter/second meter/second miter/second miter/second	PaPaPaPaPaPaPa	$\begin{array}{c}$
newton/meter? kilogram-force/centimeter2 kilogram-force/centimeter2 kilogram-force/meter2 kilogram-force/millimeter2 pound-force/foot2 pound-force/inch2 (psi) Temperature degree Celsius degree Fahrenheit degree Fahrenheit degree Fahrenheit foot/minute foot/second inch/second kilometer/hour mile/hour (U.S. statute) mile/hour (U.S. statute) Volume foot3 gallon (U.S. liquid) liter	pascal megapascal degree Kelvin degree Celsius meter/second	Pa	$\begin{array}{c}$
newton/meter? kilogram-force/centimeter2 kilogram-force/meter2 kilogram-force/meter2 pound-force/foot2 pound-force/inch2 (psi) Temperature degree Celsius degree Fahrenheit degree Fahrenheit velocity foot/minute foot/second nch/second mile/hour (U.S. statute) mile/hour (U.S. statute) volume foot3 goal3 goal3 goal3 goal3 iter inch3	pascal megapascal degree Kelvin degree Celsius meter/second	Pa P	$\begin{array}{c}$
newton/meter? kilogram-force/centimeter2 kilogram-force/meter2 kilogram-force/millimeter2 pound-force/foot2 pound-force/inch2 (psi) Temperature degree Celsius degree Fahrenheit degree Fahrenheit degree Fahrenheit degree Fahrenheit velocity foot/second nch/second mile/hour (U.S. statute) mile/hour (U.S. statute) volume foot3 gallon (U.S. liquid) iter inch3 inch3	pascal megapascal degree Kelvin degree Celsius meter/second contineter/second meter3 contimeter3	Pa	$\begin{array}{c}$
newton/meter? kilogram-force/centimeter2 kilogram-force/centimeter2 kilogram-force/meter2 kilogram-force/millimeter2 pound-force/foot2 pound-force/inch2 (psi) Temperature degree Celsius degree Fahrenheit degree Fahrenheit degree Fahrenheit foot/minute foot/second inch/second kilometer/hour mile/hour (U.S. statute) mile/hour (U.S. statute) Volume foot3 gallon (U.S. liquid)	pascal pa	PaPaPaPaPaPaPaPaPaPa	$\begin{array}{c}$

VISCOSITY CONVERSION TABLE

SUS Saybolt (sec.)	R' Redwood (sec.)	E Engler (deg.)	cSt Centistokes
35	32.2	1.18	27
40	36.2	1.32	4.3
45 50	40.6 44.9	1.46 1.60	59 7.4
55	49.1	1.75	8.9
60	53.5	1.88	10.4
65	57.9	2.02	11.8
70	62.3	2.15	13.1
75 80	67.6 71.0	2.31 2.42	14.5 15.8
85	75.1	2.55	17.0
90	79.6	2.68	18.2
95	84.2	2.81	19.4
100	88.4	2.95	20.6
110	97.1	3.21	23.0
120 130	105.9 114.8	3.49 3.77	25.0 27.5
140	123.6	4.04	29.8
150	132.4	4.32	32.1
160	141.1	4.59	34.3
170 180	150.0 158.8	4.88 5.15	36.5 38.8
190	167.5	5.15 5.44	30.0 41.0
200	176.4	5.72	43.2
220	194.0	6.28	47.5
240	212	6.85	51.9
260 280	229 247	7.38 7.95	56.5 60.5
300	265	8.51	64.9
325	287	9.24	70.3
350	309	9.95	75.8
375	331	10.7	81.2
400 425	353 375	11.4 12.1	86.8
450	375 397	12.1	92.0 97.4
475	419	13.5	103
500	441	14.2	108
550	485	15.6	119
600 650	529 573	17.0 18.5	130 141
700	617	19.9	152
750 750	661	21.3	163
800	705	22.7	173
850	749	24.2	184
900	793	25.6	195
950 1000	837 882	27.0 28.4	206 217
1200	002 1058	26.4 34.1	217 260
1400	1234	39.8	302
1600	1411	45.5	347
1800	1587	51 57	390
2000 2500	1763 2204	57 71	433 542
3000	2646	85	650
3500	3087	99	758
4000	3526	114	867
4500	3967	128	974
5000 5500	4408 4849	142 156	1082 1150
6000	5290	170	1300
6500	5730	185	1400
7000	6171	199	1510
7500	6612	213	1630
8000 8500	7053 7494	227 242	1740 1850
9000	7934	256	1960
9500	8375	256 270	2070

INCHES TO MILLIMETERS - UNITS

	Inches	0	1	2	3	4	5	6	7	8
0	0.0000	0.000	25.400	50.800	76.200	101.600	127.000	152.400	177.800	203.200
1/16	0.0625	1.588	26.988	52.388	77.788	103.188	128.588	153.988	179.388	204.788
1/8	0.1250	3.175	28.575	53.975	79.375	104.775	130.175	155.575	180.975	206.375
3/16	0.1875	4.763	30.162	55.562	80.962	106.362	131.762	157.162	182.562	207.962
1/4	0.2500	6.350	31.750	57.150	82.550	107.950	133.350	158.750	184.150	209.550
5/16	0.3125	7.938	33.338	58.738	84.138	109.538	134.938	160.338	185.735	211.138
3/8	0.3750	9.525	34.925	60.325	85.725	111.125	136.525	161.925	187.325	212.725
7/16	0.4375	11.112	36.512	61.912	87.312	112.712	138.112	163.512	188.912	214.312
1/2	0.5000	12.700	38.100	63.500	88.900	114.300	139.700	165.100	190.500	215.900
9/16	0.5625	14.288	39.688	65.088	90.488	115.888	141.288	166.688	192.088	217.488
5/8	0.6250	15.875	41.275	66.675	92.075	117.475	142.875	168.275	193.675	219.075
11/16	0.6875	17.462	42.862	68.262	93.662	119.062	144.462	169.862	195.262	220.662
3/4	0.7500	19.050	44.450	69.850	95.250	120.650	146.050	171.450	196.850	222.250
13/16	0.8125	20.638	46.038	71.438	96.838	122.238	147.638	173.038	198.438	223.838
7/8	0.8750	22.225	47.625	73.025	98.425	123.825	149.225	174.625	200.025	225.425
15/16	0.9375	23.812	49.212	74.612	100.012	125.412	150.812	176.212	201.612	227.012

	Inches	9	10	11	12	13	14	15
0	0.0000	228.600	254.000	279.400	304.800	330.200	355.600	381.000
1/16	0.0625	230.188	255.588	280.988	306.388	331.788	357.188	382.588
1/8	0.1250	231.775	257.175	282.575	307.975	333.375	358.775	384.175
3/16	0.1875	233.362	258.762	284.162	309.562	334.962	360.362	385.762
1/4	0.2500	234.950	260.350	285.750	311.150	336.550	361.950	387.350
5/16	0.3125	236.538	261.938	287.338	312.738	338.138	363.538	388.938
3/8	0.3750	238.125	263.525	288.925	314.325	339.725	365.125	390.525
7/16	0.4375	239.712	265.112	290.512	315.912	341.312	366.712	392.112
1/2	0.5000	241.300	266.700	292.100	317.500	342.900	368.300	393.700
9/16	0.5625	242.888	268.288	293.688	319.088	344.488	369.888	395288
5/8	0.6250	244.475	269.875	295.275	320.675	346.075	371.475	396.875
11/16	0.6875	246.062	271.462	296.862	322.262	347662	373.062	398.462
3/4	0.7500	247.650	273.050	298.450	323.850	349.250	374.650	400.050
13/16	0.8125	249.238	274.638	300.038	325.438	350.838	376.238	401.638
7/8	0.8750	250.825	276.225	301.625	327.025	352.425	377.825	403.225
15/16	0.9375	252.412	277.812	303.212	328.612	354.012	379.412	404.812

B.S.I. Norm No. 350 A.S.A. Norm No. B48.1 1 inch = 25.400 mm (exact)

DIN 4890, $\frac{1}{25.4}$ inches

Inches		10
0	_	254
1	25.4	279.4
2	50.8	304.8
3	76.2	330.2
4	101.6	355.6
5	127	381
6	152.4	406.4
7	177.8	431.8
8	203.2	457.2
9	228.6	482.6

FRACTIONS

1/10"		1/	100"	1/	1000"	
Inches	mm	Inches	Inches mm		mm	
0.1	2.54	0.01	0.254	0.001	0.0254	
0.2	5.08	0.02	0.508	0.002	0.0508	
0.3	7.62	0.03	0.762	0.003	0.0762	
0.4	10.16	0.04	1.016	0.004	0.1016	
0.5	12.70	0.05	1.270	0.005	0.1270	
0.6	15.24	0.06	1.524	0.006	0.1524	
0.7	17.78	0.07	1.778	0.007	0.1778	
0.8	20.32	0.08	2.032	0.008	0.2032	
0.9	22.86	0.09	2.286	0.009	0.2286	

1/10000"					
Inches	mm				
0.0001	0.00254				
0.0002	0.00508				
0.0003	0.00762				
0.0004	0.01016				
0.0005	0.01270				
0.0006	0.01524				
0.0007	0.04770				

0.01778 0.02032 0.02286

0.0006 0.0007

0.0008 0.0009

MILLIMETERS TO INCHES - UNITS

mm		10	20	30	40	50	60	70	80	90
0	_	0.39370	0.78740	1.18110	1.57480	1.96850	2.36220	2.75591	3.14961	3.54331
1	0.03937	0.43307	0.82677	1.22047	1.61417	2.00787	2.40157	2.79528	3.18898	3.58268
2	0.07874	0.47244	0.86614	1.25984	1.65354	2.04724	2.44094	2.83465	3.22835	3.62205
3	0.11811	0.51181	0.90551	1.29921	1.69291	2.08661	2.48031	2.87402	3.26772	3.66142
4	0.15748	0.55118	0.94488	1.33858	1.73228	2.12598	2.51969	2.91339	3.30709	3.70079
5	0.19685	0.59055	0.98425	1.37795	1.77165	2.16535	2.55906	2.95276	3.34646	3.74016
6	0.23622	0.62992	1.02362	1.41732	1.71102	2.20472	2.59843	2.99213	3.38583	3.77953
7	0.27559	0.66929	1.06299	1.45669	1.85039	2.24409	2.63780	3.03150	3.42520	3.81890
8	0.31496	0.70866	1.10236	1.49606	1.88976	2.28346	2.67717	3.07087	3.46457	3.85827
9	0.35433	0.74803	1.14173	1.53543	1.92913	2.32283	2.71654	3.11024	3.50394	3.89764

mm		100	200	300
0	_	3.93701	7.87402	11.81100
10	0.39370	4.33071	8.26772	12.20470
20	0.78740	4.72441	8.66142	12.59840
30	1.18110	5.11811	9.05512	12.99210
40	1.57480	5.51181	9.44882	13.38580
50	1.96850	5.90551	9.84252	13.77950
60	2.36220	6.29921	10.23620	14.17320
70	2.75591	6.69291	10.62990	14.56690
80	3.14961	7.08661	11.02360	14.96060
90	3.54331	7.48031	11.41730	15.35430

FRACTIONS

1/	10 mm	1/1	00 mm	1/10	00 mm
mm	inches	mm	inches	mm	inches
0.1	0.00394	0.01	0.00039	0.001	0.000039
0.2	0.00787	0.02	0.00079	0.002	0.000079
0.3	0.01181	0.03	0.00118	0.003	0.000118
0.4	0.01575	0.04	0.00157	0.004	0.000157
0.5	0.01969	0.05	0.00197	0.005	0.000197
0.6	0.02362	0.06	0.00236	0.006	0.000236
0.7	0.02756	0.07	0.00276	0.007	0.000276
8.0	0.03150	0.08	0.00315	0.008	0.000315
0.9	0.03543	0.09	0.00354	0.009	0.000354

RBC Aerospace Bearing Products

RBC Bearings Incorporated has been producing bearings in the USA since 1919. RBC offers a full line of aerospace bearings, including unique custom configurations.

Spherical Bearings

- MS approved to AS81820 (formerly MIL-B-81820)
- · Boeing and Airbus approved
- Self-lubricating
 Metal-to-Metal
- · Loader slots · High temperature
- · Low coefficient of friction
- · Special configurations and materials

Rod End Bearings

- MS approved to AS81935 (formerly MIL-B-81935)
- · Boeing and Airbus approved
- Self-lubricating
 Metal-to-Metal
- · Loader slots · High temperature
- Low coefficient of friction
- · Special configurations and materials

Thin Section Ball Bearings

- · Standard cross-sections to one inch
- · Stainless steel and other materials are available • Sizes to 40 inches
- Seals available on all sizes and standard cross-sections
- Super duplex configurations

Cargo Roller Bearings

- Boeing approved
- · Features precision ground, semi-ground, and unground ball bearings
- Offered in caged and full complement configurations

Journal Bearings

- MS approved to AS81934 (formerly MIL-B-81934)
- Boeing and Airbus approved
- · Plain and flanged · Self-lubricating
- · High temperature · High loads
- · Available in inch and metric sizes

Track Rollers

- MS approved to AS39901 (formerly MIL-B-3990)
- Boeing and Airbus approved
- ATF single row and ATL double row
- · Sealed with lube holes and grooves
- · Heavy duty cross-sections
- Advanced AeroCres® materials available

Airframe Control Ball Bearings

- MS approved to AS7949 (formerly MIL-B-7949)
- Boeing and Airbus approved
- Single and double row
- Radial, self-aligning, and pulley series
- 52100 Cad plated and 440C stainless

Cam Followers

- MS approved to AS39901 (formerly MIL-B-3990)
- Advanced AeroCres® materials available
- · Maximum corrosion resistance
- · Superior lubricants and seals to reduce maintenance

Load Slot Bearings

- Spherical and rod end designs
- · Superior ball-to-race conformity
- Reduced maintenance cost
- · Variety of race materials available
- Boeing approved

Ball Bearing Rod Ends

- MS approved to AS6039 (formerly MIL-B-6039) · Boeing approved
- Various shank configurations
- · Low coefficient of friction
- Advanced AeroCres® materials available

Specials

- · Many specialty bearings, customdesigned and configured for diverse aerospace applications
- Capability for advanced aerospace specialty corrosion resistant and high temperature materials

Innovation. Commitment. Quality.

www.rbcbearings.com

This document contains a general overview of the products and features described herein. It is solely for informational purposes, does not represent a warranty of the information contained herein, and is not to be construed as an offer to sell or a solicitation to buy. Contact RBC Bearings for detailed information suitable to your specific applications. RBC Bearings reserves the right to modify its products and related product information at any time without prior notice.

Some of the products listed herein may be covered by one or more issued and pending U.S. or foreign patents. Contact RBC Bearings for product specific information.