## **Fafnir**®

## **Superprecision Ball Bearings**



#### **ABOUT THE COVER**

The Torrington Company is committed to develop, produce and deliver products and services that consistently meet or exceed customer expectations.

Helping The Torrington Company achieve the goals stated above are our corps of highly trained sales engineers, the latest analytical and manufacturing systems, a commitment to research and development for new ideas and products, our devotion to the principles of Total Quality and a history steeped in technological firsts in the antifriction industry.

This catalog will help you to design the technology, quality and service of The Torrington Company into your products.

| Introduction                        | Pages | 4-5     |
|-------------------------------------|-------|---------|
| Superprecision Bearings             | Pages | 8-85    |
| Ballscrew Support Bearings          | Pages | 86-100  |
| Engineering                         | Pages | E1-E49  |
| Maintenance • Machine Tool Spindles | Pages | E51-E63 |
| Index                               | Pages | E64-E65 |

INTRODUCTION

| The Torrington Company                     | 1          | Shelf Life and Storage Policy           | 6              |                             |                |
|--------------------------------------------|------------|-----------------------------------------|----------------|-----------------------------|----------------|
| The Torrington Commitment                  | 1          |                                         |                |                             |                |
| Fafnir Superprecision Bearings             | 4          |                                         |                |                             |                |
| Using This Catalog                         | 4          |                                         |                |                             |                |
| Hybrid Ceramic Bearings                    | 5          |                                         |                |                             |                |
| Conditions of Sale                         | 5          |                                         |                |                             |                |
| Warranty                                   | 5          |                                         |                |                             |                |
| Liability                                  | 5          |                                         |                |                             |                |
| Restricted Applications                    | 5          |                                         |                |                             |                |
| Safety Recommendations                     | 5          |                                         |                |                             |                |
|                                            |            |                                         |                |                             |                |
| Nomenclature Chart                         | 8          | Extra-Light 2MMV9100HX Series           | 34-41          |                             |                |
| Superprecision Bearing Introduction        | 10         | Extra-Light 2MM9100WI, 3MM9100WI Series |                |                             |                |
| Machine Tool Offering Chart                | 11         | Extra-Light MM9100K Series              | 52-54          |                             |                |
| Bearing Types                              |            | Light 2MM200WI, 3MM200WI Series         | 56-65          |                             |                |
| Angular Contact                            | 12         | Light MM200K Series                     | 66-68          |                             |                |
| •                                          | 13         | Medium 2MM300WI, 3MM300WI Series        | 69-77          |                             |                |
| Ballscrew Support Bearings                 |            |                                         |                |                             |                |
| Ultra-Light 2MM9300WI, 3MM9300WI Series    | 5 14-23    | Medium MM300K Series                    | 78-80          |                             |                |
| Extra-Light 2MMV99100WN,                   | 04.00      | Ex-Cell-O Spindle Bearings              | 81-83          |                             |                |
| 3MM99100WN Series                          | 24-33      | Hybrid Ceramic Bearings                 | 84,85          |                             |                |
| <del> </del>                               |            |                                         |                |                             |                |
| Nomenclature Chart                         | 86         |                                         |                |                             |                |
| Ballscrew Support Bearings                 | 88-91      |                                         |                |                             |                |
| BSBU D                                     |            |                                         |                |                             |                |
| Standard and Heavy Duty Bearings           | 92,93      |                                         |                |                             |                |
| BSBU Q                                     |            |                                         |                |                             |                |
| Standard and Heavy Duty Bearings           | 94,95      |                                         |                |                             |                |
| BSPB D                                     |            |                                         |                |                             |                |
| Standard and Heavy Duty Bearings           | 96,97      |                                         |                |                             |                |
| BSPB Q                                     | ,-         |                                         |                |                             |                |
| Standard and Heavy Duty Bearings           | 98,99      |                                         |                |                             |                |
| Forward                                    | E2         | Looker's Torray                         | F22            | Hausing Design              |                |
| Tolerances                                 | E2<br>E3   | Locknut Torque                          | E22            | Housing Design              | E34            |
| Standard Tolerances, Inner Ring, ABEC-7,-9 |            | Micron Bore and O.D. Coding             | E23            | Housing Seals               | E35            |
| Width Tolerances                           | , L4<br>E4 | Lube Inlet Diameters                    | E27            | Bearing Locknuts            | E35            |
| Standard Tolerances, Outer Ring, ABEC-7,-9 |            | Recommended Ball Screw Shaft            | -0405          | Heat Generation             | E35,E36        |
| Shaft and Housing Geometry                 | E6         | •                                       | E24,E25<br>E29 | Permissible Operating Speed | E36            |
| Recommended Spindle Shaft Tolerances       | E8,E9      | Typical Mountings of Duplex Bearings    | E30            | Lubrication Types           | E37,E38<br>E41 |
| Recommended Spindle Housing Tolerances     | E10-E15    | Back-to-Back vs Face-to-Face Mounting   |                | Engineering Notations       | E41<br>E41-E43 |
| Ball Screw Shaft and Housing               |            | Spring-Loaded Mountings                 | E31<br>E31     | Life Calculators            | E41-E43<br>E43 |
| Shoulder Diameters                         | E16        | Preloading                              | E32            | Life Adjustment Factors     | E43<br>E45-E48 |
| Spindle Shaft and Housing                  |            | Bearing Selection                       | E32<br>E34     | Applications                |                |
| Shoulder Diameters                         | E17-E19    | Bearing Spacers                         | E34            | Radial Internal Clearance   | E49            |
| Forward                                    | E52        | Checking Temperature, Vibration         |                |                             |                |
| Procedure                                  | E52        | and Roughness                           | E56            |                             |                |
| Enclosed Dust-Free Working Area            | E52        |                                         | E56-E58        |                             |                |
| Inspection of Parts Before Assembly        | E52        | Typical Applications of Ball Bearings   |                |                             |                |
| Bearing Packing                            | E53        | to Machine Tool Spindles                | E58            |                             |                |
| Bearings Assembled in Spindle Mounting     | E53        | •                                       | E60-E62        |                             |                |
| Bearings and Shaft Assembled with          | _00        | Bearing Analysis sheet                  | E63            |                             |                |
| Eccentricities Opposed                     | E54        | ,, o.c oor                              | _00            |                             |                |
| Scraping Locknut to Eliminate Runout       | E55        |                                         |                |                             |                |
| Coraping Looking to Eliminate Numbut       | L00        |                                         |                |                             |                |
|                                            |            |                                         |                |                             |                |
|                                            |            |                                         |                |                             |                |
|                                            |            |                                         |                |                             |                |

See last page of catalog for Engineering Sales Offices

#### INTRODUCTION

The Torrington Company (hereinafter referred to as "Torrington"), part of worldwide Ingersoll-Rand, is a bearing and automotive component supplier of international stature. Its global presence in North America, Europe, Australia, South America and the Far East, plus joint ventures in Japan, The People's Republic of China, and Europe, support customer operations around the world.

Torrington began manufacturing bearings in the early 1900s and now produces every basic type of precision ground antifriction bearing, as well as many precision components for other mechanisms. Torrington's wholly owned subsidiary, Kilian Manufacturing Corporation, produces lighter duty machined bearings. Torrington's merger with Fafnir Bearing, founded in 1911 and recognized as one of the world's major suppliers of precision bearings and housed units, has further strengthened Torrington's leadership position as a broad line supplier to the world's industries.

Torrington's world leadership position in an automotive component technology is based on its complete technical ability. This extends from the initial design stages through application analysis, to optimizing the entire manufacturing process. The experience gained from broad design and manufacturing activities is available to our customers through Torrington's resident engineers and field sales engineers in all parts of the world.

As Torrington enters the 21st century, it has dedicated its capabilities and resources — its people, facilities, systems and technologies — to two goals:

- producing world-class products.
- assuring total customer satisfaction.

#### TORRINGTON IS AT HOME AROUND THE WORLD

To support its sales and service activities, Torrington has:

- Over 20 manufacturing plants on five continents.
- Over 40 district sales engineering offices throughout the world.
- Warehouses throughout the U.S.A., Canada and Germany, with interlinking computerized inventory control.
- Extensive capabilities in metric and inch bearings.
- Technical resources for customer assistance.

For new concepts of the future, for the challenges faced by industry, Torrington offers in-depth design assistance and multinational supply capability for products that are made to identical standards worldwide.

#### **USING THIS CATALOG**

We are committed to providing our customers with maximum service and quality. Included in this commitment is a concern for the suitability of the bearing selected for any application. Only those with sufficient engineering training and technical competence to interpret and apply the data and principles involved should make the final selection of a bearing. The part number in this catalog describes only the dimensions. The part number of the product supplied may differ than those listed in these pages.

This catalog contains dimensions, tolerances and load ratings, as well as an engineering section describing fitting practices for shafts and housings, internal clearances, materials and other features of superprecision bearings. It is not to be considered as containing sufficient data for reliable bearing design and selection for all applications. It can, however, provide valuable assistance in the initial consideration of the type and characteristics of the bearing which may be most suitable for particular needs.

Although all data in this catalog has been carefully compiled to make the information as complete as possible, Torrington assumes no liability to any company or person for any damages, direct or indirect, to property or person, based on information contained in this publication.

#### **CATALOG FEATURES**

Dimension and load rating data for the various types and styles of bearings is organized by size. There is also a numeric/alpha listing of product designation codes in the front of the catalog.

ISO, DIN, and "ABMA"\*, as used in this catalog, refer to the International Organization for Standardization, Deutsches Institut für Normung EV and the American Bearing Manufacturers Association.

#### **FAFNIR SUPERPRECISION BEARINGS**

Fafnir introduced its superprecision bearings, developed specifically for machine tool applications, in 1935. Since that time our engineers, designers, metallurgists and skilled machinists, utilizing state-of-the-art process technology have made improvements in their design, material, lubrication, and manufacturing processes. The result is a line of Fafnir superprecision bearings capable of higher speeds, greater reliability, and wider versatility.

As part of our on-going research, development and testing program, our engineers analyze their client's application problems using sophisticated computers and software which enable them to:

- recommend the precise type and size of bearing that will give optimum performance under a variety of conditions.
- predict the probable service life of all bearings with considerable accuracy.

All of the superprecision bearings listed in this catalog embody the same high standards of precision and quality which have made the FAFNIR name synonymous with bearing excellence throughout the world.

The following are registered trademarks of The Torrington Company:

Torrington®
Fafnir®
Kilian®
Wuxi®

<sup>\*</sup> Formerly the AFBMA - Anti-Friction Bearing Manufacturers Association.

#### HYBRID CERAMIC BEARINGS

Any of the bearings offered by the Torrington Company are also available with ceramic, silicon nitride, rolling elements.

Designed with increased speed capabilities, the hybrid ceramic bearing features a higher elastic modulus for grater stiffness. Its lower friction characteristics result in less skidding than the all-steel bearings are discussed in greater detail on pages 38 and 39.

The Torrington Company Sales Engineer in your area can assist you in determining if the hybrid ceramic bearing is suitable for your application. They will help you to determine if hybrid ceramics are the answer, or if another Torrington Company product is a better solution. For the location of the Torrington Company Sales Office in your area refer to the last page in this catalog.

#### SALES ENGINEERING SERVICES

Since no catalog can include or disclose all the factors necessary for proper bearing selection in every type of application, we highly recommend consulting with us on any application where property damage or injury to persons from misapplication should be of special concern in the selection of the bearing.

Part of the Torrington world-wide service system is a corps of highly trained sales engineers who are available to work toward solving new or unusual problems. Torrington may have already solved a similar problem and can offer a speedy, cost-effective solution. The last page of this catalog lists the phone number and address of the Torrington office nearest you.

Torrington reserves the right to change the design and/or specifications of its products without notice.

#### TERMS AND CONDITIONS OF SALE

All products described in this catalog are subject to Torrington's Terms and Conditions of Sale, copies of which are available from Torrington's district offices as listed in the back of this catalog. It is understood that the buyer, in selecting and ordering from this catalog which supersedes all previous editions, accepts all Terms and Conditions of Sale including the following:

#### WARRANTY

Torrington warrants that parts manufactured by it will be as specified and will be free from defects in material and workmanship. Torrington's liability under this warranty shall be limited to the repair or replacement or the repayment of the purchase price, or the granting of a reasonable allowance (as Torrington may elect) of any part which upon return to Torrington is found to be defective at the time of shipment, providing the buyer notifies Torrington of any such defect within 10 days of its discovery, but in no event later than 90 days from the date of shipment of such part by Torrington. Repair or replacement shall be made by Torrington F.O.B. point of shipment.

Seller makes no other warranty or representation of any kind whatsoever, expressed, or implied, except that of title and all implied warranties, including any warranty of merchantability or fitness for a particular purpose, are hereby disclaimed.

#### LIABILITY

Total liability of Torrington with respect to any order, whether based on contract, warranty, negligence, indemnity, strict liability or otherwise, shall not exceed the purchase price of the part upon which such liability is based.

Torrington shall in no event be liable to the buyer, any successors in interest or any beneficiary of any order, for any consequential, incidental, indirect, special or punitive damages arising out of such order or any breach thereof, whether or not such loss or damage is based on contract, warranty, negligence, indemnity, strict liability or otherwise.

#### **NUCLEAR APPLICATION**

The bearings described within this catalog are not intended for nuclear application. Should any such application be considered, it is urged that you consult with Torrington.

For use within any nuclear facility, Owner/Licensee of the nuclear facility and/or buyer shall indemnify and hold Torrington harmless from any liability occurring on or off-site, at any time, including loss of use, whether based in contract or tort, including negligence attributable in whole or in part to Torrington, resulting directly or indirectly from a nuclear incident.

#### **HELICOPTER APPLICATION**

Torrington has discontinued offering it's products to the helicopter industry. This includes bearings previously sold to the helicopter industry under the Torrington, Fafnir and Kilian trade names. As a result of this decision, Torrington will no longer provide engineering support nor recommend that Torrington bearings be used in helicopter applications.

With regard to aircraft bearings manufactured to military standards, only the aircraft/helicopter manufacturer can determine if the aircraft mil spec bearings are suitable for use in its aircraft.

#### SAFETY RECOMMENDATIONS

- Product should be stored in a dry and clean area.
- Package should not be opened until ready to use.
- Prior to installation, Torrington should be consulted for recommendations. Proper installation and maintenance must be adhered to for ultimate performance.
- Failure to adhere to recommendations may result in premature product failure, and/or in extreme cases, personal injury.



### SHELF LIFE AND STORAGE OF GREASE LUBRICATED BEARINGS AND COMPONENTS

#### SHELF LIFE POLICY:

The Torrington Policy for the Shelf Life of Grease Lubricated Rolling Element Bearings, Components and assemblies is set forth below. The Shelf Life values are based on test data and experience.

Shelf Life should be distinguished from lubricated bearing/component Service Life as follows:

#### **Shelf Life**

The Shelf Life of the grease lubricated bearing/component is the maximum allowable time interval from date of original manufacture/packaging to the removal from the original packaging (hereinafter referred to as "Shelf Life").

#### **Service Life**

The Service Life of the grease lubricated bearing/component is a measure of the anticipated aggregate usage (hereinafter referred as "Service Life"). Variations in lubricant bleed rates, oil migration, operating conditions, installation conditions, temperature, humidity and extended storage make it impossible to accurately predict Service Life.

The Bearing Shelf Life is related primarily to the lubricant's ability to maintain the bearing's original manufactured radial internal clearance and freedom to rotate.

The Component Shelf Life is related to the ability of the component to function as originally intended.

The Shelf Life values, available from the Torrington District Sales Office, represent the period of time prior to use or installation. Due to the broad range of applications, Torrington cannot anticipate the performance of the grease lubricant after the bearing or component is installed or placed in service.

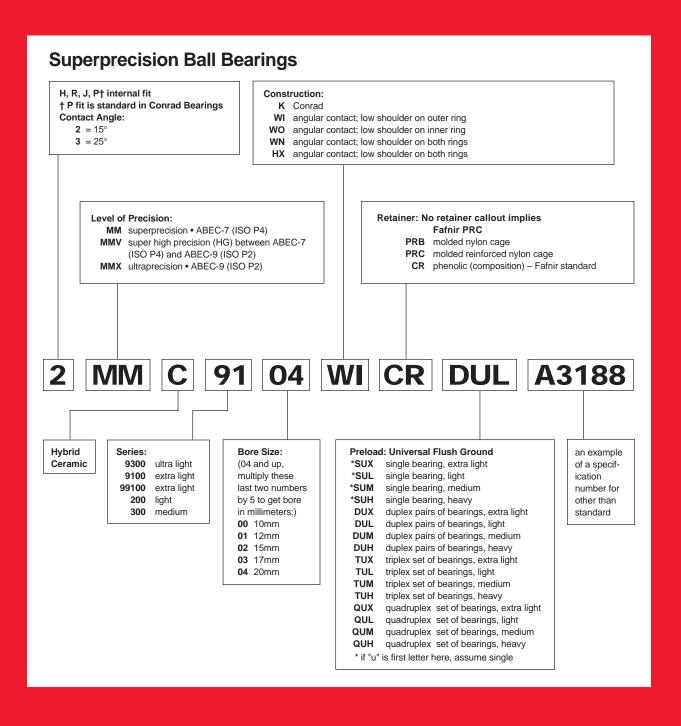
These Shelf Life values are to be used as a maximum limit – assuming adherence to the Torrington recommended storage and handling policy. Deviations from Torrington's Storage and Handling Policy may reduce Shelf Life. Any specification or operating practice that defines a shorter Shelf Life should be used.

THE BEARING/COMPONENT SHOULD NOT BE PUT INTO SERVICE IF THIS SHELF LIFE IS EXCEEDED.

TORRINGTON DISCLAIMS RESPONSIBILITY FOR THE SHELF LIFE OF ANY BEARING/COMPONENT LUBRICATED BY ANOTHER PARTY.

#### STORAGE POLICY:

The Torrington policy recommends the following storage guidelines for its finished products (bearings, components, and assemblies, hereinafter the "Products"):


- ▶ Unless directed otherwise by The Torrington Company, Products should be kept in their original packaging until they are ready to be placed into service.
- ▶ Do not remove or alter any labels or stencil markings on the packaging.
- Products should be stored in such a way that the packaging is not pierced, crushed or otherwise damaged.
- After a Product is removed from its packaging, it should be placed into service as soon as possible.
- ▶ When removing a Product that is not individually packaged from a bulk pack container, the container should be resealed immediately after the Product is removed.
- ▶ Do not use Product that has exceeded its Shelf Life as defined in Torrington's Shelf Life Policy Statement.
- ► The storage area temperature should be maintained between 0° C (32° F) and 40° C (104° F); temperature fluctuations should be minimized.
- ▶ The relative humidity should be maintained below 60%.
- ► The storage area should be kept free from airborne contaminants such as, but not limited to: dust, dirt, harmful vapors, etc.
- ▶ The storage area should be isolated from undue vibration.
- Extreme conditions of any kind should be avoided.

In as much as The Torrington Company is not familiar with a customer's particular storage conditions, these guidelines are strongly recommended. However, the customer may very well be required by circumstance, applicable government requirements, and the like to adhere to stricter storage requirements.

FAILURE TO FOLLOW THESE GUIDELINES MAY RESULT IN REDUCED PRODUCT SHELF LIFE AND/OR ADVERSELY AFFECT PRODUCT PERFORMANCE.

Any questions concerning the Shelf Life or Storage Policy should be directed to the local District Sales Office.

INTRODUCTION



### FAFNIR SUPERPRECISION BEARINGS

SUPERPRECISION BEARINGS

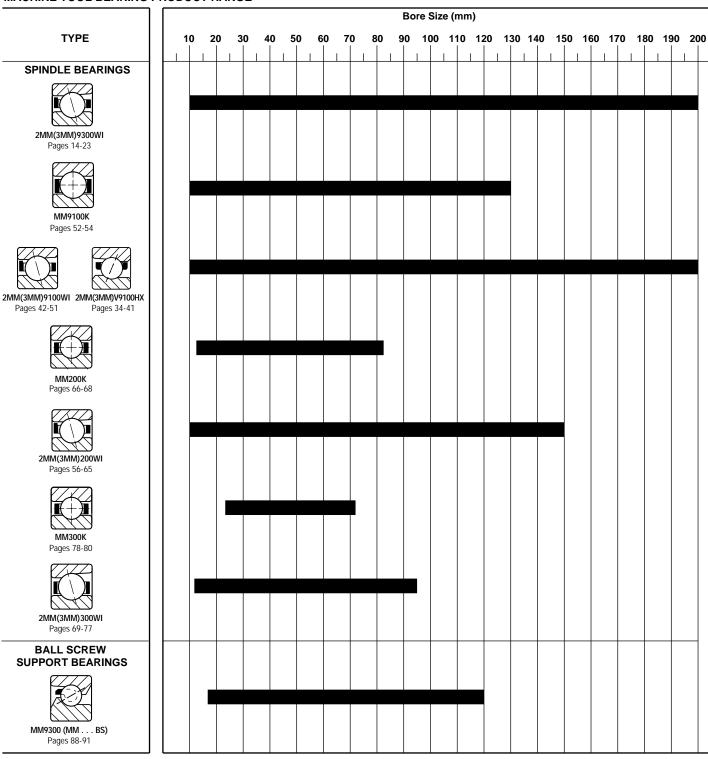
#### Superprecision MM (ABEC-7, ISO P4)

Superprecision bearings of the K or non-filling slot construction are generally used on woodworking spindles, aircraft accessory units and machine tool applications where duplex bearings are not a definite requirement. By virtue of the single row radial deep groove construction and superprecision tolerances, they are capable of carrying thrust loads in either direction and have relatively highspeed ability.

More popular on precision machine tool spindle applications are the WI angular-contact type bearing variations, namely 2MM-WI and 3MM-WI. Since this bearing type has a low shoulder on outer ring, it carries thrust in one direction.

Fafnir's MM Superprecision bearings are finished to MMV tolerances – as standard procedure.

#### Super High Precision MMV (HG)


Superprecision bearings are manufactured to our new HG tolerance class, with running accuracy and performance meeting ABEC-9 (ISO P2) while maintaining noncritical features at ABEC-7 (ISO P4) level for cost-effectiveness. Bore and O.D. surfaces are coded in micron units for the convenience of the discriminating machine tool builder who is striving for optimum fitting of all spindle components.

The recent development of ceramic rolling elements in high performance bearings offers the customer the ultimate of speed capability, high stiffness, long life, low heat generation, and overall system reliability. The 99100 series is available with the option of ceramic ball selection.

#### **Ultraprecision MMX (ABEC-9, ISO P2)**

Superprecision bearings with closer tolerances and running accuracies than ABEC-7 (ISO P4) bearings are made to ABEC-9 (ISO P2) tolerances. Bearings produced to these tolerances are generally made as WO and WN construction, and are use on ultra-high speed grinding spindles designed for tight dimensional tolerances and super-fine surface finishes. Consult our Engineering Department for availability.

#### **MACHINE TOOL BEARING PRODUCT RANGE\***



<sup>\*</sup>Current product offering range. For sizes not found within this listing, check with the Torrington Engineering Department for design possibilities.

#### FAFNIR SUPERPRECISION BEARINGS

#### **Bearing Types**

#### **Angular-Contact Bearings**

2MM -WI type, with 15° initial contact angle is designed to meet the needs of machine builders for precision bearings which will operate at as low a temperature as possible for a wide range of speeds and operating loads. In order for machines to produce more accurate work at a higher production rate, the bearings must provide a high degree of rigidity in both axial and radial directions while operating at minimum temperatures. For example, precision machining or cutting tools impose heavier loads on bearings than those encountered in precision grinding. In the former, speeds are slower and loads heavier than the latter, where speeds are high and loads light. The 2MM-WI type gives the machine builder the flexibility required to meet such variations in applications. **3MM -WI type**, manufactured with 25° contact angle, is for use on applications where the loading on the bearings is predominately thrust — and a high degree of axial rigidity is a definite requirement. Typical applications for these are large vertical rotary surface grinders, horizontal and vertical disc grinders, and thrust bearing applications for heavy duty lathes where the bearings must directly carry extremely high tail stock or chucking pressure.

**2MM -WO type**, with 15° initial contact angle is designed for extremely high-speed applications where centrifugal force of the balls is the principal load on the bearing. Unlike the MM-WI type which has a low shoulder outer ring, the 2MM-WO type has full shoulders on both sides of the outer race and a low shoulder on one side of the inner ring. This design permits assembly with a maximum complement of balls and a one-piece cage which pilots against the precision-ground lands of the outer ring. Generally this bearing series is supplied with a separable inner ring and ball retaining cage along with special race geometry for extremely high speed operation.

**2MMV** and **3MMV99100WN** types are available with 15° or 25° contact angle variations and have been developed to operate under the demanding requirements of high speed machine tools. They incorporate design features which permit operation at higher speed than standard angular contact ball bearings. The bore, outside diameter, and width are the same as the MM9100 series.

This series is designed to operate at rotational speeds 20% greater than the MM9100 series, with no increase in operating temperature. The greatest advantage of these series is at speeds greater than 500,000 DN (Bore in mm x RPM). Silicon nitride balls (ceramic) and precision machined ball separators are available and, when used, the ultimate performance will be achieved.



2MM-WI Type



3MM-WI Type



2MM-WO Type



2MMV and 3MMV99100WN Types

**2MMV - HX type**, with 15° initial contact angle is designed to meet the needs of machine manufacturers who require optimum oil flow through the bearings. This design incorporates a low shoulder on the non-thrust side of both the inner and outer rings. The maximum complement of balls is separated by a one-piece cage which pilots against the ground land of the outer ring.

Fafnir has developed an ISO Series – 10 bearing designed to enhance two key factors contributing to metalworking throughput: spindle speed and radial stiffness.

This design enables spindle heads to remove more material in less time while maintaining superior finished product tolerances by minimizing tool "wander". This efficient combination translates into faster turn around of finished product. These improvements are imparted by subtle changes to ball complements and internal geometries concluded by Fafnir design engineers as being a reliable path toward better machining efficiencies.

The Fafnir HX Series is dimensionally interchangeable with our present 9100 and 99100 series spindle bearings along with competitive ISO Series-10 designs.

#### **Ballscrew Support Bearings**

To meet the requirements of the servo-controlled machinery field, Torrington has developed a new series of ball bearings specially designed for ballscrew applications. Design criteria for these bearings are maximum axial rigidity, low drag torque, and extreme control of lateral eccentricity.

These bearings are manufactured to ABEC-7 tolerances and are of the nonseparable angular-contact type design with a 60° contact angle and maximum complement of balls. These bearings are supplied prelubricated with heavy duty grease NLGI #2 . Bearings are supplied packaged in DB arrangement. However, they can be mounted in duplexed pairs and in multiplexed sets in either Back-to-Back (DB), Face-to-Face (DF) or Tandem (DT) arrangements.

Standard sizes are available and are stocked and packaged as duplex pairs, triplex sets or quadruplex sets. These bearings are designed primarily for ballscrew applications and should not be considered in other areas such as spindles or gear-box shafting without approval by our Engineering Department. These bearings are offered in both standard inch and metric envelope dimensions.



2MMV-HX Type



MM9300WI DUH (Inch) MM...BS...DUH (Metric)



### Ultra-Light 2MM9300WI & 3MM9300WI Series

#### Superprecision MM:

Superprecision bearings are manufactured to a ABEC-7 (ISO P4) tolerance class.

#### **WI Construction:**

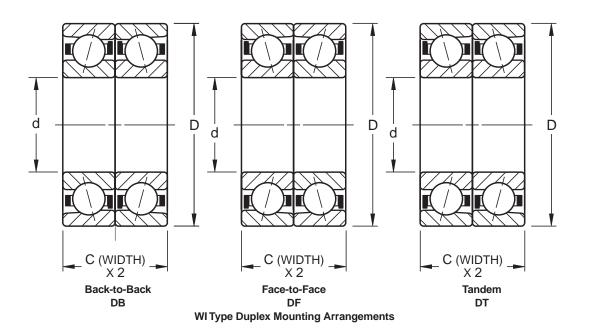
This design incorporates a low shoulder on the non-thrust side of the outer rings. The maximum complement of balls is separated by a one-piece cage which is piloted against the ground thrust shoulder land of the outer ring.

TO ORDER: Specify bearing number with prefix 2MM for 15° contact angle and 3MM for 25° contact angle.

Example 2MM9300WI CR



D


#### DIMENSIONS - TOLERANCES ALL INCH TOLERANCE IN .0001 UNITS

| Dillicitor        | 0110   | ·OLL | 117110 |                                              | ALL 111 | 01110 |               | 1101                         |        | 014110 | •    |                              |       |                     |      |                 |
|-------------------|--------|------|--------|----------------------------------------------|---------|-------|---------------|------------------------------|--------|--------|------|------------------------------|-------|---------------------|------|-----------------|
| Bearing<br>Number |        | В    | ore    |                                              |         |       | side<br>neter |                              |        | Wid    | th * |                              |       | imum<br>Radius      |      | Ball<br>plement |
| 2MM & 3MM         |        |      | +.0    | rance<br>000"<br>) μ <mark>m</mark><br>ninus |         |       | +.00          | rance<br>000"<br>µm<br>ninus |        |        | +.0  | rance<br>000"<br>µm<br>ninus |       | g Corner<br>lear ** |      |                 |
|                   | in.    | mm   | in.    | μm                                           | in.     | mm    | in.           | μm                           | in.    | mm     | in.  | μm                           | in.   | mm                  | Qty. | (Dia.) in.      |
| 9300WI            | 0.3937 | 10   | 1.5    | 4                                            | 0.8661  | 22    | 2.0           | 5                            | 0.2362 | 6      | 16   | 40                           | 0.012 | 0.3                 | 12   | 1/8             |
| 9301WI            | 0.4724 | 12   | 1.5    | 4                                            | 0.9449  | 24    | 2.0           | 5                            | 0.2362 | 6      | 31   | 80                           | 0.012 | 0.3                 | 13   | 1/8             |
| 9302WI            | 0.5906 | 15   | 1.5    | 4                                            | 1.1024  | 28    | 2.0           | 5                            | 0.2756 | 7      | 31   | 80                           | 0.012 | 0.3                 | 13   | 9/64            |
| 9303WI            | 0.6693 | 17   | 1.5    | 4                                            | 1.1811  | 30    | 2.0           | 5                            | 0.2756 | 7      | 31   | 80                           | 0.012 | 0.3                 | 14   | 9/64            |
| 9304WI            | 0.7874 | 20   | 2.0    | 5                                            | 1.4567  | 37    | 2.5           | 6                            | 0.3543 | 9      | 47   | 120                          | 0.012 | 0.3                 | 14   | 3/16            |
| 9305WI            | 0.9843 | 25   | 2.0    | 5                                            | 1.6535  | 42    | 2.5           | 6                            | 0.3543 | 9      | 47   | 120                          | 0.012 | 0.3                 | 17   | 3/16            |
| 9306WI            | 1.1811 | 30   | 2.0    | 5                                            | 1.8504  | 47    | 2.5           | 6                            | 0.3543 | 9      | 47   | 120                          | 0.012 | 0.3                 | 19   | 3/16            |
| 9307WI            | 1.3780 | 35   | 2.5    | 6                                            | 2.1654  | 55    | 3.0           | 7                            | 0.3937 | 10     | 47   | 120                          | 0.024 | 0.6                 | 19   | 7/32            |
| 9308WI            | 1.5748 | 40   | 2.5    | 6                                            | 2.4409  | 62    | 3.0           | 7                            | 0.4724 | 12     | 47   | 120                          | 0.024 | 0.6                 | 19   | 1/4             |
| 9309WI            | 1.7717 | 45   | 2.5    | 6                                            | 2.6772  | 68    | 3.0           | 7                            | 0.4724 | 12     | 47   | 120                          | 0.024 | 0.6                 | 21   | 1/4             |
| 9310WI            | 1.9685 | 50   | 2.5    | 6                                            | 2.8346  | 72    | 3.0           | 7                            | 0.4724 | 12     | 47   | 120                          | 0.024 | 0.6                 | 23   | 1/4             |
| 9311WI            | 2.1654 | 55   | 3.0    | 7                                            | 3.1496  | 80    | 3.0           | 7                            | 0.5118 | 13     | 59   | 150                          | 0.039 | 1.0                 | 23   | 9/32            |
| 9312WI            | 2.3622 | 60   | 3.0    | 7                                            | 3.3465  | 85    | 3.0           | 8                            | 0.5118 | 13     | 59   | 150                          | 0.039 | 1.0                 | 25   | 9/32            |
| 9313WI            | 2.5591 | 65   | 3.0    | 7                                            | 3.5433  | 90    | 3.0           | 8                            | 0.5118 | 13     | 59   | 150                          | 0.039 | 1.0                 | 27   | 9/32            |
| 9314WI            | 2.7559 | 70   | 3.0    | 7                                            | 3.9370  | 100   | 3.0           | 8                            | 0.6299 | 16     | 59   | 150                          | 0.039 | 1.0                 | 24   | 11/32           |
|                   |        |      |        |                                              |         |       |               |                              |        |        |      |                              |       |                     |      |                 |

<sup>\*</sup> Refer to page E4 for width tolerance of preloaded bearings.

<sup>\*\*</sup> ABMA std. 20 ( $r_{as max}$ ).





#### DIMENSIONS - TOLERANCES ALL INCH TOLERANCE IN .0001 UNITS

| Bearing<br>Number<br>2MM & 3MM                 |                                                | Во                              | +.0                             | rance<br>1000"<br>) µm<br>ninus |                                                |                                 | +.00                            | rance<br>000"<br>µm<br>iinus | Width *  Tolerance +.0000" +.0   to minus      |                            |                            | Maximum<br>Fillet Radius<br>Bearing Corner<br>will Clear ** |                                           |                                 | Ball<br>plement                  |                                                                                  |
|------------------------------------------------|------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|------------------------------------------------|---------------------------------|---------------------------------|------------------------------|------------------------------------------------|----------------------------|----------------------------|-------------------------------------------------------------|-------------------------------------------|---------------------------------|----------------------------------|----------------------------------------------------------------------------------|
|                                                | in.                                            | mm                              | in.                             | μm                              | in.                                            | mm                              | in.                             | μm                           | in.                                            | mm                         | in.                        | μm                                                          | in.                                       | mm                              | Qty.                             | (Dia.) in.                                                                       |
| 9315WI<br>9316WI<br>9317WI<br>9318WI<br>9319WI | 2.9528<br>3.1496<br>3.3465<br>3.5433<br>3.7402 | 75<br>80<br>85<br>90<br>95      | 3.0<br>3.0<br>3.0<br>3.0<br>3.0 | 7<br>7<br>8<br>8<br>8           | 4.1339<br>4.3307<br>4.7244<br>4.9213<br>5.1181 | 105<br>110<br>120<br>125<br>130 | 3.0<br>3.0<br>3.0<br>3.5<br>3.5 | 8<br>8<br>8<br>9             | 0.6299<br>0.6299<br>0.7087<br>0.7087<br>0.7087 | 16<br>16<br>18<br>18<br>18 | 59<br>59<br>79<br>79<br>79 | 150<br>150<br>200<br>200<br>200                             | 0.039<br>0.039<br>0.039<br>0.039<br>0.039 | 1.0<br>1.0<br>1.0<br>1.0<br>1.0 | 25<br>27<br>26<br>26<br>26<br>28 | 11/32<br>11/32<br>3/8<br>13/32<br>13/32                                          |
| 9320WI<br>9322WI<br>9324WI<br>9326WI<br>9328WI | 3.9370<br>4.3307<br>4.7244<br>5.1181<br>5.5118 | 100<br>110<br>120<br>130<br>140 | 3.0<br>3.0<br>3.0<br>4.0<br>4.0 | 8<br>8<br>8<br>10<br>10         | 5.5118<br>5.9055<br>6.4961<br>7.0866<br>7.4803 | 140<br>150<br>165<br>180<br>190 | 3.5<br>3.5<br>4.0<br>4.0<br>4.5 | 9<br>9<br>10<br>10<br>11     | 0.7874<br>0.7874<br>0.8661<br>0.9449<br>0.9449 | 20<br>20<br>22<br>24<br>24 | 79<br>79<br>79<br>98<br>98 | 200<br>200<br>200<br>250<br>250                             | 0.039<br>0.039<br>0.039<br>0.059<br>0.059 | 1.0<br>1.0<br>1.0<br>1.5<br>1.5 | 29<br>31<br>30<br>30<br>32       | 13/ <sub>32</sub><br>13/ <sub>32</sub><br>15/ <sub>32</sub><br>17/ <sub>32</sub> |
| 9330WI<br>9332WI<br>9334WI<br>9340WI           | 5.9055<br>6.2992<br>6.6929<br>7.8740           | 150<br>160<br>170<br>200        | 4.0<br>4.0<br>4.0<br>4.5        | 10<br>10<br>10<br>12            | 8.2677<br>8.6614<br>9.0551<br>11.0236          | 210<br>220<br>230<br>280        | 4.5<br>4.5<br>4.5<br>5.0        | 11<br>11<br>11<br>13         | 1.1024<br>1.1024<br>1.1024<br>1.4961           | 28<br>28<br>28<br>38       | 98<br>98<br>98<br>118      | 250<br>250<br>250<br>300                                    | 0.079<br>0.079<br>0.079<br>0.083          | 2.0<br>2.0<br>2.0<br>2.1        | 27<br>27<br>29<br>27             | 11/16<br>23/32<br>23/32<br>15/16                                                 |

<sup>\*</sup> Refer to page E4 for width tolerance of preloaded bearings.

<sup>\*\*</sup> ABMA std. 20 (r<sub>as max</sub>).











## Ultra-Light 2MM9300WI Series

### PHYSICAL CHARACTERISTICS – LOAD RATINGS

## RADIAL LOAD RATING AT 33 1/3 RPM Based on 1500 hours L<sub>10</sub> Life and Permissible Speed

| Bearing<br>Number                                             | We<br>Per Be                         | ight<br>earing                            |                                              | tatic<br>I Rating                              | Dyr                                           | ended<br>namic                                 | Permis-<br>sible                               |                            |                                 |                                  | Preload                         | l Levels                         |                                        |                                 |                                      |
|---------------------------------------------------------------|--------------------------------------|-------------------------------------------|----------------------------------------------|------------------------------------------------|-----------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------|---------------------------------|----------------------------------|---------------------------------|----------------------------------|----------------------------------------|---------------------------------|--------------------------------------|
|                                                               |                                      |                                           |                                              | Co                                             |                                               | Ratings<br>Se                                  | Speed<br>Ng *                                  | Extrali<br>(Dl             |                                 |                                  | ght<br>UL)                      | Med<br>(DL                       |                                        | Heavy<br>(DUH)                  |                                      |
|                                                               | lbs                                  | kg                                        | lbs                                          | N                                              | lbs                                           | N                                              | RPM                                            | lbs                        | N                               | lbs                              | N                               | lbs                              | N                                      | lbs                             | N                                    |
| 2MM9300WI<br>2MM9301WI<br>2MM9302WI<br>2MM9303WI<br>2MM9304WI | 0.02<br>0.03<br>0.04<br>0.04<br>0.08 | 0.010<br>0.011<br>0.016<br>0.018<br>0.037 | 285<br>320<br>415<br>490<br>780              | 1,300<br>1,400<br>1,800<br>2,200<br>3,500      | 735<br>765<br>950<br>1,040<br>1,700           | 3,300<br>3,400<br>4,200<br>4,600<br>7,600      | 77,500<br>67,200<br>55,600<br>50,100<br>42,100 | _<br>_<br>_<br>_           |                                 | 3<br>3<br>5<br>5                 | 15<br>15<br>20<br>20<br>45      | 6<br>6<br>10<br>15<br>20         | 25<br>25<br>45<br>65<br>90             | 12<br>12<br>20<br>30<br>35      | 55<br>55<br>90<br>130<br>160         |
| 2MM9305WI<br>2MM9306WI<br>2MM9307WI<br>2MM9308WI<br>2MM9309WI | 0.10<br>0.11<br>0.17<br>0.25<br>0.29 | 0.043<br>0.050<br>0.077<br>0.112<br>0.133 | 1,000<br>1,140<br>1,560<br>2,040<br>2,280    | 4,400<br>5,100<br>6,900<br>9,100<br>10,100     | 1,900<br>2,000<br>2,600<br>3,350<br>3,450     | 8,500<br>8,900<br>11,600<br>14,900<br>15,300   | 34,800<br>29,700<br>25,400<br>22,400<br>20,000 | —<br>—<br>—<br>5<br>10     |                                 | 10<br>10<br>10<br>10<br>15<br>20 | 45<br>45<br>45<br>65<br>90      | 25<br>25<br>25<br>25<br>35<br>40 | 110<br>110<br>110<br>110<br>160<br>180 | 40<br>40<br>55<br>70<br>80      | 180<br>180<br>240<br>310<br>360      |
| 2MM9310WI<br>2MM9311WI<br>2MM9312WI<br>2MM9313WI<br>2MM9314WI | 0.30<br>0.41<br>0.44<br>0.47<br>0.76 | 0.135<br>0.187<br>0.200<br>0.215<br>0.344 | 2,550<br>3,200<br>3,450<br>3,750<br>5,000    | 11,300<br>14,200<br>15,300<br>16,700<br>22,200 | 3,650<br>4,550<br>4,750<br>4,900<br>6,700     | 16,200<br>20,200<br>21,100<br>21,800<br>29,800 | 18,300<br>16,600<br>15,300<br>14,200<br>13,100 | 10<br>10<br>10<br>15<br>15 | 40<br>40<br>40<br>70<br>70      | 20<br>25<br>25<br>30<br>40       | 90<br>110<br>110<br>130<br>180  | 45<br>55<br>55<br>60<br>80       | 200<br>240<br>240<br>270<br>360        | 90<br>110<br>115<br>120<br>160  | 400<br>490<br>510<br>530<br>710      |
| 2MM9315WI<br>2MM9316WI<br>2MM9317WI<br>2MM9318WI<br>2MM9319WI | 0.80<br>0.85<br>1.23<br>1.26<br>1.33 | 0.363<br>0.385<br>0.556<br>0.573<br>0.601 | 5,200<br>5,600<br>6,550<br>7,650<br>8,150    | 23,100<br>24,900<br>29,100<br>34,000<br>36,300 | 6,800<br>7,100<br>8,150<br>9,500<br>9,800     | 30,200<br>31,600<br>36,300<br>42,300<br>43,600 | 12,300<br>11,600<br>10,800<br>10,300<br>9,800  | 20<br>20<br>25<br>25<br>30 | 90<br>90<br>110<br>110<br>130   | 40<br>45<br>60<br>60<br>65       | 180<br>200<br>270<br>270<br>290 | 85<br>90<br>120<br>120<br>130    | 380<br>400<br>530<br>530<br>580        | 170<br>180<br>240<br>240<br>260 | 760<br>800<br>1070<br>1070<br>1160   |
| 2MM9320WI<br>2MM9322WI<br>2MM9324WI<br>2MM9326WI<br>2MM9328WI | 1.87<br>2.02<br>2.74<br>3.63<br>3.85 | 0.846<br>0.918<br>1.243<br>1.648<br>1.746 | 8,300<br>8,800<br>11,600<br>15,000<br>15,600 | 36,900<br>39,100<br>51,600<br>66,700<br>69,400 | 9,800<br>10,200<br>12,900<br>16,300<br>17,000 | 43,600<br>45,400<br>57,400<br>72,500<br>75,600 | 9,100<br>8,400<br>7,700<br>7,100<br>6,600      | 30<br>40<br>45<br>50<br>60 | 130<br>180<br>200<br>220<br>270 | 80<br>90<br>110<br>140<br>140    | 360<br>400<br>490<br>620<br>620 | 160<br>180<br>220<br>275<br>280  | 710<br>800<br>980<br>1220<br>1250      | 330<br>360<br>440<br>550<br>575 | 1470<br>1600<br>1960<br>2450<br>2560 |
| 2MM9330WI<br>2MM9332WI<br>2MM9334WI<br>2MM9340WI              | 5.75<br>6.06<br>6.34<br>13.87        | 2.609<br>2.749<br>2.875<br>6.291          | 22,000<br>32,200<br>26,000<br>54,700         | 97,400<br>143,100<br>115,600<br>243,300        | 25,000<br>29,000<br>28,000<br>47,100          | 111,200<br>128,900<br>124,500<br>209,500       | 6,200<br>5,800<br>5,500<br>4,600               | 65<br>110<br>80<br>175     | 290<br>489<br>360<br>778        | 190<br>220<br>230<br>350         | 850<br>980<br>1020<br>1560      | 380<br>445<br>460<br>700         | 1690<br>1980<br>2050<br>3110           | 775<br>890<br>900<br>1400       | 3450<br>3960<br>4000<br>6230         |

<sup>\*</sup> Limits shown for grease lubricated, single bearing, spring preloaded.

<sup>(1)</sup> Call for availability.











## Ultra-Light 2MM9300WI Series

#### **Superprecision Bearings**

**FTF** Fundamental Train Frequency: The frequency at which the retainer will operate.

**BSF** Ball Spin Frequency: The frequency at which a single defect on a rolling element will be detected.

**BPFO** Ball Pass Frequency Outer: The frequency at which a single defect in the outer race will be detected.

**BPFI** Ball Pass Frequency Inner: The frequency at which a single defect in the inner race will be detected.

#### **FREQUENCY COEFFICIENTS**

| Bearing<br>Number | FTF                                                | BSF                    | BPFO                         | BPFI                         | FTF                                                |
|-------------------|----------------------------------------------------|------------------------|------------------------------|------------------------------|----------------------------------------------------|
|                   | Fundamental Train<br>Frequency<br>(Inner Rotation) | Ball Spin<br>Frequency | Ball Pass Frequency<br>Outer | Ball Pass Frequency<br>Inner | Fundamental Train<br>Frequency<br>(Outer Rotation) |
| 2MM9300WI         | 0.4054                                             | 2.4294                 | 4.8649                       | 7.1351                       | 0.5946                                             |
| 2MM9301WI         | 0.4159                                             | 2.7546                 | 5.4070                       | 7.5930                       | 0.5841                                             |
| 2MM9302WI         | 0.4204                                             | 2.9335                 | 5.4650                       | 7.5350                       | 0.5796                                             |
| 2MM9303WI         | 0.4272                                             | 3.2198                 | 6.4074                       | 8.5926                       | 0.5728                                             |
| 2MM9304WI         | 0.4194                                             | 2.9144                 | 5.8719                       | 8.1281                       | 0.5806                                             |
| 2MM9305WI         | 0.4314                                             | 3.4509                 | 7.3346                       | 9.6654                       | 0.5686                                             |
| 2MM9306WI         | 0.4404                                             | 3.9846                 | 8.3667                       | 10.6333                      | 0.5596                                             |
| 2MM9307WI         | 0.4405                                             | 3.9924                 | 8.3695                       | 10.6305                      | 0.5595                                             |
| 2MM9308WI         | 0.4399                                             | 3.9578                 | 8.3586                       | 10.6414                      | 0.5601                                             |
| 2MM9309WI         | 0.4458                                             | 4.3966                 | 9.3612                       | 11.6388                      | 0.5542                                             |
| 2MM9310WI         | 0.4498                                             | 4.7547                 | 10.3448                      | 12.6552                      | 0.5502                                             |
| 2MM9311WI         | 0.4490                                             | 4.6752                 | 10.3262                      | 12.6738                      | 0.5510                                             |
| 2MM9312WI         | 0.4525                                             | 5.0286                 | 11.3121                      | 13.6879                      | 0.5475                                             |
| 2MM9313WI         | 0.4556                                             | 5.3816                 | 12.2999                      | 14.7001                      | 0.5444                                             |
| 2MM9314WI         | 0.4504                                             | 4.8196                 | 10.8092                      | 13.1908                      | 0.5496                                             |
| 2MM9315WI         | 0.4531                                             | 5.1086                 | 11.3285                      | 13.6715                      | 0.5469                                             |
| 2MM9316WI         | 0.4556                                             | 5.3974                 | 12.3014                      | 14.6986                      | 0.5444                                             |
| 2MM9317WI         | 0.4557                                             | 5.3371                 | 11.8322                      | 14.1678                      | 0.5449                                             |
| 2MM9318WI         | 0.4537                                             | 5.1643                 | 11.7957                      | 14.2043                      | 0.5463                                             |
| 2MM9319WI         | 0.4557                                             | 5.4085                 | 12.7607                      | 15.2393                      | 0.5443                                             |
| 2MM9320WI         | 0.4585                                             | 5.7746                 | 13.2966                      | 15.7034                      | 0.5415                                             |
| 2MM9322WI         | 0.4617                                             | 6.2622                 | 14.3126                      | 16.6874                      | 0.5383                                             |
| 2MM9324WI         | 0.4596                                             | 5.9438                 | 13.7888                      | 16.2112                      | 0.5404                                             |
| 2MM9326WI         | 0.4580                                             | 5.7028                 | 13.7392                      | 16.2608                      | 0.5420                                             |
| 2MM9328WI         | 0.4605                                             | 6.0759                 | 14.7367                      | 17.2633                      | 0.5395                                             |
| 2MM9330WI         | 0.4531                                             | 5.1086                 | 12.2348                      | 14.7652                      | 0.5469                                             |
| 2MM9332WI         | 0.4536                                             | 5.1589                 | 12.2480                      | 14.7520                      | 0.5464                                             |
| 2MM9334WI         | 0.4559                                             | 5.4349                 | 13.2209                      | 15.7791                      | 0.5441                                             |
| 2MM9340WI         | 0.4521                                             | 4.9931                 | 12.2062                      | 14.7938                      | 0.5479                                             |





## Ultra-Light 3MM9300WI Series

#### PHYSICAL CHARACTERISTICS - LOAD RATINGS

### RADIAL LOAD RATING AT 33 $\frac{1}{2}$ RPM Based on 1500 hours L<sub>10</sub> Life and Permissible Speed

| Bearing<br>Number | Wei<br>Per Be | •     |        | atic<br>Rating | Dyn    | ended<br>amic             | Permis-<br>sible |              |   |     | Preload      | Levels |             |      |              |
|-------------------|---------------|-------|--------|----------------|--------|---------------------------|------------------|--------------|---|-----|--------------|--------|-------------|------|--------------|
|                   |               |       |        | $C_{o}$        |        | Ratings<br>C <sub>e</sub> | Speed<br>Ng *    | Extra<br>(Dl | 3 | 1   | ight<br>IUL) |        | dium<br>UM) |      | eavy<br>DUH) |
|                   | lbs           | kg    | lbs    | N              | lbs    | N                         | RPM              | lbs          | N | lbs | N            | lbs    | N           | lbs  | N            |
| 3MM9300WI         | 0.02          | 0.010 | 360    | 1,580          | 760    | 3,380                     | 69,800           | _            | _ | 5   | 20           | 10     | 45          | 20   | 90           |
| 3MM9302WI         | 0.04          | 0.016 | 510    | 2,280          | 980    | 4,360                     | 50,000           | _            | _ | 10  | 45           | 20     | 90          | 35   | 160          |
| 3MM9303WI         | 0.04          | 0.018 | 600    | 2,680          | 1,070  | 4,740                     | 45,100           | _            | _ | 10  | 45           | 30     | 130         | 55   | 240          |
| 3MM9305WI         | 0.10          | 0.043 | 1,230  | 5,500          | 1,930  | 8,600                     | 31,300           | _            | _ | 15  | 65           | 40     | 180         | 70   | 310          |
| 3MM9306WI         | 0.11          | 0.050 | 1,080  | 4,800          | 1,900  | 8,500                     | 26,700           | _            | _ | 15  | 70           | 40     | 180         | 70   | 310          |
| 3MM9307WI         | 0.17          | 0.077 | 1,460  | 6,500          | 2,500  | 11,100                    | 22,900           | _            | _ | 20  | 90           | 55     | 240         | 95   | 420          |
| 3MM9308WI         | 0.25          | 0.112 | 1,930  | 8,600          | 3,150  | 14,000                    | 20,200           | _            | _ | 30  | 130          | 70     | 310         | 125  | 560          |
| 3MM9309WI         | 0.29          | 0.133 | 2,160  | 9,600          | 3,350  | 14,900                    | 18,000           | _            | _ | 35  | 160          | 80     | 360         | 150  | 670          |
| 3MM9310WI         | 0.30          | 0.135 | 2,400  | 10,700         | 3,450  | 15,300                    | 16,500           | _            | _ | 35  | 160          | 90     | 400         | 150  | 670          |
| 3MM9311WI         | 0.41          | 0.187 | 3,000  | 13,300         | 4,300  | 19,100                    | 14,900           | _            | _ | 45  | 200          | 110    | 490         | 190  | 850          |
| 3MM9312WI         | 0.44          | 0.200 | 3,250  | 14,500         | 4,500  | 20,000                    | 13,800           | _            | _ | 45  | 200          | 115    | 510         | 200  | 890          |
| 3MM9313WI         | 0.47          | 0.214 | 3,550  | 15,800         | 4,650  | 20,700                    | 12,800           | _            | _ | 50  | 220          | 120    | 530         | 240  | 1070         |
| 3MM9314WI         | 0.76          | 0.344 | 4,750  | 21,100         | 6,300  | 28,000                    | 11,800           | _            | _ | 65  | 290          | 160    | 710         | 290  | 1290         |
| 3MM9315WI         | 0.80          | 0.363 | 4,900  | 21,800         | 6,400  | 28,500                    | 11,100           | _            | _ | 70  | 310          | 170    | 760         | 300  | 1330         |
| 3MM9316WI         | 0.85          | 0.385 | 5,200  | 23,100         | 6,700  | 29,800                    | 10,400           | _            | _ | 75  | 330          | 180    | 800         | 310  | 1380         |
| 3MM9317WI         | 1.22          | 0.555 | 6,000  | 26,700         | 7,650  | 34,000                    | 9,700            | _            | _ | 100 | 440          | 240    | 1070        | 420  | 1870         |
| 3MM9318WI         | 1.26          | 0.572 | 7,100  | 31,600         | 8,800  | 39,100                    | 9,300            | _            | _ | 90  | 400          | 210    | 930         | 375  | 1670         |
| 3MM9319WI         | 1.32          | 0.601 | 7,650  | 34,000         | 9,300  | 41,400                    | 8,800            | _            | _ | 105 | 470          | 260    | 1160        | 450  | 2000         |
| 3MM9320WI         | 1.86          | 0.846 | 7,800  | 34,700         | 9,300  | 41,400                    | 8,200            | _            | _ | 135 | 600          | 330    | 1470        | 575  | 2560         |
| 3MM9322WI         | 2.02          | 0.917 | 8,300  | 36,900         | 9,500  | 42,300                    | 7,600            | _            | _ | 150 | 670          | 360    | 1600        | 625  | 2780         |
| 3MM9324WI         | 2.74          | 1.242 | 10,800 | 48,000         | 12,200 | 54,300                    | 6,900            | _            | _ | 180 | 800          | 440    | 1960        | 775  | 3450         |
| 3MM9326WI         | 3.63          | 1.647 | 14,000 | 62,300         | 15,600 | 69,400                    | 6,400            | _            | _ | 230 | 1020         | 550    | 2450        | 975  | 4340         |
| 3MM9328WI         | 3.85          | 1.744 | 14,600 | 64,900         | 16,000 | 71,200                    | 5,900            |              | _ | 240 | 1070         | 575    | 2560        | 1000 | 4450         |
| 3MM9330WI         | 5.75          | 2.607 | 21,200 | 94,300         | 23,600 | 105,000                   | 5,600            | _            | _ | 325 | 1450         | 775    | 3450        | 1350 | 6000         |
| 3MM9334WI         | 6.33          | 2.871 | 24,500 | 109,000        | 26,000 | 115,600                   | 5,000            | _            | _ | _   | _            | _      | _           | _    | _            |
| 3MM9340WI         | 13.87         | 6.291 | 51,400 | 228,500        | 44,400 | 197,500                   | 4,100            | _            | _ | 700 | 3110         | 1400   | 6230        | 2800 | 12460        |

<sup>\*</sup> Limits shown for a single row, spring preloaded and grease lubricated bearing.













#### **Superprecision Bearings**

**FTF** Fundamental Train Frequency: The frequency at which the retainer will operate.

**BSF** Ball Spin Frequency: The frequency at which a single defect on a rolling element will be detected.

**BPFO** Ball Pass Frequency Outer: The frequency at which a single defect in the outer race will be detected.

BPFI Ball Pass Frequency Inner: The frequency at which a single defect in the inner race will be detected.

#### **FREQUENCY COEFFICIENTS**

| Bearing<br>Number | FTF<br>Fundamental Train<br>Frequency<br>(Inner Rotation) | BSF<br>Ball Spin<br>Frequency | BPFO<br>Ball Pass Frequency<br>Outer | BPFI<br>Ball Pass Frequency<br>Inner | FTF Fundamental Train Frequency (Outer Rotation) |
|-------------------|-----------------------------------------------------------|-------------------------------|--------------------------------------|--------------------------------------|--------------------------------------------------|
| 3MM9300WI         | 0.4100                                                    | 2.4380                        | 4.9204                               | 7.0796                               | 0.5900                                           |
| 3MM9302WI         | 0.4248                                                    | 2.9417                        | 5.5225                               | 7.4775                               | 0.5752                                           |
| 3MM9303WI         | 0.4312                                                    | 3.2273                        | 6.4681                               | 8.5319                               | 0.5688                                           |
| 3MM9305WI         | 0.4356                                                    | 3.4586                        | 7.4044                               | 9.5956                               | 0.5644                                           |
| 3MM9306WI         | 0.4439                                                    | 3.9913                        | 8.4346                               | 10.5654                              | 0.5561                                           |
| 3MM9307WI         | 0.4440                                                    | 3.9990                        | 8.4366                               | 10.5634                              | 0.5560                                           |
| 3MM9308WI         | 0.4437                                                    | 3.9648                        | 8.4295                               | 10.5705                              | 0.5563                                           |
| 3MM9309WI         | 0.4491                                                    | 4.4029                        | 9.4320                               | 11.5680                              | 0.5509                                           |
| 3MM9310WI         | 0.4529                                                    | 4.7606                        | 10.4166                              | 12.5834                              | 0.5471                                           |
| 3MM9311WI         | 0.4521                                                    | 4.6811                        | 10.3983                              | 12.6017                              | 0.5479                                           |
| 3MM9312WI         | 0.4554                                                    | 5.0340                        | 11.3851                              | 13.6149                              | 0.5446                                           |
| 3MM9313WI         | 0.4583                                                    | 5.3867                        | 12.3736                              | 14.6264                              | 0.5417                                           |
| 3MM9314WI         | 0.4535                                                    | 4.8255                        | 10.8839                              | 13.1161                              | 0.5465                                           |
| 3MM9315WI         | 0.4561                                                    | 5.1141                        | 11.4020                              | 13.5980                              | 0.5439                                           |
| 3MM9316WI         | 0.4584                                                    | 5.4026                        | 12.3766                              | 14.6234                              | 0.5416                                           |
| 3MM9317WI         | 0.4579                                                    | 5.3423                        | 11.9047                              | 14.0953                              | 0.5421                                           |
| 3MM9318WI         | 0.4565                                                    | 5.1696                        | 11.8699                              | 14.1301                              | 0.5435                                           |
| 3MM9319WI         | 0.4585                                                    | 5.4136                        | 12.8371                              | 15.1629                              | 0.5415                                           |
| 3MM9320WI         | 0.4611                                                    | 5.7794                        | 13.3708                              | 15.6292                              | 0.5389                                           |
| 3MM9322WI         | 0.4641                                                    | 6.2666                        | 14.3858                              | 16.6142                              | 0.5359                                           |
| 3MM9324WI         | 0.4622                                                    | 5.9485                        | 13.8645                              | 16.1355                              | 0.5378                                           |
| 3MM9326WI         | 0.4606                                                    | 5.7077                        | 13.8171                              | 16.1829                              | 0.5394                                           |
| 3MM9328WI         | 0.4630                                                    | 6.0804                        | 14.8147                              | 17.1853                              | 0.5370                                           |
| 3MM9330WI         | 0.4561                                                    | 5.1141                        | 12.3141                              | 14.6859                              | 0.5439                                           |
| 3MM9334WI         | 0.4586                                                    | 5.4401                        | 13.3007                              | 15.6993                              | 0.5414                                           |
| 3MM9340WI         | 0.4551                                                    | 4.9987                        | 12.2879                              | 14.7121                              | 0.5449                                           |











## Ultra-Light 9300WI Series

## PERMISSIBLE OPERATING SPEEDS – RPM 2MM & 3MM Superprecision Angular Contact Spindle Bearings

|                            |                | GREASE          |                |                 |                 |                 |                 |                | OIL             |                |
|----------------------------|----------------|-----------------|----------------|-----------------|-----------------|-----------------|-----------------|----------------|-----------------|----------------|
|                            |                | "DB" Mounting   |                | Grease (        | Capacity        | Kluber Isot     | flex NBU 15     |                | "DB" Mounting   |                |
| 15 Degree<br>Contact Angle | (DUL)<br>Light | (DUM)<br>Medium | (DUH)<br>Heavy | 25 %<br>(grams) | 40 %<br>(grams) | 15 %<br>(grams) | 20 %<br>(grams) | (DUL)<br>Light | (DUM)<br>Medium | (DUH)<br>Heavy |
| 2MM9300WI                  | 62,000         | 46,500          | 31,000         | 0.09            | 0.15            | 0.06            | 0.08            | 105,400        | 79,100          | 52,700         |
| 2MM9301WI                  | 53,800         | 40,300          | 26,900         | 0.11            | 0.17            | 0.07            | 0.10            | 91,500         | 68,500          | 45,700         |
| 2MM9302WI                  | 44,500         | 33,400          | 22,200         | 0.17            | 0.28            | 0.12            | 0.15            | 75,700         | 56,800          | 37,700         |
| 2MM9303WI                  | 40,100         | 30,100          | 20,000         | 0.19            | 0.30            | 0.12            | 0.16            | 68,200         | 51,200          | 34,000         |
| 2MM9304WI                  | 33,700         | 25,300          | 16,800         | 0.4             | 0.6             | 0.25            | 0.34            | 57,300         | 43,000          | 28,600         |
| 2MM9305WI                  | 27,800         | 20,900          | 13,900         | 0.4             | 0.7             | 0.29            | 0.39            | 47,300         | 35,500          | 23,600         |
| 2MM9306WI                  | 23,800         | 17,800          | 11,900         | 0.5             | 0.8             | 0.34            | 0.45            | 40,500         | 30,300          | 20,200         |
| 2MM9307WI                  | 20,300         | 15,200          | 10,200         | 0.8             | 1.2             | 0.51            | 0.68            | 34,500         | 25,800          | 17,300         |
| 2MM9308WI                  | 17,900         | 13,400          | 9,000          | 1.2             | 1.9             | 0.80            | 1.07            | 30,400         | 22,800          | 15,300         |
| 2MM9309WI                  | 16,000         | 12,000          | 8,000          | 1.3             | 2.1             | 0.88            | 1.18            | 27,200         | 20,400          | 13,600         |
| 2MM9310WI                  | 14,600         | 11,000          | 7,300          | 1.4             | 2.3             | 0.95            | 1.27            | 24,800         | 18,700          | 12,400         |
| 2MM9311WI                  | 13,300         | 10,000          | 6,600          | 1.9             | 3.0             | 1.3             | 1.7             | 22,600         | 17,000          | 11,200         |
| 2MM9312WI                  | 12,200         | 9,200           | 6,100          | 2.0             | 3.2             | 1.4             | 1.8             | 20,700         | 15,600          | 10,400         |
| 2MM9313WI                  | 11,400         | 8,500           | 5,700          | 2.1             | 3.4             | 1.4             | 1.9             | 19,400         | 14,500          | 9,700          |
| 2MM9314WI                  | 10,500         | 7,900           | 5,200          | 3.6             | 5.7             | 2.4             | 3.2             | 17,900         | 13,400          | 8,800          |
| 2MM9315WI                  | 9,800          | 7,400           | 4,900          | 3.8             | 6.1             | 2.5             | 3.4             | 16,700         | 12,600          | 8,300          |
| 2MM9316WI                  | 9,300          | 7,000           | 4,600          | 4.0             | 6.4             | 2.7             | 3.5             | 15,800         | 11,900          | 7,800          |
| 2MM9317WI                  | 8,600          | 6,500           | 4,300          | 5.3             | 8.6             | 3.6             | 4.8             | 14,600         | 11,100          | 7,300          |
| 2MM9318WI                  | 8,200          | 6,200           | 4,100          | 5.9             | 9.4             | 3.9             | 5.2             | 13,900         | 10,500          | 7,000          |
| 2MM9319WI                  | 7,800          | 5,900           | 3,900          | 6.1             | 9.7             | 4.1             | 5.4             | 13,300         | 10,000          | 6,600          |
| 2MM9320WI                  | 7,300          | 5,500           | 3,600          | 7.5             | 12.0            | 5.0             | 6.7             | 12,400         | 9,400           | 6,100          |
| 2MM9322WI                  | 6,700          | 5,000           | 3,400          | 8.1             | 13.0            | 5.4             | 7.3             | 11,400         | 8,500           | 5,800          |
| 2MM9324WI                  | 6,200          | 4,600           | 3,100          | 11.1            | 17.8            | 7.4             | 9.9             | 10,500         | 7,800           | 5,300          |
| 2MM9326WI                  | 5,700          | 4,300           | 2,800          | 14.6            | 23.3            | 9.7             | 13.0            | 9,700          | 7,300           | 4,800          |
| 2MM9328WI                  | 5,300          | 4,000           | 2,600          | 15.5            | 24.8            | 10.4            | 13.8            | 9,000          | 6,800           | 4,400          |
| 2MM9330WI                  | 5,000          | 3,700           | 2,500          | 24.8            | 39.7            | 16.6            | 22.1            | 8,500          | 6,300           | 4,300          |
| 2MM9332WI                  | 4,600          | 3,500           | 2,300          | 26.2            | 41.9            | 17.5            | 23.3            | 7,900          | 5,900           | 3,900          |
| 2MM9334WI                  | 4,400          | 3,300           | 2,200          | 28.2            | 45.2            | 18.9            | 25.1            | 7,500          | 5,600           | 3,700          |
| 2MM9340WI                  | 3,700          | 2,800           | 1,800          | 56.8            | 90.9            | 37.9            | 50.6            | 6,300          | 4,700           | 3,100          |

Notes: For 3MM (25 Degree Contact Angle) Spindle Bearings, use 90% of the Permissible Operating Speeds above.

 $<sup>^{\</sup>ast}$  For 2MMC and 3MMC Spindle Bearings, use 120% of the Permissible Operating Speeds.

For other bearing configurations beside a back-to-back mounted duplex set, please refer to page E36 to calculate the permissible operating speed (Sp.).











## Axial Stiffness 9300WI Series (For Duplex Set\*)

| MM9300WI | SERIES                              |                                   |                                    |                                   | 3MM9300WI SERIES |                                   |                                    |                                   |  |  |
|----------|-------------------------------------|-----------------------------------|------------------------------------|-----------------------------------|------------------|-----------------------------------|------------------------------------|-----------------------------------|--|--|
| Bore #   | X-Light<br>(10 <sup>6</sup> lb/in.) | Light<br>(10 <sup>6</sup> lb/in.) | Medium<br>(10 <sup>6</sup> lb/in.) | Heavy<br>(10 <sup>6</sup> lb/in.) | Bore #           | Light<br>(10 <sup>6</sup> lb/in.) | Medium<br>(10 <sup>6</sup> lb/in.) | Heavy<br>(10 <sup>6</sup> lb/in.) |  |  |
| 00       | 0.081                               | 0.094                             | 0.124                              | 0.167                             | 00               | 0.187                             | 0.242                              | 0.316                             |  |  |
| 01       | 0.085                               | 0.099                             | 0.130                              | 0.175                             | 01               | _                                 | _                                  | _                                 |  |  |
| 02       | 0.094                               | 0.115                             | 0.153                              | 0.209                             | 02               | 0.265                             | 0.344                              | 0.430                             |  |  |
| 03       | 0.102                               | 0.125                             | 0.198                              | 0.273                             | 03               | 0.290                             | 0.440                              | 0.564                             |  |  |
| 04       | 0.104                               | 0.151                             | 0.204                              | 0.264                             | 04               | _                                 | _                                  | _                                 |  |  |
| 05       | 0.118                               | 0.169                             | 0.251                              | 0.312                             | 05               | 0.388                             | 0.560                              | 0.700                             |  |  |
| 06       | 0.126                               | 0.180                             | 0.266                              | 0.331                             | 06               | 0.417                             | 0.602                              | 0.747                             |  |  |
| 07       | 0.145                               | 0.189                             | 0.276                              | 0.393                             | 07               | 0.484                             | 0.705                              | 0.872                             |  |  |
| 08       | 0.156                               | 0.223                             | 0.317                              | 0.435                             | 08               | 0.582                             | 0.797                              | 1.000                             |  |  |
| 09       | 0.176                               | 0.265                             | 0.356                              | 0.488                             | 09               | 0.656                             | 0.893                              | 1.142                             |  |  |
| 10       | 0.196                               | 0.280                             | 0.394                              | 0.542                             | 10               | 0.695                             | 0.998                              | 1.206                             |  |  |
| 11       | 0.222                               | 0.316                             | 0.440                              | 0.603                             | 11               | 0.793                             | 1.108                              | 1.371                             |  |  |
| 12       | 0.250                               | 0.333                             | 0.461                              | 0.644                             | 12               | 0.839                             | 1.187                              | 1.472                             |  |  |
| 13       | 0.286                               | 0.375                             | 0.501                              | 0.684                             | 13               | 0.913                             | 1.265                              | 1.658                             |  |  |
| 14       | 0.284                               | 0.397                             | 0.532                              | 0.729                             | 14               | 0.981                             | 1.369                              | 1.725                             |  |  |
| 15       | 0.304                               | 0.407                             | 0.559                              | 0.767                             | 15               | 1.034                             | 1.437                              | 1.792                             |  |  |
| 16       | 0.331                               | 0.447                             | 0.598                              | 0.821                             | 16               | 1.114                             | 1.540                              | 1.902                             |  |  |
| 17       | 0.351                               | 0.491                             | 0.662                              | 0.915                             | 17               | 1.229                             | 1.705                              | 2.126                             |  |  |
| 18       | 0.372                               | 0.516                             | 0.689                              | 0.943                             | 18               | 1.216                             | 1.661                              | 2.076                             |  |  |
| 19       | 0.401                               | 0.557                             | 0.744                              | 1.018                             | 19               | 1.348                             | 1.886                              | 2.333                             |  |  |
| 20       | 0.431                               | 0.619                             | 0.832                              | 1.162                             | 20               | 1.511                             | 2.111                              | 2.629                             |  |  |
| 22       | 0.504                               | 0.719                             | 0.969                              | 1.339                             | 22               | 1.638                             | 2.275                              | 2.829                             |  |  |
| 24       | 0.559                               | 0.826                             | 1.102                              | 1.518                             | 24               | 1.782                             | 2.409                              | 3.110                             |  |  |
| 26       | 0.610                               | 0.858                             | 1.152                              | 1.603                             | 26               | 2.016                             | 2.792                              | 3.496                             |  |  |
| 28       | 0.601                               | 0.913                             | 1.226                              | 1.700                             | 28               | 2.133                             | 2.955                              | 3.671                             |  |  |
| 30       | 0.686                               | 1.039                             | 1.395                              | 1.899                             | 30               | 2.293                             | 3.151                              | 3.935                             |  |  |
| _        | _                                   | _                                 | _                                  | _                                 | _                | _                                 | _                                  | _                                 |  |  |
| 34       | 0.934                               | 1.230                             | 1.651                              | 2.270                             | 34               | _                                 | _                                  | _                                 |  |  |
| 40       | 0.943                               | 1.241                             | 1.664                              | 2.286                             | 40               | 3.317                             | 4.294                              | 5.632                             |  |  |

<sup>\*</sup> DB (back-to-back) or DF (face-to-face) arrangement only; For other mounting arrangements, contact the Torrington Engineering Department.











## Radial Stiffness 9300WI Series (For Duplex Set\*)

| 19300WI SE | RIES                             |                                   |                                  | 3MM9300WI | SERIES                           |                                   |                                  |
|------------|----------------------------------|-----------------------------------|----------------------------------|-----------|----------------------------------|-----------------------------------|----------------------------------|
| Bore #     | Light<br>(10 <sup>6</sup> lb/in) | Medium<br>(10 <sup>6</sup> lb/in) | Heavy<br>(10 <sup>6</sup> lb/in) | Bore #    | Light<br>(10 <sup>6</sup> lb/in) | Medium<br>(10 <sup>6</sup> lb/in) | Heavy<br>(10 <sup>6</sup> lb/in) |
| 00         | 0.418                            | 0.527                             | 0.660                            | 00        | 0.403                            | 0.507                             | 0.634                            |
| 01         | 0.440                            | 0.557                             | 0.697                            | 01        | _                                | _                                 | _                                |
| 02         | 0.561                            | 0.705                             | 0.880                            | 02        | 0.554                            | 0.695                             | 0.830                            |
| 03         | 0.617                            | 0.886                             | 1.102                            | 03        | 0.609                            | 0.872                             | 1.055                            |
| 04         | 0.848                            | 1.064                             | 1.272                            | 04        | _                                | _                                 | _                                |
| 05         | 0.965                            | 1.305                             | 1.516                            | 05        | 0.839                            | 1.160                             | 1.388                            |
| 06         | 1.038                            | 1.407                             | 1.636                            | 06        | 0.902                            | 1.251                             | 1.498                            |
| 07         | 1.083                            | 1.479                             | 1.907                            | 07        | 1.045                            | 1.462                             | 1.743                            |
| 08         | 1.310                            | 1.742                             | 2.177                            | 08        | 1.251                            | 1.657                             | 1.997                            |
| 09         | 1.545                            | 1.945                             | 2.433                            | 09        | 1.408                            | 1.852                             | 2.266                            |
| 10         | 1.640                            | 2.151                             | 2.687                            | 10        | 1.495                            | 2.046                             | 2.399                            |
| 11         | 1.831                            | 2.384                             | 2.979                            | 11        | 1.684                            | 2.266                             | 2.702                            |
| 12         | 1.933                            | 2.522                             | 3.199                            | 12        | 1.779                            | 2.432                             | 2.907                            |
| 13         | 2.166                            | 2.733                             | 3.417                            | 13        | 1.940                            | 2.598                             | 3.426                            |
| 14         | 2.382                            | 3.004                             | 3.755                            | 14        | 2.095                            | 2.829                             | 3.426                            |
| 15         | 2.446                            | 3.150                             | 3.937                            | 15        | 2.205                            | 2.966                             | 3.561                            |
| 16         | 2.680                            | 3.380                             | 4.225                            | 16        | 2.377                            | 3.183                             | 3.793                            |
| 17         | 2.980                            | 3.745                             | 4.674                            | 17        | 2.642                            | 3.528                             | 4.221                            |
| 18         | 3.021                            | 3.812                             | 4.767                            | 18        | 2.603                            | 3.460                             | 4.175                            |
| 19         | 3.260                            | 4.113                             | 5.143                            | 19        | 2.882                            | 3.900                             | 4.655                            |
| 20         | 3.582                            | 4.507                             | 5.680                            | 20        | 3.213                            | 4.315                             | 5.154                            |
| 22         | 3.896                            | 4.899                             | 6.111                            | 22        | 3.480                            | 4.643                             | 5.538                            |
| 24         | 4.305                            | 5.415                             | 6.758                            | 24        | 3.795                            | 5.099                             | 6.113                            |
| 26         | 4.840                            | 6.054                             | 7.559                            | 26        | 4.295                            | 5.730                             | 6.855                            |
| 28         | 5.052                            | 6.361                             | 8.012                            | 28        | 4.548                            | 6.073                             | 7.253                            |
| 30         | 5.460                            | 6.880                             | 8.649                            | 30        | 4.886                            | 6.541                             | 7.793                            |
| 34         | 6.209                            | 7.820                             | 9.699                            | _         | _                                | _                                 | _                                |
| 40         | 7.414                            | 9.344                             | 11.680                           | 40        | 6.987                            | 8.788                             | 10.980                           |

<sup>\*</sup> DB (back-to-back) or DF (face-to-face) arrangement only; For other mounting arrangements, contact the Torrington Engineering Department.













## **Spacer Offsets** 9300WI Series (For Duplex Set\*)

| 2MM9300WI Ser | ies                 |                    | 3MM9300WI Series   |        |                 |                 |  |  |
|---------------|---------------------|--------------------|--------------------|--------|-----------------|-----------------|--|--|
| Bore #        | X-Light<br>to Light | Light to<br>Medium | Medium<br>to Heavy | Bore # | Light<br>Medium | Medium<br>Heavy |  |  |
| 00            | 0.00005             | 0.00011            | 0.00016            | 00     | 0.00010         | 0.00015         |  |  |
| 01            | 0.00004             | 0.00010            | 0.00016            | 01     | _               | _               |  |  |
| 02            | 0.00008             | 0.00015            | 0.00022            | 02     | 0.00013         | 0.00016         |  |  |
| 03            | 0.00007             | 0.00025            | 0.00025            | 03     | 0.00022         | 0.00020         |  |  |
| 04            | 0.00019             | 0.00023            | 0.00026            | 04     | _               | _               |  |  |
| 05            | 0.00017             | 0.00029            | 0.00021            | 05     | 0.00021         | 0.00019         |  |  |
| 06            | 0.00016             | 0.00027            | 0.00020            | 06     | 0.00020         | 0.00018         |  |  |
| 07            | 0.00012             | 0.00026            | 0.00036            | 07     | 0.00023         | 0.00020         |  |  |
| 08            | 0.00019             | 0.00030            | 0.00037            | 08     | 0.00023         | 0.00024         |  |  |
| 09            | 0.00023             | 0.00026            | 0.00038            | 09     | 0.00023         | 0.00027         |  |  |
| 10            | 0.00020             | 0.00030            | 0.00038            | 10     | 0.00026         | 0.00022         |  |  |
| 11            | 0.00022             | 0.00032            | 0.00042            | 11     | 0.00027         | 0.00026         |  |  |
| 12            | 0.00018             | 0.00030            | 0.00043            | 12     | 0.00027         | 0.00026         |  |  |
| 13            | 0.00018             | 0.00027            | 0.00041            | 13     | 0.00026         | 0.00033         |  |  |
| 14            | 0.00027             | 0.00034            | 0.00051            | 14     | 0.00032         | 0.00034         |  |  |
| 15            | 0.00024             | 0.00037            | 0.00051            | 15     | 0.00032         | 0.00032         |  |  |
| 16            | 0.00025             | 0.00034            | 0.00051            | 16     | 0.00031         | 0.00030         |  |  |
| 17            | 0.00032             | 0.00042            | 0.00061            | 17     | 0.00038         | 0.00038         |  |  |
| 18            | 0.00031             | 0.00040            | 0.00059            | 18     | 0.00033         | 0.00035         |  |  |
| 19            | 0.00031             | 0.00040            | 0.00059            | 19     | 0.00038         | 0.00036         |  |  |
| 20            | 0.00036             | 0.00044            | 0.00068            | 20     | 0.00043         | 0.00041         |  |  |
| 22            | 0.00036             | 0.00045            | 0.00067            | 22     | 0.00043         | 0.00041         |  |  |
| 24            | 0.00042             | 0.00052            | 0.00076            | 24     | 0.00048         | 0.00048         |  |  |
| 26            | 0.00051             | 0.00056            | 0.00084            | 26     | 0.00053         | 0.00054         |  |  |
| 28            | 0.00044             | 0.00056            | 0.00086            | 28     | _               | _               |  |  |
| 30            | 0.00066             | 0.00071            | 0.00108            | 30     | _               | _               |  |  |
| 34            | 0.00069             | 0.00076            | 0.00107            | 34     | _               | _               |  |  |
| 40            | 0.00064             | 0.00096            | 0.00142            | 40     | 0.00074         | 0.00113         |  |  |

<sup>\*</sup> DB (back-to-back) or DF (face-to-face) arrangement only; For other mounting arrangements, contact the Torrington Engineering Department.



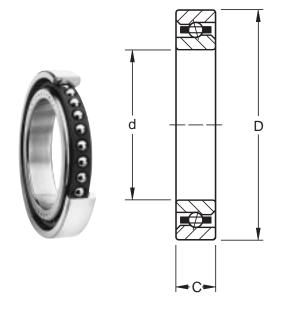











#### Super High Precision MMV (HG):

Superprecision bearings are manufactured to a HG tolerance class, with running accuracy and performance meeting ABEC-9 (ISO P2) while maintaining noncritical features at ABEC-7 (ISO P4) ie. Bore, OD and width.

#### **WN Construction:**

This design incorporates a low shoulder on the non-thrust side of both the inner and outer rings. The maximum complement of balls is separated by a one-piece cage which is piloted against the ground thrust shoulder land of the outer ring.

To specify a ceramic hybrid bearing, add "C" to the part number, after the prefix that specifies precision type.

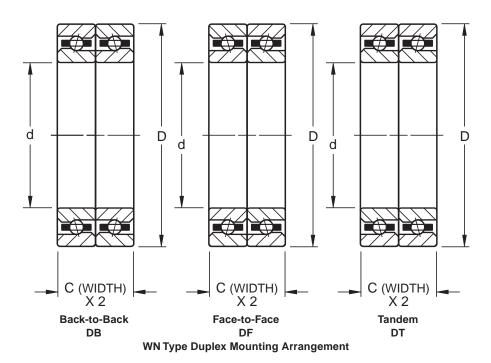


## DIMENSIONS – TOLERANCES All Inch tolerance in .0001 units

| Bearing<br>Number |        | Во | re                            |            |        |     | side<br>neter                   |            |        | Wid | th *                         |            | Maxii<br>Fillet F   | Radius | Com    | Ball<br>plement |
|-------------------|--------|----|-------------------------------|------------|--------|-----|---------------------------------|------------|--------|-----|------------------------------|------------|---------------------|--------|--------|-----------------|
|                   |        |    | Toler<br>+.00<br>+.01<br>to m | 000"<br>mm |        |     | Tolera<br>+.00<br>+.0r<br>to mi | 00"<br>nm  |        |     | +.00<br>+.00<br>+.00<br>to m | 000"<br>mm | Bearing<br>will Clo |        | Bearin | g Corner        |
| 2MMV &<br>3MMV    | in.    | mm | in.                           | μm         | in.    | mm  | in.                             | μ <b>m</b> | in.    | mm  | in.                          | μ <b>m</b> | in.                 | mm     | Qty.   | (Dia.) in       |
| 99101WN           | 0.4724 | 12 | 1.5                           | 4          | 1.1024 | 28  | 2.0                             | 5          | 0.3150 | 8   | 31                           | 80         | 0.012               | 0.3    | 9      | 3/16            |
| 99102WN           | 0.5906 | 15 | 1.5                           | 4          | 1.2598 | 32  | 2.5                             | 6          | 0.3543 | 9   | 31                           | 80         | 0.012               | 0.3    | 11     | 3/16            |
| 99103WN           | 0.6693 | 17 | 1.5                           | 4          | 1.3780 | 35  | 2.5                             | 6          | 0.3937 | 10  | 31                           | 80         | 0.012               | 0.3    | 13     | 3/16            |
| 99104WN           | 0.7874 | 20 | 2.0                           | 5          | 1.6535 | 42  | 2.5                             | 6          | 0.4724 | 12  | 47                           | 120        | 0.024               | 0.6    | 11     | 1/4             |
| 99105WN           | 0.9843 | 25 | 2.0                           | 5          | 1.8504 | 47  | 2.5                             | 6          | 0.4724 | 12  | 47                           | 120        | 0.024               | 0.6    | 13     | 1/4             |
| 99106WN           | 1.1811 | 30 | 2.0                           | 5          | 2.1654 | 55  | 3.0                             | 7          | 0.5118 | 13  | 47                           | 120        | 0.039               | 1.0    | 16     | 1/4             |
| 99107WN           | 1.3780 | 35 | 2.5                           | 6          | 2.4409 | 62  | 3.0                             | 7          | 0.5512 | 14  | 47                           | 120        | 0.039               | 1.0    | 21     | 7/32            |
| 99108WN           | 1.5748 | 40 | 2.5                           | 6          | 2.6772 | 68  | 3.0                             | 7          | 0.5906 | 15  | 47                           | 120        | 0.039               | 1.0    | 24     | 7/32            |
| 99109WN           | 1.7717 | 45 | 2.5                           | 6          | 2.9528 | 75  | 3.0                             | 7          | 0.6299 | 16  | 47                           | 120        | 0.039               | 1.0    | 23     | 1/4             |
| 99110WN           | 1.9685 | 50 | 2.5                           | 6          | 3.1496 | 80  | 3.0                             | 7          | 0.6299 | 16  | 47                           | 120        | 0.039               | 1.0    | 25     | 1/4             |
| 99111WN           | 2.1654 | 55 | 3.0                           | 7          | 3.5433 | 90  | 3.0                             | 8          | 0.7087 | 18  | 59                           | 150        | 0.039               | 1.0    | 25     | 9/32            |
| 99112WN           | 2.3622 | 60 | 3.0                           | 7          | 3.7402 | 95  | 3.0                             | 8          | 0.7087 | 18  | 59                           | 150        | 0.039               | 1.0    | 26     | 9/32            |
| 99113WN           | 2.5591 | 65 | 3.0                           | 7          | 3.9370 | 100 | 3.0                             | 8          | 0.7087 | 18  | 59                           | 150        | 0.039               | 1.0    | 28     | 9/32            |
| 99114WN           | 2.7559 | 70 | 3.0                           | 7          | 4.3307 | 110 | 3.0                             | 8          | 0.7874 | 20  | 59                           | 150        | 0.039               | 1.0    | 28     | 5/16            |
| 99115WN           | 2.9528 | 75 | 3.0                           | 7          | 4.5276 | 115 | 3.0                             | 8          | 0.7874 | 20  | 59                           | 150        | 0.039               | 1.0    | 30     | 5/16            |

<sup>\*</sup> Refer to page E4 for width tolerance of preloaded bearings.

<sup>\*\*</sup> ABMA std. 20  $(r_{as max})$ .














## **DIMENSIONS - TOLERANCES All Inch tolerance in .0001 units**

| Bearing<br>Number |        | Во  | ore          |            |        |     | side<br>neter        |           |        | Wid | th *                 |            | Fillet I           | mum<br>Radius      |      | Ball<br>plement |
|-------------------|--------|-----|--------------|------------|--------|-----|----------------------|-----------|--------|-----|----------------------|------------|--------------------|--------------------|------|-----------------|
|                   |        |     | +.00<br>+.01 |            |        |     | +.00<br>+.0r<br>to m | 00"<br>mm |        |     | +.00<br>+.00<br>to m | 000"<br>mm | Bearing<br>will Cl | g Corner<br>ear ** |      |                 |
| 2MMV &<br>3MMV    | in.    | mm  | in.          | μ <b>m</b> | in.    | mm  | in.                  | μm        | in.    | mm  | in.                  | μ <b>m</b> | in.                | mm                 | Qty. | (Dia.) in.      |
| 99116WN           | 3.1496 | 80  | 3.0          | 7          | 4.9213 | 125 | 3.5                  | 9         | 0.8661 | 22  | 59                   | 150        | 0.039              | 1.0                | 29   | 11/32           |
| 99117WN           | 3.3465 | 85  | 3.0          | 8          | 5.1181 | 130 | 3.5                  | 9         | 0.8661 | 22  | 79                   | 200        | 0.039              | 1.0                | 31   | 11/32           |
| 99118WN           | 3.5433 | 90  | 3.0          | 8          | 5.5118 | 140 | 3.5                  | 9         | 0.9449 | 24  | 79                   | 200        | 0.059              | 1.5                | 28   | 13/32           |
| 99119WN           | 3.7402 | 95  | 3.0          | 8          | 5.7087 | 145 | 3.5                  | 9         | 0.9449 | 24  | 79                   | 200        | 0.059              | 1.5                | 29   | 13/32           |
| 99120WN           | 3.9370 | 100 | 3.0          | 8          | 5.9055 | 150 | 3.5                  | 9         | 0.9449 | 24  | 79                   | 200        | 0.059              | 1.5                | 31   | 13/32           |
| 99121WN           | 4.1339 | 105 | 3.0          | 8          | 6.2992 | 160 | 4.0                  | 10        | 1.0236 | 26  | 79                   | 200        | 0.079              | 2.0                | 30   | 7/16            |
| 99122WN           | 4.3307 | 110 | 3.0          | 8          | 6.6929 | 170 | 4.0                  | 10        | 1.1024 | 28  | 79                   | 200        | 0.079              | 2.0                | 30   | 15/32           |
| 99124WN           | 4.7244 | 120 | 3.0          | 8          | 7.0866 | 180 | 4.0                  | 10        | 1.1024 | 28  | 79                   | 200        | 0.079              | 2.0                | 32   | 15/32           |
| 99126WN           | 5.1181 | 130 | 4.0          | 10         | 7.8740 | 200 | 4.5                  | 11        | 1.2992 | 33  | 98                   | 250        | 0.079              | 2.0                | 32   | 17/32           |
| 99128WN           | 5.5118 | 140 | 4.0          | 10         | 8.2677 | 210 | 4.5                  | 11        | 1.2992 | 33  | 98                   | 250        | 0.079              | 2.0                | 34   | 17/32           |
| 99130WN           | 5.9055 | 150 | 4.0          | 10         | 8.8583 | 225 | 4.5                  | 11        | 1.3780 | 35  | 98                   | 250        | 0.079              | 2.0                | 34   | 19/32           |

<sup>\*</sup> Refer to page E4 for width tolerance of preloaded bearings.

<sup>\*\*</sup> ABMA std. 20 (r<sub>as max</sub>).













### **Extra-Light High Speed** 2MMV99100WN Series

#### PHYSICAL CHARACTERISTICS - LOAD RATINGS

#### RADIAL LOAD RATING AT 33 1/3 RPM Based on 1500 hours L<sub>10</sub> Life and Permissible Speed

| Bearing<br>Number |      | ight<br>earing |        | atic<br>Rating | Dyna   | nded<br>amic | Permis-<br>sible |     |               |     | Preload    | Levels * | *           |     |            |
|-------------------|------|----------------|--------|----------------|--------|--------------|------------------|-----|---------------|-----|------------|----------|-------------|-----|------------|
|                   |      |                | C      | 0              | Load F | Ratings      | Speed<br>Ng *    |     | alight<br>UX) |     | ght<br>UL) |          | dium<br>JM) | l   | avy<br>UH) |
|                   | lbs  | kg             | lbs    | N              | lbs    | N            | RPM              | lbs | N             | lbs | N          | lbs      | N           | lbs | N          |
| 2MMV99101WN       | 0.04 | 0.019          | 380    | 1,700          | 1,160  | 5,200        | 75,800           | _   | _             | 5   | 20         | 10       | 40          | 20  | 90         |
| 2MMV99102WN       | 0.06 | 0.028          | 490    | 2,200          | 1,320  | 5,900        | 64,300           | _   | _             | 5   | 20         | 10       | 40          | 20  | 90         |
| 2MMV99103WN       | 0.08 | 0.038          | 600    | 2,700          | 1,500  | 6,700        | 56,900           | _   | _             | 5   | 20         | 10       | 40          | 20  | 90         |
| 2MMV99104WN       | 0.14 | 0.064          | 1,040  | 4,600          | 2,450  | 10,900       | 43,800           | 5   | 20            | 10  | 40         | 20       | 90          | 40  | 180        |
| 2MMV99105WN       | 0.16 | 0.074          | 1,290  | 5,700          | 2,700  | 12,000       | 36,500           | 5   | 20            | 15  | 70         | 30       | 130         | 60  | 270        |
| 2MMV99106WN       | 0.25 | 0.116          | 1,660  | 7,400          | 3,050  | 13,600       | 29,500           | 5   | 20            | 15  | 70         | 30       | 130         | 60  | 270        |
| 2MMV99107WN       | 0.37 | 0.167          | 1,730  | 7,700          | 2,800  | 12,500       | 25,300           | 10  | 40            | 20  | 90         | 40       | 180         | 80  | 360        |
| 2MMV99108WN       | 0.46 | 0.207          | 2,040  | 9,100          | 3,000  | 13,300       | 22,000           | 15  | 70            | 25  | 110        | 50       | 220         | 100 | 440        |
| 2MMV99109WN       | 0.57 | 0.259          | 2,550  | 11,300         | 3,650  | 16,200       | 20,200           | 15  | 70            | 30  | 130        | 60       | 270         | 120 | 530        |
| 2MMV99110WN       | 0.62 | 0.281          | 2,750  | 12,200         | 3,800  | 16,900       | 18,500           | 15  | 70            | 30  | 130        | 60       | 270         | 120 | 530        |
| 2MMV99111WN       | 0.92 | 0.417          | 3,450  | 15,300         | 4,750  | 21,100       | 16,600           | 20  | 90            | 40  | 180        | 80       | 360         | 160 | 710        |
| 2MMV99112WN       | 0.98 | 0.445          | 3,650  | 16,200         | 4,800  | 21,400       | 15,400           | 20  | 90            | 40  | 180        | 80       | 360         | 160 | 710        |
| 2MMV99113WN       | 1.05 | 0.474          | 3,900  | 17,300         | 5,000  | 22,200       | 14,400           | 25  | 110           | 50  | 220        | 100      | 440         | 200 | 890        |
| 2MMV99114WN       | 1.47 | 0.665          | 4,800  | 21,400         | 6,000  | 26,700       | 13,200           | 25  | 110           | 50  | 220        | 100      | 440         | 200 | 890        |
| 2MMV99115WN       | 1.54 | 0.699          | 5,100  | 22,700         | 6,200  | 27,600       | 12,300           | 30  | 130           | 60  | 270        | 120      | 530         | 240 | 1070       |
| 2MMV99116WN       | 2.08 | 0.944          | 6,000  | 26,700         | 7,350  | 32,700       | 11,600           | 35  | 160           | 70  | 310        | 140      | 620         | 280 | 1250       |
| 2MMV99117WN       | 2.18 | 0.991          | 6,400  | 28,500         | 7,500  | 33,400       | 11,000           | 40  | 180           | 80  | 360        | 160      | 710         | 320 | 1420       |
| 2MMV99118WN       | 2.79 | 1.266          | 8,150  | 36,300         | 9,300  | 41,400       | 10,400           | 45  | 200           | 90  | 400        | 180      | 800         | 360 | 1600       |
| 2MMV99119WN       | 2.87 | 1.303          | 8,300  | 36,900         | 9,300  | 41,400       | 9,900            | 45  | 200           | 90  | 400        | 180      | 800         | 360 | 1600       |
| 2MMV99120WN       | 3.03 | 1.374          | 9,000  | 40,000         | 10,200 | 45,400       | 9,400            | 50  | 220           | 100 | 440        | 200      | 890         | 400 | 1780       |
| 2MMV99121WN       | 3.81 | 1.729          | 10,000 | 44,500         | 11,400 | 50,700       | 8,900            | 55  | 240           | 110 | 490        | 220      | 980         | 440 | 1960       |
| 2MMV99122WN       | 4.82 | 2.188          | 11,400 | 50,700         | 12,900 | 57,400       | 8,500            | 60  | 270           | 120 | 530        | 240      | 1070        | 480 | 2140       |
| 2MMV99124WN       | 5.17 | 2.343          | 12,200 | 54,300         | 13,400 | 59,600       | 7,900            | 70  | 310           | 140 | 620        | 280      | 1250        | 560 | 2490       |
| 2MMV99126WN       | 7.85 | 3.563          | 15,600 | 69,400         | 17,000 | 75,600       | 7,100            | 90  | 400           | 180 | 800        | 360      | 1600        | 720 | 3200       |
| 2MMV99128WN       | 8.32 | 3.776          | 16,600 | 73,800         | 17,300 | 77,000       | 6,600            | 95  | 420           | 190 | 850        | 380      | 1690        | 760 | 3380       |
| 2MMV99130WN       | 9.94 | 4.509          | 20,000 | 89,000         | 20,800 | 92,500       | 6,200            | 100 | 440           | 200 | 890        | 400      | 1780        | 800 | 3560       |

<sup>\*</sup> Limits shown for a single row, spring preloaded and grease lubricated bearing.

<sup>\*\*</sup> All ceramic hybrid bearing preloads are equivalent to the table above.













### **Extra-Light High Speed** 2MMV99100WN Series

#### **Superprecision Bearings**

Fundamental Train Frequency: The frequency at which the retainer will operate.

Ball Spin Frequency: The frequency at which a single defect on a rolling element will be detected.

**BPFO** Ball Pass Frequency Outer: The frequency at which a single defect in the outer race will be detected.

Ball Pass Frequency Inner: The frequency at which a single defect in the inner race will be detected.

#### FREQUENCY COEFFICIENTS

| Bearing<br>Number | FTF                                                | BSF                    | BPFO                         | BPFI                         | FTF                                                |
|-------------------|----------------------------------------------------|------------------------|------------------------------|------------------------------|----------------------------------------------------|
|                   | Fundamental Train<br>Frequency<br>(Inner Rotation) | Ball Spin<br>Frequency | Ball Pass Frequency<br>Outer | Ball Pass Frequency<br>Inner | Fundamental Train<br>Frequency<br>(Outer Rotation) |
| 2MMV99101WN       | 0.3887                                             | 2.0593                 | 3.4985                       | 5.5015                       | 0.6113                                             |
| 2MMV99102WN       | 0.4023                                             | 2.3729                 | 4.4250                       | 6.5750                       | 0.5977                                             |
| 2MMV99103WN       | 0.4115                                             | 2.6389                 | 5.3494                       | 7.6506                       | 0.5885                                             |
| 2MMV99104WN       | 0.4011                                             | 2.3455                 | 4.4120                       | 6.5880                       | 0.5989                                             |
| 2MMV99105WN       | 0.4148                                             | 2.7523                 | 5.3928                       | 7.6072                       | 0.5852                                             |
| 2MMV99106WN       | 0.4288                                             | 3.3241                 | 6.8615                       | 9.1385                       | 0.5712                                             |
| 2MMV99107WN       | 0.4448                                             | 4.3111                 | 9.3403                       | 11.6597                      | 0.5552                                             |
| 2MMV99108WN       | 0.4512                                             | 4.8947                 | 10.8295                      | 13.1705                      | 0.5488                                             |
| 2MMV99109WN       | 0.4489                                             | 4.6750                 | 10.3246                      | 12.6754                      | 0.5511                                             |
| 2MMV99110WN       | 0.4528                                             | 5.0724                 | 11.3207                      | 13.6793                      | 0.5472                                             |
| 2MMV99111WN       | 0.4525                                             | 5.0285                 | 11.3121                      | 13.6879                      | 0.5475                                             |
| 2MMV99112WN       | 0.4556                                             | 5.3815                 | 11.8443                      | 14.1557                      | 0.5444                                             |
| 2MMV99113WN       | 0.4582                                             | 5.7340                 | 12.8308                      | 15.1692                      | 0.5418                                             |
| 2MMV99114WN       | 0.4575                                             | 5.6283                 | 12.8104                      | 15.1896                      | 0.5425                                             |
| 2MMV99115WN       | 0.4602                                             | 6.0120                 | 13.8057                      | 16.1943                      | 0.5398                                             |
| 2MMV99116WN       | 0.4589                                             | 5.8300                 | 13.3085                      | 15.6915                      | 0.5411                                             |
| 2MMV99117WN       | 0.4610                                             | 6.1310                 | 14.2906                      | 16.7094                      | 0.5390                                             |
| 2MMV99118WN       | 0.4568                                             | 5.5308                 | 12.7902                      | 15.2098                      | 0.5432                                             |
| 2MMV99119WN       | 0.4586                                             | 5.7748                 | 13.2992                      | 15.7008                      | 0.5414                                             |
| 2MMV99120WN       | 0.4606                                             | 6.0708                 | 14.2782                      | 16.7218                      | 0.5394                                             |
| 2MMV99121WN       | 0.4596                                             | 5.9229                 | 13.7892                      | 16.2108                      | 0.5404                                             |
| 2MMV99122WN       | 0.4591                                             | 5.8399                 | 13.7729                      | 16.2271                      | 0.5409                                             |
| 2MMV99124WN       | 0.4618                                             | 6.2625                 | 14.7784                      | 17.2216                      | 0.5382                                             |
| 2MMV99126WN       | 0.4610                                             | 6.1362                 | 14.7512                      | 17.2488                      | 0.5390                                             |
| 2MMV99128WN       | 0.4633                                             | 6.5243                 | 15.7513                      | 18.2487                      | 0.5367                                             |
| 2MMV99130WN       | 0.4616                                             | 6.2346                 | 15.2336                      | 17.7664                      | 0.5384                                             |













## Extra-Light High Speed 3MMV99100WN Series

#### PHYSICAL CHARACTERISTICS - LOAD RATINGS

## RADIAL LOAD RATING AT 33 1/3 RPM Based on 1500 hours L<sub>10</sub> Life and Permissible Speed

| Bearing<br>Number |      | ight<br>earing | Load   | atic<br>Rating | Dyn    | nded<br>amic  | Permis-<br>sible |     |                |     | Preload    | Levels * | k           |      |            |
|-------------------|------|----------------|--------|----------------|--------|---------------|------------------|-----|----------------|-----|------------|----------|-------------|------|------------|
|                   |      |                |        | Co             |        | Ratings<br>Se | Speed Ng *       |     | alight<br>OUX) | 1   | ght<br>UL) |          | lium<br>JM) | l    | avy<br>UH) |
|                   | lbs  | kg             | lbs    | N              | lbs    | N             | RPM              | lbs | N              | lbs | N          | lbs      | N           | lbs  | N          |
| 3MMV99101WN       | 0.04 | 0.019          | 365    | 1,600          | 1,100  | 4,900         | 68,200           | _   | _              | 10  | 40         | 20       | 90          | 40   | 180        |
| 3MMV99102WN       | 0.06 | 0.028          | 465    | 2,100          | 1,270  | 5,600         | 57,900           | _   | _              | 10  | 40         | 20       | 90          | 40   | 180        |
| 3MMV99103WN       | 0.08 | 0.038          | 570    | 2,500          | 1,400  | 6,200         | 51,200           | _   | _              | 10  | 40         | 20       | 90          | 40   | 180        |
| 3MMV99104WN       | 0.14 | 0.064          | 930    | 4,100          | 2,320  | 10,300        | 39,400           | 10  | 40             | 20  | 90         | 40       | 180         | 80   | 360        |
| 3MMV99105WN       | 0.16 | 0.074          | 1,220  | 5,400          | 2,600  | 11,600        | 32,900           | 15  | 70             | 30  | 130        | 60       | 270         | 120  | 530        |
| 3MMV99106WN       | 0.25 | 0.116          | 1,560  | 6,900          | 2,900  | 12,900        | 26,600           | 15  | 70             | 30  | 130        | 60       | 270         | 120  | 530        |
| 3MMV99107WN       | 0.37 | 0.167          | 1,660  | 7,400          | 2,600  | 11,600        | 22,800           | 20  | 90             | 40  | 180        | 80       | 360         | 160  | 710        |
| 3MMV99108WN       | 0.46 | 0.207          | 1,900  | 8,500          | 2,800  | 12,500        | 19,800           | 25  | 110            | 50  | 220        | 100      | 440         | 200  | 890        |
| 3MMV99109WN       | 0.57 | 0.259          | 2,360  | 10,500         | 3,450  | 15,300        | 18,200           | 30  | 130            | 60  | 270        | 120      | 530         | 240  | 1070       |
| 3MMV99110WN       | 0.62 | 0.281          | 2,600  | 11,600         | 3,600  | 16,000        | 16,700           | 30  | 130            | 60  | 270        | 120      | 530         | 240  | 1070       |
| 3MMV99111WN       | 0.92 | 0.417          | 3,250  | 14,500         | 4,500  | 20,000        | 14,900           | 40  | 180            | 80  | 360        | 160      | 710         | 320  | 1420       |
| 3MMV99112WN       | 0.98 | 0.445          | 3,400  | 15,100         | 4,550  | 20,200        | 13,900           | 40  | 180            | 80  | 360        | 160      | 710         | 320  | 1420       |
| 3MMV99113WN       | 1.05 | 0.474          | 3,600  | 16,000         | 4,650  | 20,700        | 13,000           | 50  | 220            | 100 | 440        | 200      | 890         | 400  | 1780       |
| 3MMV99114WN       | 1.46 | 0.664          | 4,500  | 20,000         | 5,700  | 25,400        | 11,900           | 50  | 220            | 100 | 440        | 200      | 890         | 400  | 1780       |
| 3MMV99115WN       | 1.54 | 0.699          | 4,750  | 21,100         | 5,850  | 26,000        | 11,100           | 60  | 270            | 120 | 530        | 240      | 1070        | 500  | 2220       |
| 3MMV99116WN       | 2.08 | 0.943          | 5,600  | 24,900         | 6,800  | 30,200        | 10,400           | 70  | 310            | 140 | 620        | 280      | 1250        | 550  | 2450       |
| 3MMV99117WN       | 2.18 | 0.990          | 6,000  | 26,700         | 7,100  | 31,600        | 9,900            | 80  | 360            | 160 | 710        | 320      | 1420        | 600  | 2670       |
| 3MMV99118WN       | 2.79 | 1.266          | 7,650  | 34,000         | 9,150  | 40,700        | 9,400            | 90  | 400            | 180 | 800        | 360      | 1600        | 700  | 3110       |
| 3MMV99119WN       | 2.87 | 1.303          | 7,800  | 34,700         | 9,300  | 41,400        | 8,900            | 90  | 400            | 180 | 800        | 360      | 1600        | 700  | 3110       |
| 3MMV99120WN       | 3.03 | 1.373          | 8,300  | 36,900         | 9,300  | 41,400        | 8,500            | 100 | 440            | 200 | 890        | 400      | 1780        | 800  | 3560       |
| 3MMV99121WN       | 3.81 | 1.728          | 9,300  | 41,400         | 10,800 | 48,000        | 8,000            | 110 | 490            | 220 | 980        | 450      | 2000        | 900  | 4000       |
| 3MMV99122WN       | 4.82 | 2.187          | 10,800 | 48,000         | 12,200 | 54,300        | 7,700            | 120 | 530            | 240 | 1070       | 500      | 2220        | 1000 | 4450       |
| 3MMV99124WN       | 5.16 | 2.342          | 11,400 | 50,700         | 12,500 | 55,600        | 7,100            | 140 | 620            | 280 | 1250       | 550      | 2450        | 1100 | 4890       |
| 3MMV99126WN       | 7.85 | 3.561          | 14,600 | 64,900         | 16,000 | 71,200        | 6,400            | 180 | 800            | 360 | 1600       | 700      | 3110        | 1400 | 6230       |
| 3MMV99128WN       | 8.32 | 3.774          | 15,600 | 69,400         | 16,300 | 72,500        | 5,900            | 190 | 850            | 380 | 1690       | 750      | 3340        | 1500 | 6670       |
| 3MMV99130WN       | 9.94 | 4.507          | 19,000 | 84,500         | 19,600 | 87,200        | 5,600            | 200 | 890            | 400 | 1780       | 800      | 3560        | 1600 | 7120       |

<sup>\*</sup> Limits shown for a single row, spring preloaded and grease lubricated bearing.

<sup>\*\*</sup> All ceramic hybrid bearing preloads are equivalent to the table above.













## Extra-Light High Speed 3MMV99100WN Series

#### **Superprecision Bearings**

Fundamental Train Frequency: The frequency at which the retainer will operate.

BSF Ball Spin Frequency: The frequency at which a single defect on a rolling element will be detected.

**BPFO** Ball Pass Frequency Outer: The frequency at which a single defect in the outer race will be detected.

Ball Pass Frequency Inner: The frequency at which a single defect in the inner race will be detected.

#### **FREQUENCY COEFFICIENTS**

| Bearing<br>Number | FTF                                                | BSF                    | BPFO                         | BPFI                         | FTF                                                |
|-------------------|----------------------------------------------------|------------------------|------------------------------|------------------------------|----------------------------------------------------|
|                   | Fundamental Train<br>Frequency<br>(Inner Rotation) | Ball Spin<br>Frequency | Ball Pass Frequency<br>Outer | Ball Pass Frequency<br>Inner | Fundamental Train<br>Frequency<br>(Outer Rotation) |
| 3MMV99101WN       | 0.3956                                             | 2.0721                 | 3.5600                       | 5.4400                       | 0.6044                                             |
| 3MMV99102WN       | 0.4083                                             | 2.3842                 | 4.4911                       | 6.5089                       | 0.5917                                             |
| 3MMV99103WN       | 0.4169                                             | 2.6491                 | 5.4201                       | 7.5799                       | 0.5831                                             |
| 3MMV99104WN       | 0.4075                                             | 2.3575                 | 4.4829                       | 6.5171                       | 0.5925                                             |
| 3MMV99105WN       | 0.4204                                             | 2.7627                 | 5.4648                       | 7.5352                       | 0.5796                                             |
| 3MMV99106WN       | 0.4335                                             | 3.3327                 | 6.9356                       | 9.0644                       | 0.5665                                             |
| 3MMV99107WN       | 0.4483                                             | 4.3177                 | 9.4149                       | 11.5851                      | 0.5517                                             |
| 3MMV99108WN       | 0.4544                                             | 4.9006                 | 10.9048                      | 13.0952                      | 0.5456                                             |
| 3MMV99109WN       | 0.4522                                             | 4.6813                 | 10.4011                      | 12.5989                      | 0.5478                                             |
| 3MMV99110WN       | 0.4559                                             | 5.0782                 | 11.3974                      | 13.6026                      | 0.5441                                             |
| 3MMV99111WN       | 0.4555                                             | 5.0341                 | 11.3872                      | 13.6128                      | 0.5445                                             |
| 3MMV99112WN       | 0.4584                                             | 5.3867                 | 11.9173                      | 14.0827                      | 0.5416                                             |
| 3MMV99113WN       | 0.4609                                             | 5.7389                 | 12.9047                      | 15.0953                      | 0.5391                                             |
| 3MMV99114WN       | 0.4601                                             | 5.6332                 | 12.8838                      | 15.1162                      | 0.5399                                             |
| 3MMV99115WN       | 0.4626                                             | 6.0166                 | 13.8794                      | 16.1206                      | 0.5374                                             |
| 3MMV99116WN       | 0.4615                                             | 5.8348                 | 13.3829                      | 15.6171                      | 0.5385                                             |
| 3MMV99117WN       | 0.4634                                             | 6.1356                 | 14.3663                      | 16.6337                      | 0.5366                                             |
| 3MMV99118WN       | 0.4594                                             | 5.5357                 | 12.8631                      | 15.1369                      | 0.5406                                             |
| 3MMV99119WN       | 0.4611                                             | 5.7794                 | 13.3715                      | 15.6285                      | 0.5389                                             |
| 3MMV99120WN       | 0.4630                                             | 6.0753                 | 14.3518                      | 16.6482                      | 0.5370                                             |
| 3MMV99121WN       | 0.4620                                             | 5.9273                 | 13.8611                      | 16.1389                      | 0.5380                                             |
| 3MMV99122WN       | 0.4615                                             | 5.8444                 | 13.8448                      | 16.1552                      | 0.5385                                             |
| 3MMV99124WN       | 0.4641                                             | 6.2667                 | 14.8500                      | 17.1500                      | 0.5359                                             |
| 3MMV99126WN       | 0.4633                                             | 6.1406                 | 14.8262                      | 17.1738                      | 0.5367                                             |
| 3MMV99128WN       | 0.4655                                             | 6.5284                 | 15.8262                      | 18.1738                      | 0.5345                                             |
| 3MMV99130WN       | 0.4639                                             | 6.2388                 | 15.3080                      | 17.6920                      | 0.5361                                             |













## Extra-Light High Speed 99100WN Series

## PERMISSIBLE OPERATING SPEEDS – RPM 2MMV & 3MMV Superprecision Angular Contact Spindle Bearings

|                            |                        | GREASE                         |                 |                           |                               |                                |                               |                  | OIL                             |                 |
|----------------------------|------------------------|--------------------------------|-----------------|---------------------------|-------------------------------|--------------------------------|-------------------------------|------------------|---------------------------------|-----------------|
| 15 Degree<br>Contact Angle | "[<br>(DUX)<br>X-Light | DB" Mounting<br>(DUL)<br>Light | (DUM)<br>Medium | Grease<br>25 %<br>(grams) | e Capacity<br>40 %<br>(grams) | Kluber Isof<br>15 %<br>(grams) | lex NBU 15<br>20 %<br>(grams) | (DUX)<br>X-Light | "DB" Mounting<br>(DUL)<br>Light | (DUM)<br>Medium |
| 2MMV99101WN                | 68,200                 | 60,600                         | 45,500          | 0.3                       | 0.5                           | 0.20                           | 0.27                          | 116,000          | 103,000                         | 77,400          |
| 2MMV99102WN                | 57,900                 | 51,400                         | 38,600          | 0.4                       | 0.6                           | 0.24                           | 0.32                          | 98,400           | 98,400                          | 65,600          |
| 2MMV99103WN                | 51,200                 | 45,500                         | 34,100          | 0.5                       | 0.7                           | 0.31                           | 0.41                          | 87,100           | 87,100                          | 58,000          |
| 2MMV99104WN                | 39,400                 | 35,000                         | 26,300          | 0.9                       | 1.4                           | 0.58                           | 0.77                          | 67,000           | 67,000                          | 44,700          |
| 2MMV99105WN                | 32,900                 | 29,200                         | 21,900          | 1.0                       | 1.6                           | 0.67                           | 0.90                          | 55,800           | 55,800                          | 37,200          |
| 2MMV99106WN                | 26,600                 | 23,600                         | 17,700          | 1.3                       | 2.1                           | 0.87                           | 1.17                          | 45,100           | 45,100                          | 30,100          |
| 2MMV99107WN                | 22,800                 | 20,200                         | 15,200          | 1.4                       | 2.2                           | 0.91                           | 1.22                          | 38,700           | 38,700                          | 25,800          |
| 2MMV99108WN                | 19,800                 | 17,600                         | 13,200          | 1.7                       | 2.7                           | 1.14                           | 1.52                          | 33,700           | 33,700                          | 22,400          |
| 2MMV99109WN                | 18,200                 | 16,200                         | 12,100          | 2.2                       | 3.5                           | 1.47                           | 1.96                          | 30,900           | 30,900                          | 20,600          |
| 2MMV99110WN                | 16,700                 | 14,800                         | 11,100          | 2.4                       | 3.8                           | 1.58                           | 2.11                          | 28,300           | 28,300                          | 18,900          |
| 2MMV99111WN                | 14,900                 | 13,300                         | 10,000          | 3.4                       | 5.4                           | 2.2                            | 3.0                           | 25,400           | 25,400                          | 17,000          |
| 2MMV99112WN                | 13,900                 | 12,300                         | 9,200           | 3.6                       | 5.8                           | 2.4                            | 3.2                           | 23,600           | 23,600                          | 15,600          |
| 2MMV99113WN                | 13,000                 | 11,500                         | 8,600           | 3.8                       | 6.1                           | 2.6                            | 3.4                           | 22,000           | 22,000                          | 14,600          |
| 2MMV99114WN                | 11,900                 | 10,600                         | 7,900           | 5.1                       | 8.2                           | 3.4                            | 4.6                           | 20,200           | 20,200                          | 13,400          |
| 2MMV99115WN                | 11,100                 | 9,800                          | 7,400           | 5.5                       | 8.8                           | 3.7                            | 4.9                           | 18,800           | 18,800                          | 12,600          |
| 2MMV99116WN                | 10,400                 | 9,300                          | 7,000           | 7.1                       | 11.3                          | 4.7                            | 6.3                           | 17,700           | 17,700                          | 11,900          |
| 2MMV99117WN                | 9,900                  | 8,800                          | 6,600           | 7.4                       | 11.8                          | 4.9                            | 6.6                           | 16,800           | 16,800                          | 11,200          |
| 2MMV99118WN                | 9,400                  | 8,300                          | 6,200           | 9.7                       | 15.6                          | 6.5                            | 8.7                           | 15,900           | 15,900                          | 10,500          |
| 2MMV99119WN                | 8,900                  | 7,900                          | 5,900           | 13.3                      | 21.3                          | 7.1                            | 9.5                           | 15,100           | 15,100                          | 10,000          |
| 2MMV99120WN                | 8,500                  | 7,500                          | 5,600           | 10.6                      | 17.0                          | 7.4                            | 9.9                           | 14,400           | 14,400                          | 9,500           |
| 2MMV99121WN                | 8,000                  | 7,100                          | 5,300           | 17.1                      | 27.4                          | 9.1                            | 12.2                          | 13,600           | 13,600                          | 9,000           |
| 2MMV99122WN                | 7,700                  | 6,800                          | 5,100           | 16.0                      | 25.6                          | 10.7                           | 14.2                          | 13,000           | 13,000                          | 8,700           |
| 2MMV99124WN                | 7,100                  | 6,300                          | 4,700           | 17.1                      | 27.4                          | 11.4                           | 15.3                          | 12,100           | 12,100                          | 8,000           |
| 2MMV99126WN                | 6,400                  | 5,700                          | 4,300           | 25.8                      | 41.3                          | 17.2                           | 23.0                          | 10,900           | 10,900                          | 7,300           |
| 2MMV99128WN                | 5,900                  | 5,300                          | 4,000           | 27.5                      | 43.9                          | 18.3                           | 24.4                          | 10,100           | 10,100                          | 6,800           |
| 2MMV99130WN                | 5,600                  | 5,000                          | 3,700           | 43.9                      | 70.3                          | 29.3                           | 39.1                          | 9,500            | 9,500                           | 6,300           |

#### Notes:

For 3MM (25 Degree Contact Angle) Spindle Bearings, use 90% of the Permissible Operating Speeds above.

For 2MMVC and 3MMVC Spindle Bearings, use 120% of Permissible Operating Speeds.

For other bearing configurations beside a back-to-back mounted duplex set, please refer to page E36 to calculate the permissible operating speed (Sp.).













## Axial Stiffness 99100WN Series (For Duplex Set\*)

| 2MM99100W | /N SERIES                           |                                   |                                    |                                   | 3MM99100 | WN SERIES                           |                                   |                                    |                                   |
|-----------|-------------------------------------|-----------------------------------|------------------------------------|-----------------------------------|----------|-------------------------------------|-----------------------------------|------------------------------------|-----------------------------------|
| Bore #    | X-Light<br>(10 <sup>6</sup> LB/IN.) | Light<br>(10 <sup>6</sup> LB/IN.) | Medium<br>(10 <sup>6</sup> LB/IN.) | Heavy<br>(10 <sup>6</sup> LB/IN.) | Bore #   | X-Light<br>(10 <sup>6</sup> LB/IN.) | Light<br>(10 <sup>6</sup> LB/IN.) | Medium<br>(10 <sup>6</sup> LB/IN.) | Heavy<br>(10 <sup>6</sup> LB/IN.) |
| 01        | 0.055                               | 0.077                             | 0.102                              | 0.138                             | 01       | 0.160                               | 0.205                             | 0.263                              | 0.343                             |
| 02        | 0.062                               | 0.087                             | 0.115                              | 0.155                             | 02       | 0.182                               | 0.233                             | 0.299                              | 0.388                             |
| 03        | 0.069                               | 0.097                             | 0.127                              | 0.170                             | 03       | 0.203                               | 0.259                             | 0.332                              | 0.430                             |
| 04        | 0.098                               | 0.128                             | 0.171                              | 0.233                             | 04       | 0.274                               | 0.351                             | 0.453                              | 0.591                             |
| 05        | 0.123                               | 0.167                             | 0.224                              | 0.308                             | 05       | 0.353                               | 0.452                             | 0.586                              | 0.768                             |
| 06        | 0.140                               | 0.189                             | 0.252                              | 0.344                             | 06       | 0.403                               | 0.516                             | 0.667                              | 0.870                             |
| 07        | 0.191                               | 0.252                             | 0.338                              | 0.464                             | 07       | 0.515                               | 0.661                             | 0.857                              | 1.125                             |
| 08        | 0.223                               | 0.298                             | 0.401                              | 0.553                             | 08       | 0.608                               | 0.781                             | 1.013                              | 1.333                             |
| 09        | 0.237                               | 0.313                             | 0.422                              | 0.582                             | 09       | 0.652                               | 0.837                             | 1.086                              | 1.428                             |
| 10        | 0.249                               | 0.329                             | 0.442                              | 0.608                             | 10       | 0.688                               | 0.883                             | 1.144                              | 1.501                             |
| 11        | 0.292                               | 0.384                             | 0.516                              | 0.711                             | 11       | 0.784                               | 1.007                             | 1.306                              | 1.716                             |
| 12        | 0.299                               | 0.393                             | 0.528                              | 0.725                             | 12       | 0.804                               | 1.032                             | 1.338                              | 1.757                             |
| 13        | 0.341                               | 0.450                             | 0.607                              | 0.839                             | 13       | 0.913                               | 1.174                             | 1.525                              | 2.010                             |
| 14        | 0.356                               | 0.467                             | 0.624                              | 0.854                             | 14       | 0.935                               | 1.201                             | 1.555                              | 2.040                             |
| 15        | 0.398                               | 0.524                             | 0.703                              | 0.966                             | 15       | 1.043                               | 1.341                             | 1.740                              | 2.327                             |
| 16        | 0.001                               | 0.547                             | 0.735                              | 1.012                             | 16       | 1.109                               | 1.425                             | 1.848                              | 2.413                             |
| 17        | 0.455                               | 0.601                             | 0.810                              | 1.117                             | 17       | 1.214                               | 1.561                             | 2.027                              | 2.601                             |
| 18        | 0.461                               | 0.607                             | 0.815                              | 1.121                             | 18       | 1.236                               | 1.588                             | 2.060                              | 2.677                             |
| 19        | 0.471                               | 0.620                             | 0.831                              | 1.142                             | 19       | 1.265                               | 1.624                             | 2.105                              | 2.733                             |
| 20        | 0.511                               | 0.673                             | 0.904                              | 1.244                             | 20       | 1.371                               | 1.761                             | 2.284                              | 3.002                             |
| 21        | 0.538                               | 0.708                             | 0.948                              | 1.315                             | 21       | 1.410                               | 1.811                             | 2.369                              | 3.116                             |
| 22        | 0.571                               | 0.749                             | 1.001                              | 1.397                             | 22       | 1.484                               | 1.905                             | 2.507                              | 3.295                             |
| 24        | 0.630                               | 0.829                             | 1.111                              | 1.512                             | 24       | 1.634                               | 2.100                             | 2.706                              | 3.559                             |
| 26        | 0.695                               | 0.916                             | 1.231                              | 1.672                             | 26       | 1.852                               | 2.381                             | 3.056                              | 4.018                             |
| 28        | 0.736                               | 0.970                             | 1.304                              | 1.783                             | 28       | 1.963                               | 2.523                             | 3.258                              | 4.284                             |
| 30        | 0.773                               | 1.014                             | 1.355                              | 1.851                             | 30       | 2.014                               | 2.584                             | 3.347                              | 4.390                             |

<sup>\*</sup> DB (back-to-back) or DF (face-to-face) arrangement only; For other mounting arrangements, contact the Torrington Engineering Department.











## Radial Stiffness 99100WN Series (For Duplex Set\*)

| //V99100WI | N SERIES                          |                                    |                                   | 3MMV99100 | WN SERIES                         |                                    |                                   |
|------------|-----------------------------------|------------------------------------|-----------------------------------|-----------|-----------------------------------|------------------------------------|-----------------------------------|
| Bore #     | Light<br>(10 <sup>6</sup> LB/IN.) | Medium<br>(10 <sup>6</sup> LB/IN.) | Heavy<br>(10 <sup>6</sup> LB/IN.) | Bore #    | Light<br>(10 <sup>6</sup> LB/IN.) | Medium<br>(10 <sup>6</sup> LB/IN.) | Heavy<br>(10 <sup>6</sup> LB/IN.) |
| 01         | 0.347                             | 0.450                              | 0.569                             | 01        | 0.336                             | 0.429                              | 0.529                             |
| 02         | 0.513                             | 0.651                              | 0.800                             | 02        | 0.490                             | 0.606                              | 0.760                             |
| 03         | 0.570                             | 0.727                              | 0.896                             | 03        | 0.546                             | 0.677                              | 0.851                             |
| 04         | 0.719                             | 0.891                              | 1.118                             | 04        | 0.659                             | 0.832                              | 1.044                             |
| 05         | 0.801                             | 0.996                              | 1.252                             | 05        | 0.735                             | 0.931                              | 1.169                             |
| 06         | 0.992                             | 1.259                              | 1.581                             | 06        | 0.930                             | 1.177                              | 1.476                             |
| 07         | 1.199                             | 1.538                              | 1.927                             | 07        | 1.148                             | 1.448                              | 1.813                             |
| 08         | 1.413                             | 1.786                              | 2.237                             | 08        | 1.334                             | 1.681                              | 2.105                             |
| 09         | 1.599                             | 2.018                              | 2.526                             | 09        | 1.498                             | 1.886                              | 2.360                             |
| 10         | 1.689                             | 2.134                              | 2.673                             | 10        | 1.582                             | 1.994                              | 2.497                             |
| 11         | 1.998                             | 2.518                              | 3.150                             | 11        | 1.890                             | 2.378                              | 2.973                             |
| 12         | 2.050                             | 2.586                              | 3.235                             | 12        | 1.940                             | 2.441                              | 3.053                             |
| 13         | 2.152                             | 2.718                              | 3.403                             | 13        | 2.037                             | 2.566                              | 3.211                             |
| 14         | 2.439                             | 3.077                              | 3.580                             | 14        | 2.328                             | 2.930                              | 3.664                             |
| 15         | 2.552                             | 3.223                              | 4.036                             | 15        | 2.437                             | 3.069                              | 3.840                             |
| 16         | 2.799                             | 3.531                              | 4.417                             | 16        | 2.654                             | 3.340                              | 3.176                             |
| 17         | 2.924                             | 3.692                              | 4.623                             | 17        | 2.773                             | 3.493                              | 4.370                             |
| 18         | 3.071                             | 3.880                              | 4.860                             | 18        | 2.918                             | 3.677                              | 4.603                             |
| 19         | 3.142                             | 3.972                              | 4.978                             | 19        | 2.987                             | 3.765                              | 4.714                             |
| 20         | 3.462                             | 4.371                              | 5.472                             | 20        | 3.289                             | 4.142                              | 5.152                             |
| 21         | 3.613                             | 4.561                              | 4.709                             | 21        | 3.452                             | 4.346                              | 5.463                             |
| 22         | 3.674                             | 4.649                              | 5.829                             | 22        | 3.532                             | 4.454                              | 5.606                             |
| 24         | 4.141                             | 5.226                              | 6.542                             | 24        | 3.976                             | 5.004                              | 6.259                             |
| 26         | 4.634                             | 5.852                              | 7.328                             | 26        | 4.410                             | 5.554                              | 6.928                             |
| 28         | 5.084                             | 6.412                              | 7.976                             | 28        | 4.836                             | 6.049                              | 7.566                             |
| 30         | 5.363                             | 6.771                              | 8.520                             | 30        | 5.148                             | 6.515                              | 8.150                             |

<sup>\*</sup> DB (back-to-back) or DF (face-to-face) arrangement only; For other mounting arrangements, contact the Torrington Engineering Department.













## Spacer Offsets 99100WN Series (For Duplex Set\*)

| 199100WN | SERIES                       |                             |                             | 3MM99100W | N SERIES                     |                             |                             |
|----------|------------------------------|-----------------------------|-----------------------------|-----------|------------------------------|-----------------------------|-----------------------------|
| Bore #   | X-Light to<br>Light<br>(IN.) | Light to<br>Medium<br>(IN.) | Medium to<br>Heavy<br>(IN.) | Bore #    | X-Light to<br>Light<br>(IN.) | Light to<br>Medium<br>(IN.) | Medium to<br>Heavy<br>(IN.) |
| 01       | 0.00018                      | 0.00022                     | 0.00033                     | 01        | 0.00011                      | 0.00017                     | 0.00026                     |
| 02       | 0.00016                      | 0.00020                     | 0.00030                     | 02        | 0.00010                      | 0.00015                     | 0.00023                     |
| 03       | 0.00014                      | 0.00018                     | 0.00027                     | 03        | 0.00009                      | 0.00013                     | 0.00021                     |
| 04       | 0.00018                      | 0.00027                     | 0.00040                     | 04        | 0.00013                      | 0.00020                     | 0.00031                     |
| 05       | 0.00022                      | 0.00031                     | 0.00045                     | 05        | 0.00015                      | 0.00023                     | 0.00035                     |
| 06       | 0.00019                      | 0.00027                     | 0.00040                     | 06        | 0.00013                      | 0.00020                     | 0.00031                     |
| 07       | 0.00018                      | 0.00027                     | 0.00040                     | 07        | 0.00014                      | 0.00021                     | 0.00032                     |
| 08       | 0.00020                      | 0.00029                     | 0.00042                     | 08        | 0.00014                      | 0.00022                     | 0.00034                     |
| 09       | 0.00022                      | 0.00033                     | 0.00048                     | 09        | 0.00016                      | 0.00025                     | 0.00038                     |
| 10       | 0.00021                      | 0.00031                     | 0.00046                     | 10        | 0.00015                      | 0.00024                     | 0.00036                     |
| 11       | 0.00024                      | 0.00036                     | 0.00052                     | 11        | 0.00018                      | 0.00028                     | 0.00042                     |
| 12       | 0.00023                      | 0.00035                     | 0.00051                     | 12        | 0.00017                      | 0.00027                     | 0.00041                     |
| 13       | 0.00025                      | 0.00038                     | 0.00055                     | 13        | 0.00019                      | 0.00030                     | 0.00045                     |
| 14       | 0.00024                      | 0.00037                     | 0.00054                     | 14        | 0.00019                      | 0.00029                     | 0.00044                     |
| 15       | 0.00026                      | 0.00039                     | 0.00058                     | 15        | 0.00020                      | 0.00031                     | 0.00051                     |
| 16       | 0.00029                      | 0.00044                     | 0.00044                     | 16        | 0.00022                      | 0.00034                     | 0.00051                     |
| 17       | 0.00030                      | 0.00045                     | 0.00066                     | 17        | 0.00023                      | 0.00036                     | 0.00048                     |
| 18       | 0.00034                      | 0.00051                     | 0.00074                     | 18        | 0.00025                      | 0.00039                     | 0.00057                     |
| 19       | 0.00033                      | 0.00050                     | 0.00050                     | 19        | 0.00025                      | 0.00039                     | 0.00056                     |
| 20       | 0.00034                      | 0.00051                     | 0.00075                     | 20        | 0.00025                      | 0.00039                     | 0.00060                     |
| 21       | 0.00035                      | 0.00053                     | 0.00081                     | 21        | 0.00027                      | 0.00044                     | 0.00065                     |
| 22       | 0.00036                      | 0.00055                     | 0.00087                     | 22        | 0.00028                      | 0.00047                     | 0.00069                     |
| 24       | 0.00038                      | 0.00058                     | 0.00082                     | 24        | 0.00030                      | 0.00045                     | 0.00070                     |
| 26       | 0.00045                      | 0.00067                     | 0.00094                     | 26        | 0.00034                      | 0.00050                     | 0.00079                     |
| 28       | 0.00044                      | 0.00067                     | 0.00096                     | 28        | 0.00034                      | 0.00051                     | 0.00079                     |
| 30       | 0.00045                      | 0.00067                     | 0.00100                     | 30        | 0.00035                      | 0.00054                     | 0.00083                     |

<sup>\*</sup> DB (back-to-back) or DF (face-to-face) arrangement only; For other mounting arrangements, contact the Torrington Engineering Department.





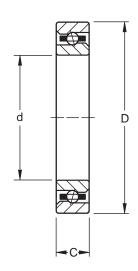






### **Extra-Light** 2MMV9100HX Series

#### **Super High Precision MMV (HG):**


Superprecision bearings are manufactured to a HG tolerance class, with running accuracy and performance meeting ABEC-9 (ISO P2) while maintaining noncritical features at ABEC-7 (ISO P4) ie. Bore, OD and width.

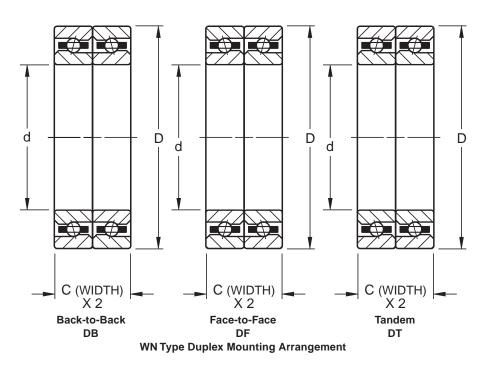
#### **WN Construction:**

This design incorporates a low shoulder on the non-thrust side of both the inner and outer rings. The maximum complement of balls is separated by a one-piece cage which is piloted against the ground thrust shoulder land of the outer ring.

To specify a ceramic hybrid bearing, add "C" to the part number, after the prefix that specifies precision type.






#### **DIMENSIONS - TOLERANCES** All inch tolerance in 0001 units

| Bearing<br>Number |              | В  | ore                          |            |             | Outs<br>Diam   |            |                               |        | Wic             | dth * |                                              |                    | mum<br>Radius |      | Ball<br>olement |
|-------------------|--------------|----|------------------------------|------------|-------------|----------------|------------|-------------------------------|--------|-----------------|-------|----------------------------------------------|--------------------|---------------|------|-----------------|
|                   | Nom<br>Dimei |    | Toler<br>+.00<br>+.0<br>to m | μ <b>m</b> | Nom<br>Dime | ninal<br>nsion | +.0<br>+.0 | rance<br>000"<br>)µm<br>ninus |        | ninal<br>ension | +.(   | erance<br>0000"<br><mark>0µm</mark><br>minus | Bearing<br>will Cl |               |      |                 |
| 2MM               | in.          | mm | in.                          | μ <b>m</b> | in.         | mm             | in.        | μ <b>m</b>                    | in.    | mm              | in.   | μ <b>m</b>                                   | in.                | mm            | Qty. | (Dia.) in.      |
| 9100HX            | 0.3937       | 10 | 1.5                          | 4          | 1.0236      | 26             | 2.0        | 5                             | 0.3150 | 8               | 16    | 40                                           | 0.012              | 0.3           | 10   | 11/64           |
| 9101HX            | 0.4724       | 12 | 1.5                          | 4          | 1.1024      | 28             | 2.0        | 5                             | 0.3150 | 8               | 31    | 80                                           | 0.012              | 0.3           | 10   | 3/16            |
| 9102HX            | 0.5906       | 15 | 1.5                          | 4          | 1.2598      | 32             | 2.5        | 6                             | 0.3543 | 9               | 31    | 80                                           | 0.012              | 0.3           | 12   | 3/16            |
| 9103HX            | 0.6693       | 17 | 1.5                          | 4          | 1.3780      | 35             | 2.5        | 6                             | 0.3937 | 10              | 31    | 80                                           | 0.012              | 0.3           | 12   | 7/32            |
| 9104HX            | 0.7874       | 20 | 2.0                          | 5          | 1.6535      | 42             | 2.5        | 6                             | 0.4724 | 12              | 47    | 130                                          | 0.024              | 0.6           | 12   | 1/4             |
| 9105HX            | 0.9843       | 25 | 2.0                          | 5          | 1.8504      | 47             | 2.5        | 6                             | 0.4724 | 12              | 47    | 130                                          | 0.024              | 0.6           | 13   | 9/32            |
| 9106HX            | 1.1811       | 30 | 2.0                          | 5          | 2.1654      | 55             | 3.0        | 7                             | 0.5118 | 13              | 47    | 130                                          | 0.039              | 1.0           | 13   | 5/16            |
| 9107HX            | 1.3780       | 35 | 2.5                          | 6          | 2.4409      | 62             | 3.0        | 7                             | 0.5512 | 14              | 47    | 130                                          | 0.039              | 1.0           | 15   | 5/16            |
| 9108HX            | 1.5748       | 40 | 2.5                          | 6          | 2.6772      | 68             | 3.0        | 7                             | 0.5906 | 15              | 47    | 130                                          | 0.039              | 1.0           | 16   | 5/16            |
|                   |              |    |                              |            |             |                |            |                               |        |                 |       |                                              |                    |               |      |                 |

<sup>\*</sup> Refer to page E4 for width tolerance of preloaded bearings.

<sup>\*\*</sup> ABMA std. 20 ( $r_{as\ max}$ ).





DIMENSIONS - TOLERANCES

All inch tolerance in .0001 units

| Bearing<br>Number | Nominal Dimension |     | +.00<br>+.0 | rance<br>000"<br>µm<br>inus | Nom<br>Dimer |     | Tole<br>+.0<br>+.0 | rance<br>000"<br>D <mark>µm</mark><br>ninus | 1      | Wio<br>ninal<br>ension | +. | erance<br>0000"<br>. <mark>0μm</mark><br>minus | Maxi<br>Fillet F<br>Bearing<br>will Cl | Radius<br>Corner |      | Ball<br>plement |
|-------------------|-------------------|-----|-------------|-----------------------------|--------------|-----|--------------------|---------------------------------------------|--------|------------------------|----|------------------------------------------------|----------------------------------------|------------------|------|-----------------|
| 2MM               | in.               | mm  | in.         | μ <b>m</b>                  | in.          | mm  | in.                | μ <b>m</b>                                  | in.    | in. mm                 |    | μ <b>m</b>                                     | in.                                    | mm               | Qty. | (Dia.) in.      |
| 9110HX            | 1.9685            | 50  | 50 2.5 6    |                             | 3.1496       | 80  | 3.0                | 7                                           | 0.6299 | 16                     | 47 | 130                                            | 0.039                                  | 1.0              | 16   | 3/8             |
| 9111HX            | 2.1654            | 55  | 3.0         | 7                           | 3.5433       | 90  | 3.0                | 8                                           | 0.7087 | 18                     | 59 | 150                                            | 0.039                                  | 1.0              | 24   | 5/16            |
| 9112HX            | 2.3622            | 60  | 3.0         | 7                           | 3.7402       | 95  | 3.0                | 8                                           | 0.7087 | 18                     | 59 | 150                                            | 0.039                                  | 1.0              | 25   | 5/16            |
| 9113HX            | 2.5591            | 65  | 3.0         | 7                           | 3.9370       | 100 | 3.0                | 8                                           | 0.7087 | 18                     | 59 | 150                                            | 0.039                                  | 1.0              | 25   | 11/32           |
| 9114HX            | 2.7559            | 70  | 3.0         | 7                           | 4.3307       | 110 | 3.0                | 8                                           | 0.7874 | 20                     | 59 | 150                                            | 0.039                                  | 1.0              | 25   | 3/8             |
| 9115HX            | 2.9528            | 75  | 3.0         | 7                           | 4.5276       | 115 | 3.0                | 8                                           | 0.7874 | 20                     | 59 | 150                                            | 0.039                                  | 1.0              | 26   | 3/8             |
| 9116HX            | 3.1496            | 80  | 3.0         | 7                           | 4.9213       | 125 | 3.5                | 9                                           | 0.8661 | 22                     | 59 | 150                                            | 0.039                                  | 1.0              | 25   | 7/16            |
| 9117HX            | 3.3465            | 85  | 3.0         | 8                           | 5.1181       | 130 | 3.5                | 9                                           | 0.8610 | 22                     | 79 | 210                                            | 0.039                                  | 1.0              | 26   | 7/16            |
| 9118HX            | 3.5433            | 90  | 3.0         | 8                           | 5.5118       | 140 | 3.5                | 9                                           | 0.9449 | 24                     | 79 | 210                                            | 0.059                                  | 1.5              | 28   | 7/16            |
| 9119HX            | 3.7402            | 95  | 3.0         | 8                           | 5.7087       | 145 | 3.5                | 9                                           | 0.9449 | 24                     | 79 | 210                                            | 0.059                                  | 1.5              | 26   | 1/2             |
| 9120HX            | 3.9370            | 100 | 3.0         | 8                           | 5.9055       | 150 | 3.5                | 9                                           | 0.9449 | 24                     | 79 | 210                                            | 0.059                                  | 1.5              | 27   | 1/2             |
| 9121HX            | 4.1339            | 105 | 3.0         | 8                           | 6.2992       | 160 | 4.0                | 10                                          | 1.0236 | 26                     | 79 | 210                                            | 0.079                                  | 2.0              | 28   | 1/2             |
| 9122HX            | 4.3307            | 110 | 3.0         | 8                           | 6.6929       | 170 | 4.0                | 10                                          | 1.1024 | 28                     | 79 | 210                                            | 0.079                                  | 2.0              | 30   | 1/2             |
| 9124HX            | 4.7244            | 120 | 3.0         | 8                           | 7.0866       | 180 | 4.0                | 10                                          | 1.1024 | 28                     | 79 | 210                                            | 0.079                                  | 2.0              | 29   | 9/16            |

<sup>\*</sup> Refer to page E4 for width tolerance of preloaded bearings.

<sup>\*\*</sup> ABMA std. 20 (r<sub>as max</sub>).













# Extra-Light 2MMV9100HX Series

#### PHYSICAL CHARACTERISTICS - LOAD RATINGS

## RADIAL LOAD RATING AT 33 1/3 RPM Based on 1500 hours L<sub>10</sub> Life and Permissible Speed

| Bearing<br>Number | Weight<br>Per Bearing |       | Static<br>Load Rating<br>C <sub>o</sub> |        | Extended Dynamic<br>Load Rating<br>C <sub>e</sub> |        | Permis-<br>sible<br>Speed<br>Ng * | Preload Levels ** |     |                 |      |                |      |
|-------------------|-----------------------|-------|-----------------------------------------|--------|---------------------------------------------------|--------|-----------------------------------|-------------------|-----|-----------------|------|----------------|------|
|                   |                       |       |                                         |        |                                                   |        |                                   | Light<br>(DUL)    |     | Medium<br>(DUM) |      | Heavy<br>(DUH) |      |
|                   | lbs                   | kg    | lbs                                     | N      | lbs                                               | N      | RPM                               | lbs               | N   | lbs             | N    | lbs            | N    |
| 2MMV9100HX        | 0.04                  | 0.018 | 305                                     | 1,400  | 965                                               | 4,300  | 88,000                            | 5                 | 20  | 15              | 70   | 30             | 130  |
| 2MMV9101HX        | 0.04                  | 0.020 | 365                                     | 1,600  | 1,140                                             | 5,100  | 78,900                            | 5                 | 20  | 15              | 70   | 30             | 130  |
| 2MMV9102HX        | 0.06                  | 0.027 | 465                                     | 2,100  | 1,290                                             | 5,700  | 64,300                            | 5                 | 20  | 15              | 70   | 30             | 130  |
| 2MMV9103HX        | 0.08                  | 0.038 | 620                                     | 2,800  | 1,700                                             | 7,600  | 58,900                            | 5                 | 20  | 15              | 70   | 30             | 130  |
| 2MMV9104HX        | 0.14                  | 0.064 | 830                                     | 3,700  | 2,160                                             | 9,600  | 48,900                            | 10                | 40  | 30              | 90   | 60             | 270  |
| 2MMV9105HX        | 0.16                  | 0.073 | 1,140                                   | 5,100  | 2,850                                             | 12,700 | 41,800                            | 10                | 40  | 30              | 130  | 60             | 270  |
| 2MMV9106HX        | 0.23                  | 0.104 | 1,430                                   | 6,400  | 3,450                                             | 15,300 | 34,900                            | 15                | 70  | 45              | 200  | 90             | 400  |
| 2MMV9107HX        | 0.32                  | 0.145 | 1,730                                   | 7,700  | 3,750                                             | 16,700 | 29,800                            | 15                | 70  | 45              | 200  | 90             | 400  |
| 2MMV9108HX        | 0.40                  | 0.181 | 1,900                                   | 8,500  | 3,900                                             | 17,300 | 26,200                            | 15                | 70  | 45              | 200  | 90             | 400  |
| 2MMV9109HX        | 0.48                  | 0.218 | 2,500                                   | 11,100 | 5,200                                             | 23,100 | 23,900                            | 20                | 90  | 60              | 270  | 120            | 530  |
| 2MMV9110HX        | 0.52                  | 0.236 | 2,700                                   | 12,000 | 5,400                                             | 24,000 | 21,800                            | 20                | 90  | 60              | 270  | 120            | 530  |
| 2MMV9111HX        | 0.88                  | 0.399 | 3,000                                   | 13,300 | 4,800                                             | 21,400 | 18,700                            | 25                | 110 | 75              | 330  | 150            | 670  |
| 2MMV9112HX        | 0.94                  | 0.426 | 3,150                                   | 14,000 | 4,900                                             | 21,800 | 17,400                            | 25                | 110 | 75              | 330  | 150            | 670  |
| 2MMV9113HX        | 0.98                  | 0.445 | 3,800                                   | 16,900 | 5,850                                             | 26,000 | 16,400                            | 30                | 130 | 90              | 400  | 180            | 800  |
| 2MMV9114HX        | 1.38                  | 0.626 | 4,500                                   | 20,000 | 6,800                                             | 30,200 | 15,000                            | 35                | 160 | 105             | 470  | 210            | 930  |
| 2MMV9115HX        | 1.45                  | 0.658 | 4,650                                   | 20,700 | 6,950                                             | 30,900 | 14,200                            | 35                | 160 | 105             | 470  | 210            | 930  |
| 2MMV9116HX        | 1.93                  | 0.875 | 6,100                                   | 27,100 | 9,150                                             | 40,700 | 13,200                            | 45                | 200 | 135             | 600  | 270            | 1200 |
| 2MMV9117HX        | 2.02                  | 0.916 | 6,400                                   | 28,500 | 9,300                                             | 41,400 | 12,600                            | 50                | 220 | 150             | 670  | 300            | 1330 |
| 2MMV9118HX        | 2.71                  | 1.229 | 6,950                                   | 30,900 | 9,500                                             | 42,300 | 11,700                            | 50                | 220 | 150             | 670  | 300            | 1330 |
| 2MMV9119HX        | 2.73                  | 1.238 | 8,300                                   | 36,900 | 11,800                                            | 52,500 | 11,300                            | 60                | 270 | 180             | 800  | 360            | 1600 |
| 2MMV9120HX        | 2.84                  | 1.288 | 8,650                                   | 38,500 | 12,000                                            | 53,000 | 10,800                            | 60                | 270 | 180             | 800  | 360            | 1600 |
| 2MMV9121HX        | 3.69                  | 1.674 | 9,000                                   | 40,000 | 12,200                                            | 54,300 | 10,100                            | 60                | 270 | 180             | 800  | 360            | 1600 |
| 2MMV9122HX        | 4.70                  | 2.132 | 9,650                                   | 42,900 | 12,500                                            | 55,600 | 9,500                             | 65                | 290 | 195             | 870  | 390            | 1730 |
| 2MMV9124HX        | 4.89                  | 2.218 | 11,800                                  | 52,500 | 15,300                                            | 68,100 | 8,900                             | 80                | 360 | 240             | 1070 | 480            | 2140 |

<sup>\*</sup> Limits shown for a single row, spring preloaded and grease lubricated bearing.

<sup>\*\*</sup> All ceramic hybrid bearing preloads are equivalent to the table above.













## Extra-Light 2MMV9100HX Series

### **Frequency Coefficients Superprecision Bearings**

**FTF** Fundamental Train Frequency: The frequency at which the retainer will operate.

**BSF** Ball Spin Frequency: The frequency at which a single defect on a rolling element will be detected.

BPFO Ball Pass Frequency Outer: The frequency at which a single defect in the outer race will be detected.

**BPFI Ball Pass Frequency Inner:** The frequency at which a single defect in the inner race will be detected.

#### **EXTRA-LIGHT - 2MMV9100HX SERIES**

| Bearing<br>Number | FTF                                                | BSF                    | BPFO                         | BPFI                         | FTF                                                |
|-------------------|----------------------------------------------------|------------------------|------------------------------|------------------------------|----------------------------------------------------|
|                   | Fundamental Train<br>Frequency<br>(Inner Rotation) | Ball Spin<br>Frequency | Ball Pass Frequency<br>Outer | Ball Pass Frequency<br>Inner | Fundamental Train<br>Frequency<br>(Outer Rotation) |
| 2MMV9100HX        | 0.3834                                             | 1.9496                 | 3.8344                       | 6.1656                       | 0.6166                                             |
| 2MMV9101HX        | 0.3852                                             | 1.9890                 | 3.8517                       | 6.1483                       | 0.6148                                             |
| 2MMV9102HX        | 0.4023                                             | 2.3729                 | 4.8273                       | 7.1727                       | 0.5977                                             |
| 2MMV9103HX        | 0.3969                                             | 2.2403                 | 4.7634                       | 7.2366                       | 0.6031                                             |
| 2MMV9104HX        | 0.4012                                             | 2.3457                 | 4.8147                       | 7.1853                       | 0.5988                                             |
| 2MMV9105HX        | 0.4043                                             | 2.4274                 | 5.2560                       | 7.7440                       | 0.5957                                             |
| 2MMV9106HX        | 0.4099                                             | 2.5903                 | 5.3292                       | 7.6708                       | 0.5901                                             |
| 2MMV9107HX        | 0.4211                                             | 2.9789                 | 6.3162                       | 8.6838                       | 0.5789                                             |
| 2MMV9108HX        | 0.4291                                             | 3.3332                 | 6.8659                       | 9.1341                       | 0.5709                                             |
| 2MMV9109HX        | 0.4234                                             | 3.0758                 | 6.3517                       | 8.6483                       | 0.5766                                             |
| 2MMV9110HX        | 0.4293                                             | 3.3440                 | 6.8694                       | 9.1306                       | 0.5707                                             |
| 2MMV9111HX        | 0.4472                                             | 4.5160                 | 10.7329                      | 13.2671                      | 0.5528                                             |
| 2MMV9112HX        | 0.4506                                             | 4.8343                 | 11.2653                      | 13.7347                      | 0.5494                                             |
| 2MMV9113HX        | 0.4490                                             | 4.6751                 | 11.2241                      | 13.7759                      | 0.5510                                             |
| 2MMV9114HX        | 0.4490                                             | 4.6752                 | 11.2241                      | 13.7759                      | 0.5510                                             |
| 2MMV9115HX        | 0.4517                                             | 4.9403                 | 11.7429                      | 14.2571                      | 0.5483                                             |
| 2MMV9116HX        | 0.4477                                             | 4.5613                 | 11.1913                      | 13.8087                      | 0.5523                                             |
| 2MMV9117HX        | 0.4502                                             | 4.7888                 | 11.7039                      | 14.2961                      | 0.5498                                             |
| 2MMV9118HX        | 0.4534                                             | 5.1295                 | 12.6953                      | 15.3047                      | 0.5466                                             |
| 2MMV9119HX        | 0.4490                                             | 4.6752                 | 11.6731                      | 14.3269                      | 0.5510                                             |
| 2MMV9120HX        | 0.4510                                             | 4.8740                 | 12.1772                      | 14.8228                      | 0.5490                                             |
| 2MMV9121HX        | 0.4538                                             | 5.1719                 | 12.7058                      | 15.2942                      | 0.5462                                             |
| 2MMV9122HX        | 0.4563                                             | 5.4696                 | 13.6877                      | 16.3123                      | 0.5437                                             |
| 2MMV9124HX        | 0.4542                                             | 5.2052                 | 13.1707                      | 15.8293                      | 0.5458                                             |













## Extra-Light 2MMV9100HX Series

### **PERMISSIBLE OPERATING SPEEDS - RPM**

2MMV9100HX Series

|               |                |                 |                | GREASE         |                |                |                |                | OIL             |                |
|---------------|----------------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|----------------|
|               |                | "DB" Mounting   | q              | Grease         | Capacity       | Kluber Isof    | Tex NBU 15     |                | "DB" Mounting   | 7              |
| 15 Degree     |                |                 |                |                |                |                |                |                |                 |                |
| Contact Angle | (DUL)<br>Light | (DUM)<br>Medium | (DUH)<br>Heavy | 25%<br>(grams) | 40%<br>(grams) | 15%<br>(grams) | 20%<br>(grams) | (DUL)<br>Light | (DUM)<br>Medium | (DUH)<br>Heavy |
| 2MMV9100HX    | 70,400         | 52,800          | 35,200         | 0.3            | 0.4            | 0.16           | 0.21           | 119,700        | 89,800          | 59,800         |
| 2MMV9101HX    | 63,100         | 47,300          | 31,600         | 0.3            | 0.5            | 0.18           | 0.24           | 107,300        | 80,400          | 53,700         |
| 2MMV9102HX    | 51,400         | 38,600          | 25,700         | 0.4            | 0.7            | 0.25           | 0.33           | 87,400         | 65,600          | 43,700         |
| 2MMV9103HX    | 47,100         | 35,300          | 23,600         | 0.6            | 0.9            | 0.33           | 0.44           | 80,100         | 60,000          | 40,100         |
| 2MMV9104HX    | 39,100         | 29,300          | 19,600         | 1.0            | 1.6            | 0.57           | 0.77           | 66,500         | 49,800          | 33,300         |
| 2MMV9105HX    | 33,400         | 25,100          | 16,700         | 1.2            | 1.9            | 0.70           | 0.93           | 56,800         | 42,700          | 28,400         |
| 2MMV9106HX    | 27,900         | 20,900          | 14,000         | 1.7            | 2.7            | 1.01           | 1.34           | 47,400         | 35,500          | 23,800         |
| 2MMV9107HX    | 23,800         | 17,900          | 11,900         | 2.1            | 3.4            | 1.25           | 1.67           | 40,500         | 30,400          | 20,200         |
| 2MMV9108HX    | 21,000         | 15,700          | 10,500         | 2.7            | 4.3            | 1.54           | 2.06           | 35,700         | 26,700          | 17,900         |
| 2MMV9109HX    | 19,100         | 14,300          | 9,600          | 3.5            | 5.6            | 2.12           | 2.83           | 32,500         | 24,300          | 16,300         |
| 2MMV9110HX    | 17,400         | 13,100          | 8,700          | 3.9            | 6.2            | 2.3            | 3.1            | 29,600         | 22,300          | 14,800         |
| 2MMV9111HX    | 15,000         | 11,200          | 7,500          | 4.6            | 7.3            | 2.5            | 3.3            | 25,500         | 19,000          | 12,800         |
| 2MMV9112HX    | 13,900         | 10,400          | 7,000          | 4.9            | 7.9            | 2.7            | 3.6            | 23,600         | 17,700          | 11,900         |
| 2MMV9113HX    | 13,100         | 9,800           | 6,600          | 5.5            | 8.8            | 3.1            | 4.1            | 22,300         | 16,700          | 11,200         |
| 2MMV9114HX    | 12,000         | 9,000           | 6,000          | 7.3            | 11.7           | 4.1            | 5.4            | 20,400         | 15,300          | 10,200         |
| 2MMV9115HX    | 11,400         | 8,500           | 5,700          | 7.7            | 12.4           | 4.3            | 5.7            | 19,400         | 14,500          | 9,700          |
| 2MMV9116HX    | 10,600         | 7,900           | 5,300          | 10.3           | 16.5           | 5.8            | 7.7            | 18,000         | 13,400          | 9,000          |
| 2MMV9117HX    | 10,100         | 7,600           | 5,000          | 10.8           | 17.3           | 6.1            | 8.1            | 17,200         | 12,900          | 8,500          |
| 2MMV9118HX    | 9,400          | 7,000           | 4,700          | 13.2           | 21.0           | 7.2            | 9.7            | 16,000         | 11,900          | 8,000          |
| 2MMV9119HX    | 9,000          | 6,800           | 4,500          | 14.6           | 23.4           | 8.3            | 11.1           | 15,300         | 11,600          | 7,700          |
| 2MMV9120HX    | 8,600          | 6,500           | 4,300          | 15.2           | 24.4           | 8.6            | 11.5           | 14,600         | 11,100          | 7,300          |
| 2MMV9121HX    | 8,100          | 6,100           | 4,000          | 18.3           | 29.3           | 10.2           | 13.6           | 13,800         | 10,400          | 6,800          |
| 2MMV9122HX    | 7,600          | 5,700           | 3,800          | 21.5           | 34.3           | 11.8           | 15.7           | 12,900         | 9,700           | 6,500          |
| 2MMV9124HX    | 7,100          | 5,300           | 3,600          | 24.4           | 39.1           | 13.7           | 18.3           | 12,100         | 9,000           | 6,100          |

Note: For 2MMVC and 3MMVC Spindle bearings, use 120% of Permissible Operating Speeds.

For other bearing configurations beside a back-to-back mounted duplex set, please refer to page E36 to calculate the permissible operating speed (Sp.).













## **Axial Stiffness** 2MMV9100HX Series (For Duplex Set\*)

## 2MMV9100HX SERIES

| Bore<br>Number | Light<br>(10 <sup>6</sup> lb/in.) | Medium<br>(10 <sup>6</sup> lb/in.) | Heavy<br>(10 <sup>6</sup> lb/in.) |
|----------------|-----------------------------------|------------------------------------|-----------------------------------|
| 00             | 0.0860                            | 0.1345                             | 0.1834                            |
| 01             | 0.0824                            | 0.1290                             | 0.1760                            |
| 02             | 0.0923                            | 0.1434                             | 0.1943                            |
| 03             | 0.0958                            | 0.1471                             | 0.1974                            |
| 04             | 0.1287                            | 0.2010                             | 0.2735                            |
| 05             | 0.1399                            | 0.2154                             | 0.2896                            |
| 06             | 0.1665                            | 0.2586                             | 0.3504                            |
| 07             | 0.1820                            | 0.2811                             | 0.3792                            |
| 08             | 0.1895                            | 0.2920                             | 0.3930                            |
| 09             | 0.2122                            | 0.3268                             | 0.4396                            |
| 10             | 0.2209                            | 0.3395                             | 0.4558                            |
| 11             | 0.2960                            | 0.4578                             | 0.6183                            |
| 12             | 0.3036                            | 0.4689                             | 0.6324                            |
| 13             | 0.3329                            | 0.5140                             | 0.6930                            |
| 14             | 0.3604                            | 0.5561                             | 0.7493                            |
| 15             | 0.3694                            | 0.5691                             | 0.7658                            |
| 16             | 0.4011                            | 0.6192                             | 0.8349                            |
| 17             | 0.4388                            | 0.6773                             | 0.9130                            |
| 18             | 0.4596                            | 0.7075                             | 0.9513                            |
| 19             | 0.4857                            | 0.7474                             | 1.0047                            |
| 20             | 0.4974                            | 0.7643                             | 1.0261                            |
| 21             | 0.5088                            | 0.7809                             | 1.0473                            |
| 22             | 0.5475                            | 0.8405                             | 1.1276                            |
| 24             | 0.6213                            | 0.9503                             | 1.2707                            |

<sup>\*</sup> DB (back-to-back) or DF (face-to-face) arrangement only; For other mounting arrangements, contact the Torrington Engineering Department.













#### 2MMV9100HX SERIES

| Bore<br>Number | Light<br>(10 <sup>6</sup> LB/IN.) | Medium<br>(10 <sup>6</sup> LB/IN.) | Heavy<br>(10 <sup>6</sup> LB/IN.) |
|----------------|-----------------------------------|------------------------------------|-----------------------------------|
| 00             | 0.4690                            | 0.6743                             | 0.8414                            |
| 01             | 0.4924                            | 0.7094                             | 0.8860                            |
| 02             | 0.5552                            | 0.8029                             | 1.0042                            |
| 03             | 0.5803                            | 0.8462                             | 1.0610                            |
| 04             | 0.7711                            | 1.1124                             | 1.3900                            |
| 05             | 0.8471                            | 1.2328                             | 1.5450                            |
| 06             | 1.0017                            | 1.4486                             | 1.8119                            |
| 07             | 1.0995                            | 1.5956                             | 1.9980                            |
| 08             | 1.1464                            | 1.6666                             | 2.0882                            |
| 09             | 1.2837                            | 1.8669                             | 2.3394                            |
| 10             | 1.3380                            | 1.9498                             | 2.4445                            |
| 11             | 1.7862                            | 2.5895                             | 3.2417                            |
| 12             | 1.8341                            | 2.6618                             | 3.3332                            |
| 13             | 2.0115                            | 2.9198                             | 3.6566                            |
| 14             | 2.1789                            | 3.1645                             | 3.9637                            |
| 15             | 2.2347                            | 3.2491                             | 4.0710                            |
| 16             | 2.5122                            | 3.6526                             | 4.5762                            |
| 17             | 2.6524                            | 3.8513                             | 4.8236                            |
| 18             | 2.7819                            | 4.0479                             | 5.0729                            |
| 19             | 2.9406                            | 4.2802                             | 5.3645                            |
| 20             | 3.0125                            | 4.3899                             | 5.5038                            |
| 21             | 3.0831                            | 4.4984                             | 5.6416                            |
| 22             | 3.3169                            | 4.8377                             | 6.0665                            |
| 24             | 3.5654                            | 5.2038                             | 6.5275                            |

<sup>\*</sup> DB (back-to-back) or DF (face-to-face) arrangement only; For other mounting arrangements, contact the Torrington Engineering Department.











## Spacer Offsets 2MMV9100HX Series (For Duplex Set\*)

## 2MMV9100HX - SERIES

| Bore Number | X-Light to<br>Light<br>(in.) | Light to<br>Medium<br>(in.) | Medium to<br>Heavy<br>(in.) |
|-------------|------------------------------|-----------------------------|-----------------------------|
| 04          | 0.00018                      | 0.00034                     | 0.00051                     |
| 05          | 0.00016                      | 0.00046                     | 0.00048                     |
| 06          | 0.00019                      | 0.00056                     | 0.00059                     |
| 07          | 0.00017                      | 0.00052                     | 0.00055                     |
| 08          | 0.00017                      | 0.00056                     | 0.00052                     |
| 09          | 0.00021                      | 0.00059                     | 0.00063                     |
| 10          | 0.00020                      | 0.00056                     | 0.00060                     |
| 11          | 0.00018                      | 0.00053                     | 0.00056                     |
| 12          | 0.00018                      | 0.00052                     | 0.00055                     |
| 13          | 0.00020                      | 0.00056                     | 0.00060                     |
| 14          | 0.00021                      | 0.00061                     | 0.00064                     |
| 15          | 0.00021                      | 0.00059                     | 0.00063                     |
| 16          | 0.00025                      | 0.00070                     | 0.00074                     |
| 17          | 0.00026                      | 0.00071                     | 0.00075                     |
| 18          | 0.00025                      | 0.00068                     | 0.00072                     |
| 19          | 0.00028                      | 0.00077                     | 0.00082                     |
| 20          | 0.00027                      | 0.00076                     | 0.00080                     |
| 21          | 0.00026                      | 0.00074                     | 0.00079                     |
| 22          | 0.00027                      | 0.00075                     | 0.00079                     |
| 24          | 0.00029                      | 0.00081                     | 0.00086                     |

<sup>\*</sup> DB (back-to-back) or DF (face-to-face) arrangement only; For other mounting arrangements, contact the Torrington Engineering Department.





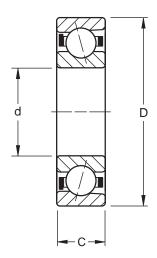






## Extra-Light 2MM9100WI & 3MM9100WI Series

#### Superprecision MM:


Superprecision bearings are manufactured to a ABEC-7 (ISO P4) tolerance class.

#### **WI Construction:**

This design incorporates a low shoulder on the non-thrust side of the outer rings. The maximum complement of balls is separated by a one-piece cage which is piloted against the ground land of the outer ring.

To specify a ceramic hybrid bearing, add "C" to the part number, after the prefix that specifies precision type.



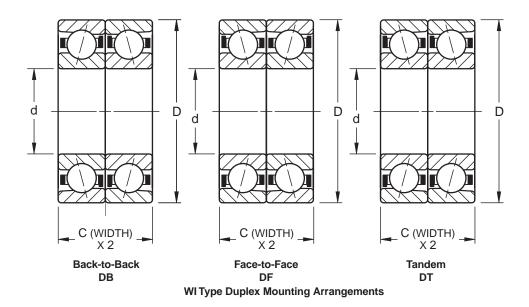


## **DIMENSIONS – TOLERANCES**All inch tolerance in .0001 units

| Bearing<br>Number |              | Во | re                           |            |                                                    | Outs<br>Diam |     |                 |                                           | Wid | th *                            |            | Maxir<br>Fillet R | adius |      | Ball<br>plement |
|-------------------|--------------|----|------------------------------|------------|----------------------------------------------------|--------------|-----|-----------------|-------------------------------------------|-----|---------------------------------|------------|-------------------|-------|------|-----------------|
|                   | Nom<br>Dimei |    | Toler<br>+.00<br>+.0<br>to m | μ <b>m</b> | Nominal Tolerance Dimension +.0000" +.0µm to minus |              |     | ninal<br>ension | Tolerance<br>+.0000"<br>+.0µm<br>to minus |     | Bearing Corner<br>will Clear ** |            |                   |       |      |                 |
| 2MM &<br>3MM      | in.          | mm | in.                          | μ <b>m</b> | in.                                                | mm           | in. | μ <b>m</b>      | in.                                       | mm  | in.                             | μ <b>m</b> | in.               | mm    | Qty. | (Dia.) in       |
| 9100WI            | 0.3937       | 10 | 1.5                          | 4          | 1.0236                                             | 26           | 2.0 | 5               | 0.3150                                    | 8   | 16                              | 40         | 0.012             | 0.3   | 8    | 3/16            |
| 9101WI            | 0.4724       | 12 | 1.5                          | 4          | 1.1024                                             | 28           | 2.0 | 5               | 0.3150                                    | 8   | 31                              | 80         | 0.012             | 0.3   | 10   | 3/16            |
| 9102WI            | 0.5906       | 15 | 1.5                          | 4          | 1.2598                                             | 32           | 2.5 | 6               | 0.3543                                    | 9   | 31                              | 80         | 0.012             | 0.3   | 12   | 3/16            |
| 9103WI            | 0.6693       | 17 | 1.5                          | 4          | 1.3780                                             | 35           | 2.5 | 6               | 0.3937                                    | 10  | 31                              | 80         | 0.012             | 0.3   | 11   | 3/16            |
| 9104WI            | 0.7874       | 20 | 2.0                          | 5          | 1.6535                                             | 42           | 2.5 | 6               | 0.4724                                    | 12  | 47                              | 120        | 0.024             | 0.6   | 11   | 1/4             |
| 9105WI            | 0.9843       | 25 | 2.0                          | 5          | 1.8504                                             | 47           | 2.5 | 6               | 0.4724                                    | 12  | 47                              | 120        | 0.024             | 0.6   | 13   | 1/4             |
| 9106WI            | 1.1811       | 30 | 2.0                          | 5          | 2.1654                                             | 55           | 3.0 | 7               | 0.5118                                    | 13  | 47                              | 120        | 0.039             | 1.0   | 14   | 9/32            |
| 9107WI            | 1.3780       | 35 | 2.5                          | 6          | 2.4409                                             | 62           | 3.0 | 7               | 0.5512                                    | 14  | 47                              | 120        | 0.039             | 1.0   | 15   | 5/16            |
| 9108WI            | 1.5748       | 40 | 2.5                          | 6          | 2.6772                                             | 68           | 3.0 | 7               | 0.5906                                    | 15  | 47                              | 120        | 0.039             | 1.0   | 16   | 5/16            |
| 9109WI            | 1.7717       | 45 | 2.5                          | 6          | 2.9528                                             | 75           | 3.0 | 7               | 0.6299                                    | 16  | 47                              | 120        | 0.039             | 1.0   | 17   | 11/32           |
| 9110WI            | 1.9685       | 50 | 2.5                          | 6          | 3.1496                                             | 80           | 3.0 | 7               | 0.6299                                    | 16  | 47                              | 120        | 0.039             | 1.0   | 18   | 11/32           |
| 9111WI            | 2.1654       | 55 | 3.0                          | 7          | 3.5433                                             | 90           | 3.0 | 8               | 0.7087                                    | 18  | 59                              | 150        | 0.039             | 1.0   | 18   | 13/32           |
| 9112WI            | 2.3622       | 60 | 3.0                          | 7          | 3.7402                                             | 95           | 3.0 | 8               | 0.7087                                    | 18  | 59                              | 150        | 0.039             | 1.0   | 19   | 13/32           |
| 9113WI            | 2.5591       | 65 | 3.0                          | 7          | 3.9370                                             | 100          | 3.0 | 8               | 0.7087                                    | 18  | 59                              | 150        | 0.039             | 1.0   | 20   | 13/32           |
| 9114WI            | 2.7559       | 70 | 3.0                          | 7          | 4.3307                                             | 110          | 3.0 | 8               | 0.7874                                    | 20  | 59                              | 150        | 0.039             | 1.0   | 19   | 15/32           |

<sup>\*</sup> Refer to page E4 for width tolerance of preloaded bearings.

<sup>\*\*</sup> ABMA std. 20 (r<sub>as max</sub>).














## DIMENSIONS - TOLERANCES All inch tolerance in .0001 units

| Bearing<br>Number |              | Вс  | pre |                               |              | Outs<br>Diam |     |                               |        | Wid             | th * |                                              | Maxi<br>Fillet F | Radius                          | Ball<br>Complement |                                      |
|-------------------|--------------|-----|-----|-------------------------------|--------------|--------------|-----|-------------------------------|--------|-----------------|------|----------------------------------------------|------------------|---------------------------------|--------------------|--------------------------------------|
|                   | Nom<br>Dimei |     | +.0 | rance<br>000"<br>)μm<br>ninus | Nom<br>Dimer |              | +.0 | rance<br>000"<br>)μm<br>ninus |        | minal<br>ension | +.(  | erance<br>0000"<br><mark>0μm</mark><br>minus |                  | Bearing Corner<br>will Clear ** |                    |                                      |
| 2MM & 3MM         | in.          | mm  | in. | μ <b>m</b>                    | in.          | mm           | in. | μ <b>m</b>                    | in.    | mm              | in.  | μ <b>m</b>                                   | in.              | mm                              | Qty.               | (Dia.) in.                           |
| 9115WI            | 2.9528       | 75  | 3.0 | 7                             | 4.5276       | 115          | 3.0 | 8                             | 0.7874 | 20              | 59   | 150                                          | 0.039            | 1.0                             | 20                 | 15/32                                |
| 9116WI            | 3.1496       | 80  | 3.0 | 7                             | 4.9213       | 125          | 3.5 | 9                             | 0.8661 | 22              | 59   | 150                                          | 0.039            | 1.0                             | 20                 | 17/32                                |
| 9117WI            | 3.3465       | 85  | 3.0 | 8                             | 5.1181       | 130          | 3.5 | 9                             | 0.8661 | 22              | 79   | 200                                          | 0.039            | 1.0                             | 21                 | 17/32                                |
| 9118WI            | 3.5433       | 90  | 3.0 | 8                             | 5.5118       | 140          | 3.5 | 9                             | 0.9449 | 24              | 79   | 200                                          | 0.059            | 1.5                             | 20                 | 19/32                                |
| 9119WI            | 3.7402       | 95  | 3.0 | 8                             | 5.7087       | 145          | 3.5 | 9                             | 0.9449 | 24              | 79   | 200                                          | 0.059            | 1.5                             | 21                 | 19/32                                |
| 9120WI            | 3.9370       | 100 | 3.0 | 8                             | 5.9055       | 150          | 3.5 | 9                             | 0.9449 | 24              | 79   | 200                                          | 0.059            | 1.5                             | 22                 | 19/ <sub>32</sub>                    |
| 9121WI            | 4.1339       | 105 | 3.0 |                               | 6.2992       | 160          | 4.0 | 10                            | 1.0236 | 26              | 79   | 200                                          | 0.079            | 2.0                             | 21                 | 21/ <sub>32</sub>                    |
| 9122WI            | 4.3307       | 110 | 3.0 | 8                             | 6.6929       | 170          | 4.0 | 10                            | 1.1024 | 28              | 79   | 200                                          | 0.079            | 2.0                             | 22                 | 11/ <sub>16</sub>                    |
| 9124WI            | 4.7244       | 120 | 3.0 | 8                             | 7.0866       | 180          | 4.0 | 10                            | 1.1024 | 28              | 79   | 200                                          | 0.079            | 2.0                             | 23                 | 11/ <sub>16</sub>                    |
| 9126WI            | 5.1181       | 130 | 4.0 | 10                            | 7.8740       | 200          | 4.5 | 11                            | 1.2992 | 33              | 98   | 250                                          | 0.079            | 2.0                             | 21                 | 13/ <sub>16</sub>                    |
| 9128WI            | 5.5118       | 140 | 4.0 | 10                            | 8.2677       | 210          | 4.5 | 11                            | 1.2992 | 33              | 98   | 250                                          | 0.079            | 2.0                             | 22                 | 13/ <sub>16</sub><br>7/ <sub>8</sub> |
| 9130WI            | 5.9055       | 150 | 4.0 | 10                            | 8.8583       | 225          | 4.5 | 11                            | 1.3780 | 35              | 98   | 250                                          | 0.079            | 2.0                             | 22                 | 15/16                                |
| 9132WI            | 6.2992       | 160 | 4.0 | 10                            | 9.4488       | 240          | 4.5 | 11                            | 1.4961 | 38              | 98   | 250                                          | 0.079            | 2.0                             | 22                 |                                      |
| 9134WI            | 6.6929       | 170 | 4.0 | 10                            | 10.2362      | 260          | 5.0 | 13                            | 1.6535 | 42              | 98   | 250                                          | 0.079            | 2.0                             | 22                 | 1 <sup>1</sup> /16                   |
| 9136WI            | 7.0866       | 180 | 4.0 | 10                            | 11.0236      | 280          | 5.0 | 13                            | 1.8110 | 46              | 98   | 250                                          | 0.079            | 2.0                             | 20                 | 1 <sup>3</sup> /16                   |
| 9140WI            | 7.8740       | 200 | 4.5 | 12                            | 12.2047      | 310          | 5.0 | 13                            | 2.0079 | 51              | 118  | 300                                          | 0.079            | 2.0                             | 20                 | 1 <sup>5</sup> /16                   |

<sup>\*</sup> Refer to page E4 for width tolerance of preloaded bearings.

<sup>\*\*</sup> ABMA std. 20 ( $r_{as max}$ ).













## Extra-Light 2MM9100WI Series

## PHYSICAL CHARACTERISTICS - LOAD RATINGS

### RADIAL LOAD RATING AT 33 1/3 RPM Based on 1500 hours L<sub>10</sub> Life and Permissible Speed

| Bearing<br>Number                                             |                                      | eight<br>Bearing                          |                                           | tatic<br>I Rating                              | Dy                                         | ended<br>namic<br>Ratings                      | Permis-<br>sible<br>Speed<br>Ng *              |                                  |                                |                            | Preload I                       | _evels **                    | k                               |                                 |                                  |
|---------------------------------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------------|--------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------|--------------------------------|----------------------------|---------------------------------|------------------------------|---------------------------------|---------------------------------|----------------------------------|
|                                                               |                                      |                                           |                                           | $C_{o}$                                        |                                            | C <sub>e</sub>                                 | Ng                                             |                                  | ralight<br>DUX)                |                            | ight<br>DUL)                    |                              | edium<br>DUM)                   | 1                               | eavy<br>OUH)                     |
|                                                               | lbs                                  | kg                                        | lbs                                       | N                                              | lbs                                        | N                                              | RPM                                            | lbs                              | N                              | lbs                        | N                               | lbs                          | N                               | lbs                             | N                                |
| 2MM9100WI                                                     | 0.04                                 | 0.018                                     | 490                                       | 2,200                                          | 1,210                                      | 5,400                                          | 68,500                                         | _                                |                                | 3                          | 13                              | 6                            | 25                              | 12                              | 55                               |
| 2MM9101WI                                                     | 0.04                                 | 0.020                                     | 650                                       | 2,900                                          | 1,430                                      | 6,400                                          | 57,300                                         | _                                |                                | 5                          | 20                              | 10                           | 45                              | 20                              | 90                               |
| 2MM9102WI                                                     | 0.07                                 | 0.030                                     | 820                                       | 3,600                                          | 1,630                                      | 7,300                                          | 48,600                                         | _                                |                                | 5                          | 20                              | 15                           | 65                              | 30                              | 130                              |
| 2MM9103WI                                                     | 0.08                                 | 0.038                                     | 770                                       | 3,400                                          | 1,530                                      | 6,800                                          | 43,100                                         | —                                | _                              | 5                          | 20                              | 20                           | 90                              | 35                              | 160                              |
| 2MM9104WI                                                     | 0.15                                 | 0.067                                     | 1,350                                     | 6,000                                          | 2,600                                      | 11,600                                         | 37,100                                         | —                                |                                | 10                         | 45                              | 20                           | 90                              | 40                              | 180                              |
| 2MM9105WI<br>2MM9106WI<br>2MM9107WI<br>2MM9108WI<br>2MM9109WI | 0.17<br>0.25<br>0.33<br>0.41<br>0.53 | 0.077<br>0.113<br>0.151<br>0.187<br>0.240 | 1,660<br>2,310<br>3,070<br>3,360<br>4,330 | 7,400<br>10,300<br>13,700<br>14,900<br>19,300  | 2,900<br>3,770<br>4,760<br>4,920<br>6,080  | 12,900<br>16,800<br>21,200<br>21,900<br>27,000 | 30,900<br>25,500<br>22,600<br>19,900<br>17,900 |                                  | <br><br><br>                   | 10<br>15<br>20<br>20<br>30 | 45<br>65<br>90<br>90<br>130     | 25<br>30<br>50<br>50<br>60   | 110<br>130<br>220<br>220<br>270 | 60<br>75<br>90<br>100<br>125    | 270<br>330<br>400<br>440<br>560  |
| 2MM9110WI<br>2MM9111WI<br>2MM9112WI<br>2MM9113WI<br>2MM9114WI | 0.57<br>0.84<br>0.90<br>0.96<br>1.33 | 0.258<br>0.383<br>0.409<br>0.435<br>0.604 | 4,670<br>6,420<br>6,860<br>7,330<br>9,150 | 20,800<br>28,600<br>30,500<br>32,600<br>40,700 | 6,270<br>8,500<br>8,730<br>8,950<br>11,300 | 27,900<br>37,800<br>38,800<br>39,800<br>50,300 | 16,300<br>14,700<br>13,600<br>12,700<br>11,700 | 20<br>25<br>25<br>25<br>25<br>30 | 89<br>110<br>110<br>110<br>130 | 30<br>35<br>40<br>50<br>60 | 130<br>160<br>180<br>220<br>270 | 60<br>75<br>75<br>100<br>125 | 270<br>330<br>330<br>440<br>560 | 150<br>150<br>200<br>200<br>250 | 670<br>670<br>890<br>890<br>1110 |
| 2MM9115WI                                                     | 1.41                                 | 0.638                                     | 9,790                                     | 43,500                                         | 11,600                                     | 51,600                                         | 11,000                                         | 30                               | 130                            | 60                         | 270                             | 125                          | 560                             | 275                             | 1220                             |
| 2MM9116WI                                                     | 1.89                                 | 0.859                                     | 12,400                                    | 55,200                                         | 14,600                                     | 64,900                                         | 10,300                                         | 35                               | 160                            | 70                         | 310                             | 150                          | 670                             | 350                             | 1560                             |
| 2MM9117WI                                                     | 1.99                                 | 0.901                                     | 13,200                                    | 58,700                                         | 15,000                                     | 66,700                                         | 9,700                                          | 40                               | 180                            | 80                         | 360                             | 175                          | 780                             | 375                             | 1670                             |
| 2MM9118WI                                                     | 2.58                                 | 1.170                                     | 15,500                                    | 68,900                                         | 17,900                                     | 79,600                                         | 9,200                                          | 40                               | 180                            | 100                        | 440                             | 200                          | 890                             | 400                             | 1780                             |
| 2MM9119WI                                                     | 2.69                                 | 1.222                                     | 16,500                                    | 73,400                                         | 18,300                                     | 81,400                                         | 8,700                                          | 45                               | 200                            | 110                        | 490                             | 220                          | 980                             | 445                             | 1980                             |
| 2MM9120WI                                                     | 2.86                                 | 1.299                                     | 17,400                                    | 77,400                                         | 18,800                                     | 83,600                                         | 8,300                                          | 50                               | 220                            | 125                        | 560                             | 250                          | 1110                            | 450                             | 2000                             |
| 2MM9121WI                                                     | 3.57                                 | 1.617                                     | 20,100                                    | 89,400                                         | 22,000                                     | 97,900                                         | 7,900                                          | 55                               | 240                            | 135                        | 600                             | 275                          | 1220                            | 550                             | 2450                             |
| 2MM9122WI                                                     | 4.50                                 | 2.043                                     | 23,100                                    | 102,700                                        | 24,600                                     | 109,400                                        | 7,500                                          | 60                               | 270                            | 150                        | 670                             | 300                          | 1330                            | 600                             | 2670                             |
| 2MM9124WI                                                     | 4.81                                 | 2.180                                     | 24,400                                    | 108,500                                        | 25,000                                     | 111,200                                        | 6,900                                          | 65                               | 290                            | 175                        | 780                             | 350                          | 1560                            | 650                             | 2890                             |
| 2MM9126WI                                                     | 7.21                                 | 3.273                                     | 30,800                                    | 137,000                                        | 32,200                                     | 143,200                                        | 6,400                                          | 75                               | 330                            | 200                        | 890                             | 400                          | 1780                            | 825                             | 3670                             |
| 2MM9128WI                                                     | 7.62                                 | 3.454                                     | 32,600                                    | 145,000                                        | 32,900                                     | 146,300                                        | 5,900                                          | 85                               | 380                            | 225                        | 1000                            | 450                          | 2000                            | 875                             | 3890                             |
| 2MM9130WI                                                     | 9.26                                 | 4.200                                     | 37,800                                    | 168,100                                        | 37,600                                     | 167,200                                        | 5,600                                          | 100                              | 440                            | 250                        | 1110                            | 550                          | 2450                            | 1000                            | 4450                             |
| 2MM9132WI                                                     | 11.44                                | 5.188                                     | 43,300                                    | 192,600                                        | 42,600                                     | 189,500                                        | 5,200                                          | 110                              | 490                            | 300                        | 1330                            | 600                          | 2670                            | 1200                            | 5340                             |
| 2MM9134WI                                                     | 15.43                                | 6.999                                     | 55,200                                    | 245,500                                        | 52,600                                     | 234,000                                        | 4,900                                          | 130                              | 580                            | 375                        | 1670                            | 750                          | 3340                            | 1500                            | 6670                             |
| 2MM9136WI                                                     | 20.40                                | 9.250                                     | 62,100                                    | 276,200                                        | 58,100                                     | 258,400                                        | 4,600                                          | 150                              | 670                            | 390                        | 1730                            | 780                          | 3470                            | 1560                            | 6940                             |
| 2MM9140WI                                                     | 26.78                                | 12.148                                    | 75,800                                    | 337,200                                        | 66,700                                     | 296,700                                        | 4,100                                          | 210                              | 930                            | 500                        | 2220                            | 1000                         | 4450                            | 2000                            | 8900                             |

<sup>\*</sup> Limits shown for a single row, spring preloaded and grease lubricated bearing.

<sup>\*\*</sup> All ceramic hybrid bearing preloads are equivalent to the table above.













## **Extra-Light** 2MM9100WI Series

#### **Superprecision Bearings**

FTF Fundamental Train Frequency: The frequency at which the retainer will operate.

Ball Spin Frequency: The frequency at which a single defect on a rolling element will be detected.

Ball Pass Frequency Outer: The frequency at which a single defect in the outer race will be detected.

Ball Pass Frequency Inner: The frequency at which a single defect in the inner race will be detected.

#### **FREQUENCY COEFFICIENTS**

| Bearing<br>Number | FTF                                                | BSF                    | BPFO                         | BPFI                         | FTF                                                |
|-------------------|----------------------------------------------------|------------------------|------------------------------|------------------------------|----------------------------------------------------|
|                   | Fundamental Train<br>Frequency<br>(Inner Rotation) | Ball Spin<br>Frequency | Ball Pass Frequency<br>Outer | Ball Pass Frequency<br>Inner | Fundamental Train<br>Frequency<br>(Outer Rotation) |
| 2MM9100WI         | 0.3740                                             | 1.7697                 | 2.9924                       | 5.0076                       | 0.6260                                             |
| 2MM9101WI         | 0.3902                                             | 2.0621                 | 3.9015                       | 6.0985                       | 0.6098                                             |
| 2MM9102WI         | 0.4035                                             | 2.3754                 | 4.8424                       | 7.1576                       | 0.5965                                             |
| 2MM9103WI         | 0.4126                                             | 2.6411                 | 4.5390                       | 6.4610                       | 0.5874                                             |
| 2MM9104WI         | 0.4013                                             | 2.3458                 | 4.4140                       | 6.5860                       | 0.5987                                             |
| 2MM9105WI         | 0.4150                                             | 2.7526                 | 5.3947                       | 7.6053                       | 0.5850                                             |
| 2MM9106WI         | 0.4201                                             | 2.9387                 | 5.8807                       | 8.1193                       | 0.5799                                             |
| 2MM9107WI         | 0.4210                                             | 2.9789                 | 6.3157                       | 8.6843                       | 0.5790                                             |
| 2MM9108WI         | 0.4291                                             | 3.3332                 | 6.8655                       | 9.1345                       | 0.5709                                             |
| 2MM9109WI         | 0.4298                                             | 3.3682                 | 7.3063                       | 9.6937                       | 0.5702                                             |
| 2MM9110WI         | 0.4352                                             | 3.6596                 | 7.8332                       | 10.1668                      | 0.5648                                             |
| 2MM9111WI         | 0.4314                                             | 3.4469                 | 7.7648                       | 10.2352                      | 0.5686                                             |
| 2MM9112WI         | 0.4358                                             | 3.6934                 | 8.2803                       | 10.7197                      | 0.5642                                             |
| 2MM9113WI         | 0.4397                                             | 3.9394                 | 8.7939                       | 11.2061                      | 0.5603                                             |
| 2MM9114WI         | 0.4362                                             | 3.7179                 | 8.2875                       | 10.7125                      | 0.5638                                             |
| 2MM9115WI         | 0.4395                                             | 3.9312                 | 8.7908                       | 11.2092                      | 0.5605                                             |
| 2MM9116WI         | 0.4365                                             | 3.7369                 | 8.7306                       | 11.2694                      | 0.5635                                             |
| 2MM9117WI         | 0.4396                                             | 3.9332                 | 9.2317                       | 11.7683                      | 0.5604                                             |
| 2MM9118WI         | 0.4367                                             | 3.7517                 | 8.7350                       | 11.2650                      | 0.5633                                             |
| 2MM9119WI         | 0.4394                                             | 3.9200                 | 9.2271                       | 11.7729                      | 0.5606                                             |
| 2MM9120WI         | 0.4418                                             | 4.0881                 | 9.7198                       | 12.2802                      | 0.5582                                             |
| 2MM9121WI         | 0.4393                                             | 3.9167                 | 9.2256                       | 11.7744                      | 0.5607                                             |
| 2MM9122WI         | 0.4399                                             | 3.9507                 | 9.6778                       | 12.3222                      | 0.5601                                             |
| 2MM9124WI         | 0.4439                                             | 4.2417                 | 10.2102                      | 12.7898                      | 0.5561                                             |
| 2MM9126WI         | 0.4397                                             | 3.9394                 | 9.2336                       | 11.7664                      | 0.5603                                             |
| 2MM9128WI         | 0.4431                                             | 4.1850                 | 9.7491                       | 12.2509                      | 0.5569                                             |
| 2MM9130WI         | 0.4428                                             | 4.1640                 | 9.7426                       | 12.2574                      | 0.5572                                             |
| 2MM9132WI         | 0.4426                                             | 4.1450                 | 9.7367                       | 12.2633                      | 0.5574                                             |
| 2MM9134WI         | 0.4394                                             | 3.9247                 | 9.6660                       | 12.3340                      | 0.5606                                             |
| 2MM9140WI         | 0.4369                                             | 3.7645                 | 8.7378                       | 11.2622                      | 0.5631                                             |













## **Extra-Light** 3MM9100WI Series

## PHYSICAL CHARACTERISTICS - LOAD RATINGS

## **RADIAL LOAD RATING AT 33 1/3 RPM** Based on 1500 hours L<sub>10</sub> Life and Permissible Speed

| Bearing<br>Number                                             | V                                    | Weight<br>Bearing                         | :                                         | Static<br>d Rating                           | Ex<br>D                                   | tended<br>ynamic<br>d Ratings                  | Permis-<br>sible<br>Speed<br>Ng *              |                       |                       |                            | Preload                        |                              |                                 |                                | Эороса                          |
|---------------------------------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------|-------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------|-----------------------|----------------------------|--------------------------------|------------------------------|---------------------------------|--------------------------------|---------------------------------|
|                                                               | lbs                                  | kg                                        | lbs                                       | C <sub>o</sub>                               | lbs                                       | C <sub>e</sub>                                 | RPM                                            | 1                     | tralight<br>DUX)<br>N | 1                          | ₋ight<br>DUL)<br>N             | 1                            | dium<br>UM)<br>N                |                                | eavy<br>DUH)<br>N               |
| 3MM9100WI<br>3MM9101WI<br>3MM9102WI<br>3MM9103WI<br>3MM9104WI | 0.04<br>0.04<br>0.07<br>0.08<br>0.15 | 0.018<br>0.020<br>0.030<br>0.038<br>0.067 | 480<br>630<br>790<br>750<br>1,290         | 2,100<br>2,800<br>3,530<br>3,300<br>5,700    | 1,190<br>1,390<br>1,580<br>1,480<br>2,500 | 5,300<br>6,200<br>7,020<br>6,600<br>11,100     | 61,700<br>51,600<br>43,700<br>38,800<br>33,400 |                       |                       | 5<br>10<br>10<br>15<br>20  | 20<br>45<br>45<br>65           | 10<br>20<br>20<br>35<br>40   | 45<br>90<br>90<br>160<br>180    | 20<br>40<br>40<br>50<br>75     | 90<br>180<br>180<br>220<br>330  |
| 3MM9105WI<br>3MM9106WI<br>3MM9107WI<br>3MM9108WI<br>3MM9109WI | 0.17<br>0.25<br>0.33<br>0.41<br>0.53 | 0.077<br>0.113<br>0.151<br>0.187<br>0.240 | 1,590<br>2,200<br>2,930<br>3,190<br>4,110 | 7,100<br>9,900<br>13,000<br>14,200<br>18,300 | 2,770<br>3,600<br>4,540<br>4,670<br>5,760 | 12,300<br>16,000<br>20,200<br>20,800<br>25,600 | 27,800<br>23,000<br>20,300<br>17,900<br>16,100 | _<br>_<br>_<br>_<br>_ | _<br>_<br>_<br>_      | 20<br>30<br>35<br>40<br>50 | 90<br>130<br>160<br>180<br>220 | 50<br>65<br>80<br>100<br>125 | 220<br>290<br>360<br>440<br>560 | 90<br>120<br>160<br>170<br>220 | 400<br>530<br>710<br>760<br>980 |
| 3MM9110WI                                                     | 0.57                                 | 0.258                                     | 4,430                                     | 19,700                                       | 5,910                                     | 26,300                                         | 14,700                                         | 25                    | 110                   | 55                         | 240                            | 150                          | 670                             | 240                            | 1070                            |
| 3MM9111WI                                                     | 0.84                                 | 0.383                                     | 6,110                                     | 27,200                                       | 8,080                                     | 35,900                                         | 13,200                                         | 30                    | 130                   | 75                         | 330                            | 175                          | 780                             | 300                            | 1330                            |
| 3MM9112WI                                                     | 0.90                                 | 0.409                                     | 7,470                                     | 33,200                                       | 8,290                                     | 36,900                                         | 12,200                                         | 35                    | 160                   | 80                         | 360                            | 200                          | 890                             | 325                            | 1450                            |
| 3MM9113WI                                                     | 0.96                                 | 0.435                                     | 6,970                                     | 31,000                                       | 8,480                                     | 37,700                                         | 11,400                                         | 40                    | 180                   | 80                         | 360                            | 200                          | 890                             | 350                            | 1560                            |
| 3MM9114WI                                                     | 1.33                                 | 0.604                                     | 8,730                                     | 38,800                                       | 10,700                                    | 47,600                                         | 10,500                                         | 45                    | 200                   | 100                        | 440                            | 250                          | 1110                            | 450                            | 2000                            |
| 3MM9115WI                                                     | 1.41                                 | 0.638                                     | 9,260                                     | 41,200                                       | 11,000                                    | 48,900                                         | 9,900                                          | 50                    | 220                   | 110                        | 490                            | 275                          | 1220                            | 475                            | 2110                            |
| 3MM9116WI                                                     | 1.89                                 | 0.859                                     | 11,800                                    | 52,500                                       | 13,800                                    | 61,400                                         | 9,300                                          | 55                    | 240                   | 140                        | 620                            | 350                          | 1560                            | 600                            | 2670                            |
| 3MM9117WI                                                     | 1.99                                 | 0.901                                     | 12,500                                    | 55,600                                       | 14,200                                    | 63,200                                         | 8,700                                          | 60                    | 270                   | 150                        | 670                            | 375                          | 1670                            | 650                            | 2890                            |
| 3MM9118WI                                                     | 2.58                                 | 1.170                                     | 14,800                                    | 65,800                                       | 16,900                                    | 75,200                                         | 8,300                                          | 65                    | 270                   | 170                        | 760                            | 400                          | 1780                            | 750                            | 3340                            |
| 3MM9119WI                                                     | 2.69                                 | 1.222                                     | 15,600                                    | 69,400                                       | 17,400                                    | 77,400                                         | 7,800                                          | 65                    | 290                   | 185                        | 820                            | 445                          | 1980                            | 775                            | 3450                            |
| 3MM9120WI                                                     | 2.86                                 | 1.299                                     | 16,500                                    | 73,400                                       | 17,800                                    | 79,200                                         | 7,500                                          | 75                    | 330                   | 190                        | 850                            | 450                          | 2000                            | 800                            | 3560                            |
| 3MM9121WI                                                     | 3.57                                 | 1.617                                     | 19,000                                    | 84,500                                       | 20,700                                    | 92,100                                         | 7,100                                          | 80                    | 360                   | 215                        | 960                            | 460                          | 2050                            | 920                            | 4090                            |
| 3MM9122WI                                                     | 4.50                                 | 2.043                                     | 21,900                                    | 97,400                                       | 23,200                                    | 103,200                                        | 6,800                                          | 90                    | 400                   | 250                        | 1110                           | 600                          | 2670                            | 1100                           | 4890                            |
| 3MM9124WI                                                     | 4.81                                 | 2.180                                     | 23,200                                    | 103,200                                      | 23,600                                    | 105,000                                        | 6,200                                          | 100                   | 440                   | 275                        | 1220                           | 650                          | 2890                            | 1150                           | 5120                            |
| 3MM9126WI                                                     | 7.21                                 | 3.273                                     | 29,200                                    | 129,900                                      | 30,500                                    | 135,700                                        | 5,800                                          | 115                   | 510                   | 340                        | 1510                           | 825                          | 3670                            | 1500                           | 6670                            |
| 3MM9128WI                                                     | 7.62                                 | 3.454                                     | 30,900                                    | 137,400                                      | 31,100                                    | 138,300                                        | 5,300                                          | 130                   | 580                   | 350                        | 1560                           | 875                          | 3890                            | 1550                           | 6890                            |
| 3MM9130WI                                                     | 9.26                                 | 4.200                                     | 35,800                                    | 159,200                                      | 35,500                                    | 157,900                                        | 5,000                                          | 145                   | 640                   | 400                        | 1780                           | 1000                         | 4450                            | 1800                           | 8010                            |
| 3MM9132WI                                                     | 11.44                                | 5.188                                     | 41,100                                    | 182,800                                      | 40,300                                    | 179,300                                        | 4,700                                          | 170                   | 760                   | 500                        | 2220                           | 1200                         | 5340                            | 2000                           | 8900                            |
| 3MM9134WI                                                     | 15.43                                | 6.999                                     | 52,300                                    | 232,600                                      | 49,700                                    | 221,100                                        | 4,400                                          | 210                   | 930                   | 625                        | 2780                           | 1300                         | 5780                            | 2600                           | 11560                           |
| 3MM9136WI                                                     | 20.40                                | 9.250                                     | 59,000                                    | 262,400                                      | 55,000                                    | 244,400                                        | 4,200                                          | 230                   | 1020                  | 700                        | 3110                           | 1400                         | 6230                            | 2800                           | 12460                           |
| 3MM9140WI                                                     | 26.78                                | 12.148                                    | 72,200                                    | 321,100                                      | 63,200                                    | 281,100                                        | 3,700                                          | 280                   | 1250                  | 850                        | 3780                           | 2000                         | 8900                            | 3600                           | 16010                           |

<sup>\*</sup> Limits shown for a single row, spring preloaded and grease lubricated bearing.

<sup>\*\*</sup> All ceramic hybrid bearing preloads are equivalent to the table above.













## **Extra-Light** 3MM9100WI Series

### **Superprecision Bearings**

FTF Fundamental Train Frequency: The frequency at which the retainer will operate.

Ball Spin Frequency: The frequency at which a single defect on a rolling element will be detected.

**BPFO** Ball Pass Frequency Outer: The frequency at which a single defect in the outer race will be detected.

**BPFI** Ball Pass Frequency Inner: The frequency at which a single defect in the inner race will be detected.

## **FREQUENCY COEFFICIENTS**

| Bearing<br>Number | FTF                                                | BSF                    | BPFO                         | BPFI                         | FTF                                                |
|-------------------|----------------------------------------------------|------------------------|------------------------------|------------------------------|----------------------------------------------------|
|                   | Fundamental Train<br>Frequency<br>(Inner Rotation) | Ball Spin<br>Frequency | Ball Pass Frequency<br>Outer | Ball Pass Frequency<br>Inner | Fundamental Train<br>Frequency<br>(Outer Rotation) |
| 3MM9100WI         | 0.3740                                             | 1.7697                 | 2.9924                       | 5.0076                       | 0.6260                                             |
| 3MM9101WI         | 0.3957                                             | 2.0724                 | 3.9569                       | 6.0431                       | 0.6043                                             |
| 3MM9102WI         | 0.4084                                             | 2.3844                 | 4.4924                       | 6.5076                       | 0.5916                                             |
| 3MM9103WI         | 0.4170                                             | 2.6493                 | 4.5875                       | 6.4125                       | 0.5830                                             |
| 3MM9104WI         | 0.4074                                             | 2.3573                 | 4.4816                       | 6.5184                       | 0.5926                                             |
| 3MM9105WI         | 0.4203                                             | 2.7625                 | 5.4635                       | 7.5365                       | 0.5797                                             |
| 3MM9106WI         | 0.4243                                             | 2.9475                 | 5.9467                       | 8.0533                       | 0.5752                                             |
| 3MM9107WI         | 0.4258                                             | 2.9877                 | 6.3864                       | 8.6136                       | 0.5742                                             |
| 3MM9108WI         | 0.4333                                             | 3.3411                 | 6.9332                       | 9.0668                       | 0.5667                                             |
| 3MM9109WI         | 0.4340                                             | 3.3761                 | 7.3782                       | 9.6218                       | 0.5660                                             |
| 3MM9110WI         | 0.4391                                             | 3.6669                 | 7.9036                       | 10.0964                      | 0.5609                                             |
| 3MM9111WI         | 0.4354                                             | 3.4544                 | 7.8373                       | 10.1627                      | 0.5646                                             |
| 3MM9112WI         | 0.4396                                             | 3.7005                 | 8.3519                       | 10.6481                      | 0.5604                                             |
| 3MM9113WI         | 0.4432                                             | 3.9461                 | 8.8647                       | 11.1353                      | 0.5568                                             |
| 3MM9114WI         | 0.4400                                             | 3.7251                 | 8.3599                       | 10.6401                      | 0.5600                                             |
| 3MM9115WI         | 0.4432                                             | 3.9379                 | 8.8630                       | 11.1370                      | 0.5568                                             |
| 3MM9116WI         | 0.4404                                             | 3.7441                 | 8.8074                       | 11.1926                      | 0.5596                                             |
| 3MM9117WI         | 0.4433                                             | 3.9400                 | 9.3085                       | 11.6915                      | 0.5567                                             |
| 3MM9118WI         | 0.4405                                             | 3.7587                 | 8.8101                       | 11.1899                      | 0.5595                                             |
| 3MM9119WI         | 0.4430                                             | 3.9267                 | 9.3026                       | 11.6974                      | 0.5570                                             |
| 3MM9120WI         | 0.4453                                             | 4.0945                 | 9.7958                       | 12.2042                      | 0.5547                                             |
| 3MM9121WI         | 0.4430                                             | 3.9235                 | 9.3021                       | 11.6979                      | 0.5570                                             |
| 3MM9122WI         | 0.4434                                             | 3.9573                 | 9.7557                       | 12.2443                      | 0.5566                                             |
| 3MM9124WI         | 0.4472                                             | 4.2479                 | 10.2861                      | 12.7139                      | 0.5528                                             |
| 3MM9126WI         | 0.4433                                             | 3.9462                 | 9.3096                       | 11.6904                      | 0.5567                                             |
| 3MM9128WI         | 0.4466                                             | 4.1914                 | 9.8241                       | 12.1759                      | 0.5534                                             |
| 3MM9130WI         | 0.4463                                             | 4.1705                 | 9.8186                       | 12.1814                      | 0.5537                                             |
| 3MM9132WI         | 0.4461                                             | 4.1515                 | 9.8135                       | 12.1865                      | 0.5539                                             |
| 3MM9134WI         | 0.4431                                             | 3.9318                 | 9.7492                       | 12.2508                      | 0.5569                                             |
| 3MM9136WI         | 0.4406                                             | 3.7588                 | 8.8114                       | 11.1886                      | 0.5594                                             |
| 3MM9140WI         | 0.4408                                             | 3.7719                 | 8.8164                       | 11.1836                      | 0.5592                                             |











## Extra-Light 9100WI Series

## PERMISSIBLE OPERATING SPEEDS – RPM 2MM & 3MM Superprecision Angular Contact Spindle Bearings

|                            |                | GREASE                           |                |                           |                               |                             |                              |                | OIL                              |                |
|----------------------------|----------------|----------------------------------|----------------|---------------------------|-------------------------------|-----------------------------|------------------------------|----------------|----------------------------------|----------------|
| 15 Degree<br>Contact Angle | (DUL)<br>Light | "DB" Mounting<br>(DUM)<br>Medium | (DUH)<br>Heavy | Grease<br>25 %<br>(grams) | e Capacity<br>40 %<br>(grams) | High Spe<br>15 %<br>(grams) | ed Grease<br>20 %<br>(grams) | (DUL)<br>Light | "DB" Mounting<br>(DUM)<br>Medium | (DUH)<br>Heavy |
|                            |                |                                  |                |                           |                               | 1                           |                              |                |                                  |                |
| 2MM9100WI                  | 54,800         | 41,100                           | 27,400         | 0.2                       | 0.4                           | 0.15                        | 0.20                         | 93,200         | 69,900                           | 46,600         |
| 2MM9101WI                  | 45,800         | 34,400                           | 22,900         | 0.3                       | 0.4                           | 0.17                        | 0.22                         | 77,900         | 58,500                           | 38,900         |
| 2MM9102WI                  | 38,900         | 29,200                           | 19,400         | 0.3                       | 0.5                           | 0.22                        | 0.29                         | 66,100         | 49,600                           | 33,000         |
| 2MM9103WI                  | 34,500         | 25,900                           | 17,200         | 0.4                       | 0.7                           | 0.28                        | 0.37                         | 58,700         | 44,000                           | 29,200         |
| 2MM9104WI                  | 29,700         | 22,300                           | 14,800         | 0.7                       | 1.2                           | 0.50                        | 0.66                         | 50,500         | 37,900                           | 25,200         |
| 2MM9105WI                  | 24,700         | 18,500                           | 12,400         | 0.9                       | 1.4                           | 0.59                        | 0.78                         | 42,000         | 31,500                           | 21,100         |
| 2MM9106WI                  | 20,400         | 15,300                           | 10,200         | 1.3                       | 2.0                           | 0.84                        | 1.12                         | 34,700         | 26,000                           | 17,300         |
| 2MM9107WI                  | 18,100         | 13,600                           | 9,000          | 1.6                       | 2.6                           | 1.09                        | 1.46                         | 30,800         | 23,100                           | 15,300         |
| 2MM9108WI                  | 15,900         | 11,900                           | 8,000          | 2.0                       | 3.2                           | 1.35                        | 1.80                         | 27,000         | 20,200                           | 13,600         |
| 2MM9109WI                  | 14,300         | 10,000                           | 7,200          | 2.5                       | 4.0                           | 1.68                        | 2.24                         | 24,300         | 18,200                           | 12,200         |
| 2MM9110WI                  | 13,000         | 9,800                            | 6,500          | 2.8                       | 4.4                           | 1.9                         | 2.5                          | 22,100         | 16,700                           | 11,100         |
| 2MM9111WI                  | 11,800         | 8,800                            | 5,900          | 4.0                       | 6.4                           | 2.7                         | 3.5                          | 20,100         | 15,000                           | 10,000         |
| 2MM9112WI                  | 10,900         | 8,200                            | 5,400          | 4.2                       | 6.8                           | 2.8                         | 3.8                          | 18,500         | 13,900                           | 9,200          |
| 2MM9113WI                  | 10,200         | 7,600                            | 5,100          | 4.5                       | 7.2                           | 3.0                         | 4.0                          | 17,300         | 12,900                           | 8,700          |
| 2MM9114WI                  | 9,400          | 7,000                            | 4,700          | 6.3                       | 10.0                          | 4.2                         | 5.6                          | 16,000         | 11,900                           | 8,000          |
| 2MM9115WI                  | 8,800          | 6,600                            | 4,400          | 6.6                       | 10.6                          | 4.4                         | 5.9                          | 15,000         | 11,200                           | 7,500          |
| 2MM9116WI                  | 8,200          | 6,200                            | 4,100          | 8.6                       | 13.8                          | 5.8                         | 7.7                          | 13,900         | 10,500                           | 7,000          |
| 2MM9117WI                  | 7,800          | 5,800                            | 3,900          | 9.1                       | 14.5                          | 6.0                         | 8.1                          | 13,300         | 9,900                            | 6,600          |
| 2MM9118WI                  | 7,400          | 5,500                            | 3,700          | 11.7                      | 18.8                          | 7.8                         | 10.4                         | 12,600         | 9,400                            | 6,300          |
| 2MM9119WI                  | 7,000          | 5,200                            | 3,500          | 12.2                      | 19.5                          | 8.1                         | 10.9                         | 11,900         | 8,800                            | 6,000          |
| 2MM9120WI                  | 6,600          | 5,000                            | 3,300          | 12.1                      | 19.4                          | 8.1                         | 10.8                         | 11,200         | 8,500                            | 5,600          |
| 2MM9121WI                  | 6,300          | 4,700                            | 3,200          | 15.9                      | 25.4                          | 10.6                        | 14.1                         | 10,700         | 8,000                            | 5,400          |
| 2MM9122WI                  | 6,000          | 4,500                            | 3,000          | 18.9                      | 30.2                          | 12.6                        | 16.8                         | 10,200         | 7,700                            | 5,100          |
| 2MM9124WI                  | 5,500          | 4,100                            | 2,800          | 20.5                      | 32.8                          | 13.7                        | 18.2                         | 9,400          | 7,000                            | 4,800          |
| 2MM9126WI                  | 5,100          | 3,800                            | 2,600          | 31.7                      | 50.7                          | 21.1                        | 28.2                         | 8,700          | 6,500                            | 4,400          |
| 2MM9128WI                  | 4,700          | 3,500                            | 2,400          | 33.8                      | 54.0                          | 22.5                        | 30.1                         | 8,000          | 6,000                            | 4,100          |
| 2MM9130WI                  | 4,500          | 3,400                            | 2,200          | 41.1                      | 65.7                          | 27.4                        | 36.5                         | 7,700          | 5,800                            | 3,700          |
| 2MM9132WI                  | 4,200          | 3,100                            | 2,100          | 51.0                      | 81.6                          | 34.1                        | 45.4                         | 7,100          | 5,300                            | 3,600          |
| 2MM9134WI                  | 3,900          | 2,900                            | 2,000          | 66.3                      | 106.0                         | 44.2                        | 59.0                         | 6,600          | 4,900                            | 3,400          |
| 2MM9136WI                  | 3,700          | 2,800                            | 1,800          | 88.4                      | 141.5                         | 59.0                        | 78.7                         | 6,200          | 4,700                            | 3,100          |
| 2MM9140WI                  | 3,300          | 2,500                            | 1,600          | 121.0                     | 193.5                         | 80.7                        | 107.6                        | 5,600          | 4,300                            | 2,700          |

Notes: For 3MM (25 Degree Contact Angle) Spindle Bearings, use 90% of the Permissible Operating Speeds above.

<sup>\*</sup> For 2MMC and 3MMC Spindle Bearings, use 120% of the Permissible Operating Speeds.

For other bearing configurations beside a back-to-back mounted duplex set, please refer to page E36 to calculate the permissible operating speed (Sp.).











## Axial Stiffness 9100WI Series (For Duplex Set\*)

## 2MM9100WI SERIES

## 3MM9100WI SERIES

| Bore # | X-Light<br>(10 <sup>6</sup> LB/IN.) | Light<br>(10 <sup>6</sup> LB/IN.) | Medium<br>(10 <sup>6</sup> LB/IN.) | Heavy<br>(10 <sup>6</sup> LB/IN.) | Bore # | X-Light<br>(10 <sup>6</sup> LB/IN.) | Light<br>(10 <sup>6</sup> LB/IN.) | Medium<br>(10 <sup>6</sup> LB/IN.) | Heavy<br>(10 <sup>6</sup> LB/IN.) |
|--------|-------------------------------------|-----------------------------------|------------------------------------|-----------------------------------|--------|-------------------------------------|-----------------------------------|------------------------------------|-----------------------------------|
| 00     | 0.808                               | 0.939                             | 0.123                              | 0.163                             | 00     | 0.123                               | 0.142                             | 0.182                              | 0.236                             |
| 01     | 0.108                               | 0.131                             | 0.172                              | 0.230                             | 01     | 0.164                               | 0.197                             | 0.253                              | 0.329                             |
| 02     | 0.115                               | 0.139                             | 0.215                              | 0.290                             | 02     | 0.175                               | 0.209                             | 0.313                              | 0.409                             |
| 03     | 0.115                               | 0.139                             | 0.243                              | 0.311                             | 03     | 0.175                               | 0.210                             | 0.349                              | 0.435                             |
| 04     | 0.012                               | 0.159                             | 0.213                              | 0.290                             | 04     | 0.231                               | 0.295                             | 0.379                              | 0.492                             |
| 05     | 0.161                               | 0.176                             | 0.258                              | 0.384                             | 05     | 0.303                               | 0.328                             | 0.457                              | 0.638                             |
| 06     | 0.173                               | 0.204                             | 0.274                              | 0.420                             | 06     | 0.346                               | 0.400                             | 0.514                              | 0.728                             |
| 07     | 0.194                               | 0.246                             | 0.364                              | 0.479                             | 07     | 0.393                               | 0.485                             | 0.678                              | 0.848                             |
| 80     | 0.221                               | 0.255                             | 0.377                              | 0.521                             | 08     | 0.446                               | 0.506                             | 0.706                              | 0.919                             |
| 09     | 0.240                               | 0.310                             | 0.418                              | 0.590                             | 09     | 0.503                               | 0.629                             | 0.809                              | 1.068                             |
| 10     | 0.261                               | 0.320                             | 0.431                              | 0.664                             | 10     | 0.628                               | 0.812                             | 1.187                              | 1.433                             |
| 11     | 0.303                               | 0.358                             | 0.493                              | 0.676                             | 11     | 0.688                               | 0.935                             | 1.287                              | 1.595                             |
| 12     | 0.323                               | 0.390                             | 0.508                              | 0.799                             | 12     | 0.743                               | 0.991                             | 1.402                              | 1.702                             |
| 13     | 0.344                               | 0.441                             | 0.594                              | 0.820                             | 13     | 0.804                               | 1.023                             | 1.446                              | 1.808                             |
| 14     | 0.357                               | 0.477                             | 0.652                              | 0.899                             | 14     | 0.848                               | 1.130                             | 1.595                              | 2.015                             |
| 15     | 0.382                               | 0.491                             | 0.671                              | 0.967                             | 15     | 0.910                               | 1.209                             | 1.708                              | 2.123                             |
| 16     | 0.408                               | 0.531                             | 0.732                              | 1.084                             | 16     | 0.975                               | 1.373                             | 1.939                              | 2.402                             |
| 17     | 0.429                               | 0.577                             | 0.806                              | 1.150                             | 17     | 1.039                               | 1.452                             | 2.052                              | 2.554                             |
| 18     | 0.424                               | 0.606                             | 0.817                              | 1.130                             | 18     | 1.052                               | 1.502                             | 2.071                              | 2.659                             |
| 19     | 0.453                               | 0.648                             | 0.876                              | 1.221                             | 19     | 1.109                               | 1.597                             | 2.224                              | 2.774                             |
| 20     | 0.485                               | 0.703                             | 0.952                              | 1.257                             | 20     | 1.184                               | 1.661                             | 2.298                              | 2.888                             |
| 21     | 0.510                               | 0.730                             | 0.993                              | 1.375                             | 21     | 1.243                               | 1.763                             | 2.342                              | 3.075                             |
| 22     | 0.545                               | 0.790                             | 1.065                              | 1.471                             | 22     | 1.330                               | 1.932                             | 2.684                              | 3.412                             |
| 24     | 0.588                               | 0.865                             | 1.170                              | 1.565                             | 24     | 1.437                               | 2.058                             | 2.845                              | 3.568                             |
| 26     | 0.601                               | 0.884                             | 1.192                              | 1.674                             | 26     | 1.481                               | 2.183                             | 3.048                              | 3.866                             |
| 28     | 0.646                               | 0.954                             | 1.290                              | 1.764                             | 28     | 1.585                               | 2.273                             | 3.208                              | 4.028                             |
| 30     | 0.703                               | 1.017                             | 1.433                              | 1.898                             | 30     | 1.699                               | 2.448                             | 3.454                              | 4.361                             |
| 32     | 0.744                               | 1.111                             | 1.500                              | 2.078                             | 32     | 1.827                               | 2.691                             | 3.745                              | 4.588                             |
| 34     | 0.809                               | 1.234                             | 1.667                              | 2.309                             | 34     | 2.055                               | 3.036                             | 3.995                              | 5.251                             |
| 36     | 0.819                               | 1.198                             | 1.616                              | 2.233                             | 36     | 2.050                               | 3.052                             | 3.956                              | 5.196                             |
| 40     | 0.972                               | 1.375                             | 1.853                              | 2.561                             | 40     | 2.262                               | 3.366                             | 4.644                              | 5.864                             |

<sup>\*</sup> DB (back-to-back) or DF (face-to-face) arrangement only; For other mounting arrangements, contact the Torrington Engineering Department.











## Radial Stiffness 9100WI Series (For Duplex Set\*)

### 2MM9100WI SERIES

### 3MM9100WI SERIES

| 1100111 | OLIVILO                           |                                    |                                   | 311111310011 | OLIVILO                           |                                    |                                   |
|---------|-----------------------------------|------------------------------------|-----------------------------------|--------------|-----------------------------------|------------------------------------|-----------------------------------|
| Bore #  | Light<br>(10 <sup>6</sup> LB/IN.) | Medium<br>(10 <sup>6</sup> LB/IN.) | Heavy<br>(10 <sup>6</sup> LB/IN.) | Bore #       | Light<br>(10 <sup>6</sup> LB/IN.) | Medium<br>(10 <sup>6</sup> LB/IN.) | Heavy<br>(10 <sup>6</sup> LB/IN.) |
| 00      | 0.3754                            | 0.4790                             | 0.6020                            | 00           | 0.3626                            | 0.4597                             | 0.5767                            |
| 01      | 0.5209                            | 0.6592                             | 0.8255                            | 01           | 0.5333                            | 0.6709                             | 0.8374                            |
| 02      | 0.5539                            | 0.8028                             | 1.0017                            | 02           | 0.5680                            | 0.7154                             | 0.8939                            |
| 03      | 0.5540                            | 0.8809                             | 1.0512                            | 03           | 0.6509                            | 0.8569                             | 0.9589                            |
| 04      | 0.8278                            | 1.0441                             | 1.3041                            | 04           | 0.7882                            | 0.9912                             | 1.2121                            |
| 05      | 0.9229                            | 1.2568                             | 1.6608                            | 05           | 0.8801                            | 1.1930                             | 1.4395                            |
| 06      | 1.1599                            | 1.4649                             | 1.9641                            | 06           | 1.1170                            | 1.4427                             | 1.7551                            |
| 07      | 1.3877                            | 1.8841                             | 2.2724                            | 07           | 1.2722                            | 1.6754                             | 2.0918                            |
| 08      | 1.4473                            | 1.9681                             | 2.4551                            | 08           | 1.3894                            | 1.8814                             | 2.2285                            |
| 09      | 1.7883                            | 2.2539                             | 2.8499                            | 09           | 1.6065                            | 2.1765                             | 2.6070                            |
| 10      | 1.8566                            | 2.3423                             | 3.1380                            | 10           | 1.7232                            | 2.3994                             | 2.7864                            |
| 11      | 2.0492                            | 2.6558                             | 3.3225                            | 11           | 2.0264                            | 2.6839                             | 3.1895                            |
| 12      | 2.2246                            | 2.7537                             | 3.7753                            | 12           | 2.1466                            | 2.9068                             | 3.3944                            |
| 13      | 2.4856                            | 3.1325                             | 3.9105                            | 13           | 2.2203                            | 3.0095                             | 3.5989                            |
| 14      | 2.6839                            | 3.4307                             | 4.2828                            | 14           | 2.4192                            | 3.2798                             | 3.9577                            |
| 15      | 2.7754                            | 3.5512                             | 4.5710                            | 15           | 2.5851                            | 3.5019                             | 4.1696                            |
| 16      | 3.0301                            | 3.9221                             | 5.1481                            | 16           | 2.9056                            | 3.9372                             | 4.6774                            |
| 17      | 3.2774                            | 4.2628                             | 5.4399                            | 17           | 3.0720                            | 4.1611                             | 4.9599                            |
| 18      | 3.5589                            | 4.4902                             | 5.6092                            | 18           | 3.2347                            | 4.2995                             | 5.2579                            |
| 19      | 3.7973                            | 4.7869                             | 5.9979                            | 19           | 3.4382                            | 4.5999                             | 5.4929                            |
| 20      | 4.0905                            | 5.1492                             | 6.2139                            | 20           | 3.5775                            | 4.7639                             | 5.7276                            |
| 21      | 4.2128                            | 5.3415                             | 6.6668                            | 21           | 3.7315                            | 4.8099                             | 6.0097                            |
| 22      | 4.5288                            | 5.7138                             | 7.1380                            | 22           | 4.1088                            | 5.4970                             | 6.6740                            |
| 24      | 4.9166                            | 6.1909                             | 7.5465                            | 24           | 4.3708                            | 5.8135                             | 6.9773                            |
| 26      | 5.1327                            | 6.4744                             | 8.1656                            | 26           | 4.6588                            | 6.2531                             | 7.5702                            |
| 28      | 5.5106                            | 6.9421                             | 8.5876                            | 28           | 4.8513                            | 6.5769                             | 7.8963                            |
| 30      | 5.8567                            | 7.6158                             | 9.2186                            | 30           | 5.1953                            | 7.0453                             | 8.5025                            |
| 32      | 6.3811                            | 8.0375                             | 10.0299                           | 32           | 5.7275                            | 7.6534                             | 9.0115                            |
| 34      | 7.2290                            | 9.1064                             | 11.3637                           | 34           | 6.4240                            | 8.1980                             | 10.2407                           |
| 36      | 7.0951                            | 8.9538                             | 11.1864                           | 36           | 6.4927                            | 8.1819                             | 10.2263                           |
| 40      | 7.9862                            | 10.0685                            | 12.5714                           | 40           | 7.1552                            | 9.5082                             | 11.4776                           |

<sup>\*</sup> DB (back-to-back) or DF (face-to-face) arrangement only; For other mounting arrangements, contact the Torrington Engineering Department.













## Spacer Offsets 9100WI Series (For Duplex Set\*)

#### 2MM9100WI SERIES

#### 3MM9100WI SERIES

| Bore # | X-Light to<br>Light | Light to<br>Medium | Medium to<br>Heavy | Bore # | X-Light to<br>Light | Light to<br>Medium | Medium to<br>Heavy |
|--------|---------------------|--------------------|--------------------|--------|---------------------|--------------------|--------------------|
|        | (IN.)               | (IN.)              | (IN.)              |        | (IN.)               | (IN.)              | (IN.)              |
| 00     | 0.00005             | 0.00011            | 0.00017            | 00     | 0.00003             | 0.00007            | 0.00011            |
| 01     | 0.00007             | 0.00013            | 0.00020            | 01     | 0.00004             | 0.00009            | 0.00014            |
| 02     | 0.00006             | 0.00023            | 0.00024            | 02     | 0.00004             | 0.00015            | 0.00017            |
| 03     | 0.00006             | 0.00031            | 0.00022            | 03     | 0.00004             | 0.00021            | 0.00015            |
| 04     | 0.00014             | 0.00021            | 0.00032            | 04     | 0.00008             | 0.00012            | 0.00018            |
| 05     | 0.00005             | 0.00028            | 0.00044            | 05     | 0.00003             | 0.00015            | 0.00025            |
| 06     | 0.00011             | 0.00025            | 0.00052            | 06     | 0.00005             | 0.00013            | 0.00029            |
| 07     | 0.00016             | 0.00039            | 0.00038            | 07     | 0.00008             | 0.00021            | 0.00021            |
| 08     | 0.00010             | 0.00038            | 0.00045            | 08     | 0.00005             | 0.00020            | 0.00025            |
| 09     | 0.00020             | 0.00033            | 0.00052            | 09     | 0.00010             | 0.00017            | 0.00028            |
| 10     | 0.00017             | 0.00032            | 0.00066            | 10     | 0.00015             | 0.00038            | 0.00027            |
| 11     | 0.00015             | 0.00038            | 0.00051            | 11     | 0.00021             | 0.00036            | 0.00035            |
| 12     | 0.00017             | 0.00031            | 0.00077            | 12     | 0.00021             | 0.00040            | 0.00032            |
| 13     | 0.00023             | 0.00039            | 0.00057            | 13     | 0.00017             | 0.00039            | 0.00037            |
| 14     | 0.00030             | 0.00046            | 0.00065            | 14     | 0.00022             | 0.00044            | 0.00044            |
| 15     | 0.00026             | 0.00045            | 0.00073            | 15     | 0.00023             | 0.00045            | 0.00042            |
| 16     | 0.00029             | 0.00051            | 0.00088            | 16     | 0.00029             | 0.00050            | 0.00046            |
| 17     | 0.00033             | 0.00055            | 0.00082            | 17     | 0.00029             | 0.00051            | 0.00048            |
| 18     | 0.00046             | 0.00056            | 0.00082            | 18     | 0.00033             | 0.00051            | 0.00059            |
| 19     | 0.00047             | 0.00058            | 0.00086            | 19     | 0.00035             | 0.00054            | 0.00053            |
| 20     | 0.00050             | 0.00060            | 0.00072            | 20     | 0.00032             | 0.00052            | 0.00054            |
| 21     | 0.00051             | 0.00065            | 0.00093            | 21     | 0.00035             | 0.00048            | 0.00068            |
| 22     | 0.00054             | 0.00065            | 0.00095            | 22     | 0.00039             | 0.00060            | 0.00066            |
| 24     | 0.00059             | 0.00069            | 0.00088            | 24     | 0.00040             | 0.00061            | 0.00062            |
| 26     | 0.00067             | 0.00077            | 0.00119            | 26     | 0.00049             | 0.00074            | 0.00078            |
| 28     | 0.00070             | 0.00080            | 0.00111            | 28     | 0.00046             | 0.00076            | 0.00075            |
| 30     | 0.00070             | 0.00098            | 0.00108            | 30     | 0.00049             | 0.00081            | 0.00082            |
| 32     | 0.00082             | 0.00092            | 0.00134            | 32     | 0.00058             | 0.00087            | 0.00077            |
| 34     | 0.00096             | 0.00103            | 0.00151            | 34     | 0.00065             | 0.00077            | 0.00112            |
| 36     | 0.00095             | 0.00111            | 0.00162            | 36     | 0.00073             | 0.00080            | 0.00122            |
| 40     | 0.00099             | 0.00124            | 0.00181            | 40     | 0.00080             | 0.00114            | 0.00122            |

<sup>\*</sup> DB (back-to-back) or DF (face-to-face) arrangement only; For other mounting arrangements, contact the Torrington Engineering Department.





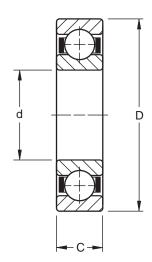






## Extra-Light MM9100K Series Deep Groove Conrad

#### Superprecision MM:


Superprecision bearings are manufactured to a ABEC-7 (ISO P4) tolerance class.

#### K Construction:

This design incorporates two full shoulders on both the inner and outer rings. The complement of balls are separated by a two-piece cage.

To specify a ceramic hybrid bearing, add "C" to the part number, after the prefix that specifies precision type.





## DIMENSIONS - TOLERANCES All inch tolerance in .0001 units

| Bearing<br>Number                                   |                                                | В                           | Sore                                   |                                               |                                                |                                 | tside<br>meter                  |                                              |                                                | W                          | idth (                           |                                               |                                           | imum<br>Radius                  |                            | Ball<br>plement                                                                  |
|-----------------------------------------------------|------------------------------------------------|-----------------------------|----------------------------------------|-----------------------------------------------|------------------------------------------------|---------------------------------|---------------------------------|----------------------------------------------|------------------------------------------------|----------------------------|----------------------------------|-----------------------------------------------|-------------------------------------------|---------------------------------|----------------------------|----------------------------------------------------------------------------------|
|                                                     |                                                |                             | +.(                                    | erance<br>0000"<br><mark>0</mark> µm<br>minus |                                                |                                 | +.0                             | rance<br>1000"<br>D <mark>µm</mark><br>ninus |                                                |                            | +.0                              | erance<br>1000"<br>O <mark>µm</mark><br>ninus |                                           | g Corner<br>Elear **            |                            |                                                                                  |
|                                                     | in.                                            | mm                          | in.                                    | μ <b>m</b>                                    | in.                                            | mm                              | in.                             | μ <b>m</b>                                   | in.                                            | mm                         | in.                              | μ <b>m</b>                                    | in.                                       | mm                              | Qty.                       | (Dia.)in.                                                                        |
| MM9101K<br>MM9103K<br>MM9104K<br>MM9105K<br>MM9106K | 0.4724<br>0.6693<br>0.7874<br>0.9843<br>1.1811 | 12<br>17<br>20<br>25<br>30  | 1.5<br>1.5<br>2.0<br>2.0<br>2.0        | 4<br>4<br>5<br>5                              | 1.1024<br>1.3780<br>1.6535<br>1.8504<br>2.1654 | 28<br>35<br>42<br>47<br>55      | 2.0<br>2.5<br>2.5<br>2.5<br>3.0 | 5<br>6<br>6<br>6<br>7                        | 0.3150<br>0.3937<br>0.4724<br>0.4724<br>0.5118 | 8<br>10<br>12<br>12<br>13  | 31<br>31<br>47<br>47<br>47       | 80<br>80<br>120<br>120<br>120                 | 0.012<br>0.012<br>0.024<br>0.024<br>0.039 | 0.3<br>0.3<br>0.6<br>0.6<br>1.0 | 8<br>10<br>8<br>10<br>11   | 3/16<br>3/16<br>1/4<br>1/4<br>9/32                                               |
| MM9107K<br>MM9108K<br>MM9109K<br>MM9110K<br>MM9111K | 1.3780<br>1.5748<br>1.7717<br>1.9685<br>2.1654 | 35<br>40<br>45<br>50<br>55  | 2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>3.0 | 6<br>6<br>6<br>6<br>7                         | 2.4409<br>2.6772<br>2.9528<br>3.1496<br>3.5433 | 62<br>68<br>75<br>80<br>90      | 3.0<br>3.0<br>3.0<br>3.0<br>3.0 | 7<br>7<br>7<br>7<br>7<br>8                   | 0.5512<br>0.5906<br>0.6299<br>0.6299<br>0.7087 | 14<br>15<br>16<br>16<br>18 | 47<br>47<br>47<br>47<br>47<br>59 | 120<br>120<br>120<br>120<br>120               | 0.039<br>0.039<br>0.039<br>0.039<br>0.039 | 1.0<br>1.0<br>1.0<br>1.0        | 11<br>12<br>13<br>14<br>13 | 5/16<br>5/16<br>11/32<br>11/32<br>13/32                                          |
| MM9112K<br>MM9113K<br>MM9114K                       | 2.3622<br>2.5591<br>2.7559                     | 60<br>65<br>70              | 3.0<br>3.0<br>3.0                      | 7<br>7<br>7                                   | 3.7402<br>3.9370<br>4.3307                     | 95<br>100<br>110                | 3.0<br>3.0<br>3.0               | 8<br>8<br>8                                  | 0.7087<br>0.7087<br>0.7874                     | 18<br>18<br>20             | 59<br>59<br>59                   | 150<br>150<br>150                             | 0.039<br>0.039<br>0.039                   | 1.0<br>1.0<br>1.0               | 14<br>15<br>14             | 13/32<br>13/32<br>15/32                                                          |
| MM9115K<br>MM9116K<br>MM9117K<br>MM9118K<br>MM9120K | 2.9528<br>3.1496<br>3.3465<br>3.5433<br>3.9370 | 75<br>80<br>85<br>90<br>100 | 3.0<br>3.0<br>3.0<br>3.0<br>3.0        | 7<br>7<br>8<br>8<br>8                         | 4.5276<br>4.9213<br>5.1181<br>5.5118<br>5.9055 | 115<br>125<br>130<br>140<br>150 | 3.0<br>3.5<br>3.5<br>3.5<br>3.5 | 8<br>9<br>9<br>9                             | 0.7874<br>0.8661<br>0.8661<br>0.9449<br>0.9449 | 20<br>22<br>22<br>24<br>24 | 59<br>59<br>79<br>79<br>79       | 150<br>150<br>200<br>200<br>200               | 0.039<br>0.039<br>0.039<br>0.059<br>0.059 | 1.0<br>1.0<br>1.0<br>1.5<br>1.5 | 15<br>14<br>15<br>14<br>15 | 15/ <sub>32</sub><br>17/ <sub>32</sub><br>17/ <sub>32</sub><br>19/ <sub>32</sub> |
| MM9122K<br>MM9124K<br>MM9126K                       | 4.3307<br>4.7244<br>5.1181                     | 110<br>120<br>130           | 3.0<br>3.0<br>4.0                      | 8<br>8<br>10                                  | 6.6929<br>7.0866<br>7.8740                     | 170<br>180<br>200               | 4.0<br>4.0<br>4.5               | 10<br>10<br>11                               | 1.1024<br>1.1024<br>1.2992                     | 28<br>28<br>33             | 79<br>79<br>98                   | 200<br>200<br>250                             | 0.079<br>0.079<br>0.079                   | 2.0<br>2.0<br>2.0               | 14<br>15<br>14             | 11/16<br>11/16<br>13/16                                                          |

For standard, non-preloaded applications, do not exceed 350,000 dN.

<sup>\*\*</sup> ABMA std. 20  $(r_{as max})$ .













## **Extra-Light** MM9100K Series **Deep Groove Conrad**

## RADIAL LOAD RATING AT 33 1/3 RPM Based on 1500 hours $L_{10}$ Life and Permissible Speed

#### PHYSICAL CHARACTERISTICS - LOAD RATINGS

| Bearing<br>Number |      | ight<br>earing | 1      | Static<br>d Rating | Dyr<br>Load | ended<br>aamic<br>Ratings | Permissible<br>Speed<br>Ng * |
|-------------------|------|----------------|--------|--------------------|-------------|---------------------------|------------------------------|
|                   | lbs  | kg             | lbs    | C <sub>o</sub> N   | lbs         | C <sub>e</sub><br>N       | RPM                          |
| MM9101K           | 0.04 | 0.020          | 540    | 2,400              | 1,320       | 5,900                     | 52,800                       |
| MM9103K           | 0.08 | 0.038          | 735    | 3,300              | 1,530       | 6,800                     | 39,600                       |
| MM9104K           | 0.14 | 0.064          | 1,000  | 4,400              | 2,200       | 9,800                     | 34,000                       |
| MM9105K           | 0.16 | 0.074          | 1,320  | 5,900              | 2,550       | 11,300                    | 28,300                       |
| MM9106K           | 0.24 | 0.109          | 1,860  | 8,300              | 3,350       | 14,900                    | 23,300                       |
| MM9107K           | 0.32 | 0.144          | 2,320  | 10,300             | 4,050       | 18,000                    | 20,700                       |
| MM9108K           | 0.40 | 0.180          | 2,600  | 11,600             | 4,300       | 19,100                    | 18,200                       |
| MM9109K           | 0.51 | 0.230          | 3,400  | 15,100             | 5,400       | 24,000                    | 16,300                       |
| MM9110K           | 0.55 | 0.248          | 3,750  | 16,700             | 5,600       | 24,900                    | 14,900                       |
| MM9111K           | 0.80 | 0.362          | 4,800  | 21,400             | 7,200       | 32,000                    | 13,500                       |
| MM9112K           | 0.95 | 0.430          | 5,210  | 23,200             | 7,340       | 32,600                    | 12,500                       |
| MM9113K           | 0.99 | 0.450          | 5,650  | 25,200             | 7,610       | 33,900                    | 11,500                       |
| MM9114K           | 1.37 | 0.620          | 6,940  | 30,900             | 9,490       | 42,200                    | 10,700                       |
| MM9115K           | 1.34 | 0.606          | 7,500  | 33,400             | 10,000      | 44,500                    | 10,100                       |
| MM9116K           | 1.77 | 0.804          | 9,000  | 40,000             | 12,200      | 54,300                    | 9,400                        |
| MM9117K           | 1.86 | 0.845          | 9,650  | 42,900             | 12,700      | 56,500                    | 8,900                        |
| MM9118K           | 2.41 | 1.092          | 11,200 | 49,800             | 15,000      | 66,700                    | 8,400                        |
| MM9120K           | 2.66 | 1.208          | 12,200 | 54,300             | 15,300      | 68,100                    | 7,600                        |
| MM9122K           | 4.15 | 1.882          | 15,000 | 66,700             | 19,300      | 85,800                    | 6,800                        |
| MM9124K           | 4.45 | 2.019          | 16,300 | 72,500             | 20,000      | 89,000                    | 6,300                        |
| MM9126K           | 6.70 | 3.041          | 21,200 | 94,300             | 26,000      | 115,600                   | 5,800                        |

<sup>\*</sup> Limits shown for a single row, spring preloaded and grease lubricated bearing.

For standard, non-preloaded applications, do not exceed 350,000 dN.











## Extra-Light MM9100K Series Deep Groove Conrad

### **Superprecision Bearings**

FTF Fundamental Train Frequency: The frequency at which the retainer will operate.

**BSF** Ball Spin Frequency: The frequency at which a single defect on a rolling element will be detected.

**BPFO** Ball Pass Frequency Outer: The frequency at which a single defect in the outer race will be detected.

**BPFI** Ball Pass Frequency Inner: The frequency at which a single defect in the inner race will be detected.

### **FREQUENCY COEFFICIENTS**

| Bearing<br>Number | FTF                                                | BSF                    | BPFO                         | BPFI                         | FTF                                                |
|-------------------|----------------------------------------------------|------------------------|------------------------------|------------------------------|----------------------------------------------------|
|                   | Fundamental Train<br>Frequency<br>(Inner Rotation) | Ball Spin<br>Frequency | Ball Pass Frequency<br>Outer | Ball Pass Frequency<br>Inner | Fundamental Train<br>Frequency<br>(Outer Rotation) |
| MM9101K           | 0.3846                                             | 2.0513                 | 3.0769                       | 4.9231                       | 0.6154                                             |
| MM9103K           | 0.4082                                             | 2.6325                 | 4.0823                       | 5.9177                       | 0.5918                                             |
| MM9104K           | 0.3976                                             | 2.3386                 | 3.1807                       | 4.8193                       | 0.6024                                             |
| MM9105K           | 0.4118                                             | 2.7464                 | 4.1180                       | 5.8820                       | 0.5882                                             |
| MM9106K           | 0.4171                                             | 2.9329                 | 4.5881                       | 6.4119                       | 0.5829                                             |
| MM9107K           | 0.4182                                             | 2.9732                 | 4.5998                       | 6.4002                       | 0.5818                                             |
| MM9108K           | 0.4265                                             | 3.3281                 | 5.1181                       | 6.8819                       | 0.5735                                             |
| MM9109K           | 0.4272                                             | 3.3632                 | 5.5541                       | 7.4459                       | 0.5728                                             |
| MM9110K           | 0.4328                                             | 3.6550                 | 6.0597                       | 7.9403                       | 0.5672                                             |
| MM9111K           | 0.4288                                             | 3.4419                 | 5.5749                       | 7.4251                       | 0.5712                                             |
| MM9112K           | 0.4334                                             | 3.6888                 | 6.0680                       | 7.9320                       | 0.5666                                             |
| MM9113K           | 0.4375                                             | 3.9351                 | 6.5619                       | 8.4381                       | 0.5625                                             |
| MM9114K           | 0.4339                                             | 3.7134                 | 6.0740                       | 7.9260                       | 0.5661                                             |
| MM9115K           | 0.4373                                             | 3.9268                 | 6.5600                       | 8.4400                       | 0.5627                                             |
| MM9116K           | 0.4342                                             | 3.7322                 | 6.0785                       | 7.9215                       | 0.5658                                             |
| MM9117K           | 0.4374                                             | 3.9288                 | 6.5605                       | 8.4395                       | 0.5626                                             |
| MM9118K           | 0.4344                                             | 3.7471                 | 6.0820                       | 7.9180                       | 0.5656                                             |
| MM9120K           | 0.4397                                             | 4.0839                 | 6.5951                       | 8.4049                       | 0.5603                                             |
| MM9122K           | 0.4376                                             | 3.9462                 | 6.1269                       | 7.8731                       | 0.5624                                             |
| MM9124K           | 0.4418                                             | 4.2376                 | 6.6271                       | 8.3729                       | 0.5582                                             |
| MM9126K           | 0.4375                                             | 3.9351                 | 6.1245                       | 7.8755                       | 0.5625                                             |













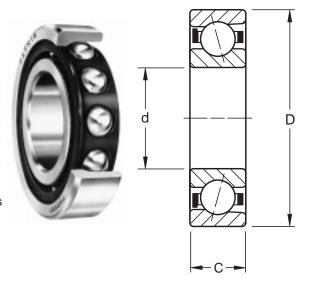








## Light 2MM200WI Series 3MM200WI Series


#### Superprecision MM:

Superprecision bearings are manufactured to a ABEC-7 (ISO P4) tolerance class.

#### **WI Construction:**

This design incorporates a low shoulder on the non-thrust side of the outer rings. The maximum complement of balls is separated by a one-piece cage which is piloted against the ground land of the outer ring.

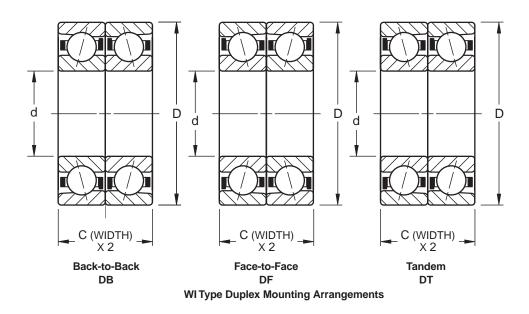
To specify a ceramic hybrid bearing, add "C" to the part number, after the prefix that specifies precision type.



## **DIMENSIONS – TOLERANCES**All inch tolerance in .0001 Units

| Bearing<br>Number |        | Вс              | ore |                               |              |    | side<br>neter |                               |             | Wi | dth* |                                             | Maxii<br>Fillet F   | Radius |      | Ball<br>plement |
|-------------------|--------|-----------------|-----|-------------------------------|--------------|----|---------------|-------------------------------|-------------|----|------|---------------------------------------------|---------------------|--------|------|-----------------|
| 2MM               |        | ninal<br>Insion | +.0 | rance<br>000"<br>Dμm<br>ninus | Nom<br>Dimer |    | +.0           | rance<br>000"<br>Dum<br>ninus | Nom<br>Dime |    | +.0  | rance<br>000"<br>D <mark>µm</mark><br>ninus | Bearing<br>will Cle |        |      |                 |
| &3MM              | in.    | mm              | in. | μm                            | in.          | mm | in.           | μm                            | in.         | mm | in.  | μm                                          | in.                 | mm     | Qty. | (Dia.)in.       |
| 200WI             | 0.3937 | 10              | 1.5 | 3.8                           | 1.1811       | 30 | 2.0           | 5.1                           | 0.3543      | 9  | 16   | 40                                          | 0.024               | 0.6    | 8    | 7/32            |
| 201WI             | 0.4724 | 12              | 1.5 | 3.8                           | 1.2598       | 32 | 2.5           | 6.4                           | 0.3937      | 10 | 31   | 80                                          | 0.024               | 0.6    | 9    | 15/64           |
| 202WI             | 0.5906 | 15              | 1.5 | 3.8                           | 1.3780       | 35 | 2.5           | 6.4                           | 0.4331      | 11 | 31   | 80                                          | 0.024               | 0.6    | 10   | 15/64           |
| 203WI             | 0.6693 | 17              | 1.5 | 3.8                           | 1.5748       | 40 | 2.5           | 6.4                           | 0.4724      | 12 | 31   | 80                                          | 0.024               | 0.6    | 10   | 17/64           |
| 204WI             | 0.7874 | 20              | 2.0 | 5.1                           | 1.8504       | 47 | 2.5           | 6.4                           | 0.5512      | 14 | 47   | 130                                         | 0.039               | 1.0    | 10   | 5/16            |
| 205WI             | 0.9843 | 25              | 2.0 | 5.1                           | 2.0472       | 52 | 3.0           | 7.7                           | 0.5906      | 15 | 47   | 130                                         | 0.039               | 1.0    | 12   | 5/16            |
| 206WI             | 1.1811 | 30              | 2.0 | 5.1                           | 2.4409       | 62 | 3.0           | 7.7                           | 0.6299      | 16 | 47   | 130                                         | 0.039               | 1.0    | 12   | 3/8             |
| 207WI             | 1.3780 | 35              | 2.5 | 6.4                           | 2.8346       | 72 | 3.0           | 7.7                           | 0.6693      | 17 | 47   | 130                                         | 0.039               | 1.0    | 12   | 7/16            |
| 208WI             | 1.5748 | 40              | 2.5 | 6.4                           | 3.1496       | 80 | 3.0           | 7.7                           | 0.7087      | 18 | 47   | 130                                         | 0.039               | 1.0    | 11   | 1/2             |
| 209WI             | 1.7717 | 45              | 2.5 | 6.4                           | 3.3465       | 85 | 3.0           | 7.7                           | 0.7480      | 19 | 47   | 130                                         | 0.039               | 1.0    | 13   | 1/2             |

<sup>\*</sup> Refer to page E4 for width tolerance of preloaded bearings.


<sup>\*\*</sup> ABMA std. 20  $(r_{as max})$ .











## **DIMENSIONS - TOLERANCES** All inch tolerance in .0001 Units

| Bearing<br>Number                                                                      |                                                                                                  | Вс                                                       | ore                                                                |                                                                    |                                                                                                  |                                                                   | side<br>neter                                        |                                                                      |                                                                                                  | Wi                                                       | dth*                                               |                                                                    | Maxii<br>Fillet F                                                             | Radius                                                             |                                                    | Ball<br>plement                                                                         |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------|
| 2MM                                                                                    |                                                                                                  | ninal<br>nsion                                           | +.0<br>+.0                                                         | rance<br>000"<br>D <mark>µm</mark><br>ninus                        | Nom<br>Dimei                                                                                     |                                                                   | +.0<br>+.0                                           | rance<br>000"<br>Jum<br>ninus                                        | Nom<br>Dime                                                                                      | ninal<br>nsion                                           | +.00                                               | rance<br>000"<br>um<br>inus                                        | Bearing<br>will Cle                                                           | Corner<br>ear **                                                   |                                                    |                                                                                         |
| &3MM                                                                                   | in.                                                                                              | mm                                                       | in.                                                                | μ <b>m</b>                                                         | in.                                                                                              | mm                                                                | in.                                                  | μ <b>m</b>                                                           | in.                                                                                              | mm                                                       | in.                                                | μ <b>m</b>                                                         | in.                                                                           | mm                                                                 | Qty.                                               | (Dia.)in.                                                                               |
| 210WI<br>211WI<br>212WI<br>213WI<br>214WI<br>215WI<br>216WI<br>217WI<br>218WI<br>219WI | 1.9685<br>2.1654<br>2.3622<br>2.5591<br>2.7559<br>2.9528<br>3.1496<br>3.3465<br>3.5433<br>3.7402 | 50<br>55<br>60<br>65<br>70<br>75<br>80<br>85<br>90<br>95 | 2.5<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0 | 6.4<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7 | 3.5433<br>3.9370<br>4.3307<br>4.7244<br>4.9213<br>5.1181<br>5.5118<br>5.9055<br>6.2992<br>6.6929 | 90<br>100<br>110<br>120<br>125<br>130<br>140<br>150<br>160<br>170 | 3.0<br>3.0<br>3.0<br>3.5<br>3.5<br>3.5<br>4.0<br>4.0 | 7.7<br>7.7<br>7.7<br>7.7<br>9.0<br>9.0<br>9.0<br>9.0<br>10.3<br>10.3 | 0.7874<br>0.8268<br>0.8661<br>0.9055<br>0.9449<br>0.9843<br>1.0236<br>1.1024<br>1.1811<br>1.2598 | 20<br>21<br>22<br>23<br>24<br>25<br>26<br>28<br>30<br>32 | 47<br>59<br>59<br>59<br>59<br>59<br>59<br>79<br>79 | 130<br>150<br>150<br>150<br>150<br>150<br>150<br>200<br>200<br>200 | 0.039<br>0.059<br>0.059<br>0.059<br>0.059<br>0.059<br>0.079<br>0.079<br>0.079 | 1.0<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>2.0<br>2.0<br>2.0<br>2.1 | 14<br>14<br>14<br>14<br>14<br>15<br>15<br>15<br>14 | 1/2<br>9/16<br>5/8<br>21/32<br>11/16<br>11/16<br>3/4<br>13/16<br>7/8<br>15/16           |
| 220WI<br>222WI<br>224WI<br>226WI<br>230WI                                              | 3.9370<br>4.3307<br>4.7244<br>5.1181<br>5.9055                                                   | 100<br>110<br>120<br>130<br>150                          | 3.0<br>3.0<br>3.0<br>4.0<br>4.0                                    | 7.7<br>7.7<br>7.7<br>10.3<br>10.3                                  | 7.0866<br>7.8740<br>8.4646<br>9.0551<br>10.6299                                                  | 180<br>200<br>215<br>230<br>270                                   | 4.0<br>4.5<br>4.5<br>4.5<br>5.0                      | 10.3<br>11.5<br>11.5<br>11.5<br>12.8                                 | 1.3386<br>1.4961<br>1.5748<br>1.5748<br>1.7717                                                   | 34<br>38<br>40<br>40<br>45                               | 79<br>79<br>79<br>98<br>98                         | 200<br>200<br>200<br>250<br>250                                    | 0.079<br>0.079<br>0.079<br>0.098<br>0.098                                     | 2.1<br>2.1<br>2.1<br>2.5<br>2.5                                    | 14<br>14<br>14<br>17<br>15                         | 1<br>1 <sup>1</sup> /8<br>1 <sup>3</sup> /16<br>1 <sup>3</sup> /16<br>1 <sup>1</sup> /2 |

 $<sup>^{\</sup>star}$  Refer to page E4 for width tolerance of preloaded bearings.  $^{\star\star}$  ABMA std. 20 (r $_{\rm as\;max}$ ).











## Light 2MM200WI Series

## PHYSICAL CHARACTERISTICS - LOAD RATINGS

## RADIAL LOAD RATING AT 33 1/3 RPM Based on 1500 hours L<sub>10</sub> Life and Permissible Speed

| Bearing<br>Number | Wei   | ight<br>earing |        | atic<br>Rating |        | nded<br>amic  | Permis-<br>sible |     |               |     | Preload L  | evels ** |             |      |            |
|-------------------|-------|----------------|--------|----------------|--------|---------------|------------------|-----|---------------|-----|------------|----------|-------------|------|------------|
|                   |       | Ů              |        | C <sub>o</sub> | 1      | Ratings<br>Se | Speed<br>Ng *    | l   | alight<br>UX) |     | ght<br>UL) |          | dium<br>UM) | 1    | avy<br>UH) |
|                   | lbs   | kg             | lbs    | N              | lbs    | N             | RPM              | lbs | N             | lbs | N          | lbs      | N           | lbs  | N          |
| 2MM200WI          | 0.07  | 0.030          | 660    | 2,900          | 1,630  | 7,300         | 62,800           | _   | _             | 5   | 20         | 20       | 90          | 35   | 160        |
| 2MM201WI          | 0.08  | 0.036          | 860    | 3,800          | 2,000  | 8,900         | 56,700           | _   | _             | 5   | 20         | 20       | 90          | 35   | 160        |
| 2MM202WI          | 0.10  | 0.044          | 1,010  | 4,500          | 2,200  | 9,800         | 47,800           | _   | _             | 5   | 20         | 20       | 90          | 40   | 180        |
| 2MM203WI          | 0.14  | 0.064          | 1,320  | 5,900          | 2,750  | 12,200        | 41,900           | _   | _             | 10  | 40         | 30       | 130         | 75   | 330        |
| 2MM204WI          | 0.23  | 0.103          | 1,810  | 8,100          | 3,750  | 16,700        | 35,700           | _   | _             | 15  | 70         | 40       | 180         | 80   | 360        |
| 2MM205WI          | 0.28  | 0.127          | 2,320  | 10,200         | 4,250  | 18,900        | 29,800           | _   | _             | 20  | 90         | 50       | 220         | 90   | 400        |
| 2MM206WI          | 0.43  | 0.195          | 3,310  | 14,700         | 5,850  | 26,000        | 25,100           | _   | _             | 20  | 90         | 50       | 220         | 125  | 560        |
| 2MM207WI          | 0.62  | 0.282          | 4,490  | 20,000         | 7,800  | 34,700        | 21,600           | _   | _             | 30  | 130        | 90       | 400         | 175  | 780        |
| 2MM208WI          | 0.78  | 0.352          | 5,340  | 23,800         | 9,300  | 41,400        | 19,300           | _   | _             | 30  | 130        | 100      | 440         | 200  | 890        |
| 2MM209WI          | 0.90  | 0.408          | 6,470  | 28,800         | 10,400 | 46,300        | 17,500           | 25  | 110           | 40  | 180        | 125      | 560         | 250  | 1110       |
| 2MM210WI          | 1.01  | 0.457          | 7,130  | 31,700         | 11,000 | 48,900        | 16,000           | 30  | 130           | 50  | 220        | 125      | 560         | 275  | 1220       |
| 2MM211WI          | 1.34  | 0.608          | 9,000  | 40,000         | 13,400 | 59,600        | 14,500           | 35  | 160           | 50  | 220        | 175      | 780         | 350  | 1560       |
| 2MM212WI          | 1.74  | 0.787          | 11,000 | 48,900         | 16,300 | 72,500        | 13,200           | 40  | 180           | 75  | 330        | 200      | 890         | 425  | 1890       |
| 2MM213WI          | 2.20  | 0.998          | 12,300 | 54,700         | 18,000 | 80,100        | 12,100           | 45  | 200           | 100 | 440        | 225      | 1000        | 475  | 2110       |
| 2MM214WI          | 2.37  | 1.074          | 13,400 | 60,000         | 19,300 | 85,800        | 11,400           | 50  | 220           | 100 | 440        | 250      | 1110        | 500  | 2220       |
| 2MM215WI          | 2.59  | 1.174          | 14,600 | 64,900         | 20,400 | 90,700        | 10,800           | 55  | 240           | 125 | 560        | 275      | 1220        | 550  | 2450       |
| 2MM216WI          | 3.19  | 1.448          | 17,300 | 77,000         | 23,600 | 105,000       | 10,100           | 60  | 270           | 150 | 670        | 325      | 1450        | 625  | 2780       |
| 2MM217WI          | 4.01  | 1.817          | 20,400 | 90,700         | 27,500 | 122,300       | 9,400            | 65  | 290           | 175 | 780        | 375      | 1670        | 750  | 3340       |
| 2MM218WI          | 4.84  | 2.196          | 22,000 | 97,900         | 30,000 | 133,400       | 8,900            | 75  | 330           | 175 | 780        | 400      | 1780        | 800  | 3560       |
| 2MM219WI          | 5.88  | 2.669          | 25,000 | 111,200        | 34,000 | 151,200       | 8,400            | 80  | 360           | 200 | 890        | 450      | 2000        | 900  | 4000       |
| 2MM220WI          | 7.07  | 3.209          | 28,500 | 126,800        | 38,000 | 169,000       | 8,000            | 85  | 380           | 250 | 1110       | 500      | 2220        | 1000 | 4450       |
| 2MM222WI          | 9.89  | 4.486          | 36,000 | 160,100        | 45,000 | 200,200       | 7,200            | 100 | 440           | 300 | 1330       | 600      | 2670        | 1200 | 5340       |
| 2MM224WI          | 11.81 | 5.358          | 40,500 | 180,100        | 48,000 | 213,500       | 6,700            | 110 | 490           | 330 | 1470       | 660      | 2940        | 1320 | 5870       |
| 2MM226WI          | 14.26 | 6.468          | 50,000 | 222,400        | 55,000 | 244,600       | 6,100            | 125 | 560           | 370 | 1650       | 740      | 3290        | 1480 | 6580       |
| 2MM230WI          | 22.00 | 9.980          | 68,000 | 302,500        | 69,500 | 309,100       | 5,300            | 155 | 690           | 425 | 1890       | 850      | 3780        | 1700 | 7560       |

<sup>\*</sup> Limits shown for a single row, spring preloaded and grease lubricated bearing.
\*\* All ceramic hybrid bearing preloads are equivalent to the table above.













## **Superprecision Bearings**

**FTF** Fundamental Train Frequency: The frequency at which the retainer will operate.

**BSF** Ball Spin Frequency: The frequency at which a single defect on a rolling element will be detected.

**BPFO** Ball Pass Frequency Outer: The frequency at which a single defect in the outer race will be detected.

**BPFI** Ball Pass Frequency Inner: The frequency at which a single defect in the inner race will be detected.

#### **FREQUENCY COEFFICIENTS**

| Bearing<br>Number | FTF                                                | BSF                    | BPFO                         | BPFI                         | FTF                                                |
|-------------------|----------------------------------------------------|------------------------|------------------------------|------------------------------|----------------------------------------------------|
|                   | Fundamental Train<br>Frequency<br>(Inner Rotation) | Ball Spin<br>Frequency | Ball Pass Frequency<br>Outer | Ball Pass Frequency<br>Inner | Fundamental Train<br>Frequency<br>(Outer Rotation) |
| 2MM200WI          | 0.3668                                             | 1.6722                 | 2.9345                       | 5.0655                       | 0.6332                                             |
| 2MM201WI          | 0.3699                                             | 1.7226                 | 3.3290                       | 5.6710                       | 0.6301                                             |
| 2MM202WI          | 0.3855                                             | 1.9898                 | 3.8552                       | 6.1448                       | 0.6145                                             |
| 2MM203WI          | 0.3861                                             | 2.0025                 | 3.8609                       | 6.1391                       | 0.6139                                             |
| 2MM204WI          | 0.3857                                             | 2.0000                 | 3.8570                       | 6.1430                       | 0.6143                                             |
| 2MM205WI          | 0.4008                                             | 2.3347                 | 4.8091                       | 7.1909                       | 0.5992                                             |
| 2MM206WI          | 0.4001                                             | 2.3182                 | 4.8007                       | 7.1993                       | 0.5999                                             |
| 2MM207WI          | 0.3997                                             | 2.3104                 | 4.7965                       | 7.2035                       | 0.6003                                             |
| 2MM208WI          | 0.3980                                             | 2.2638                 | 4.3777                       | 6.6223                       | 0.6020                                             |
| 2MM209WI          | 0.4058                                             | 2.4683                 | 5.2757                       | 7.7243                       | 0.5942                                             |
| 2MM210WI          | 0.4126                                             | 2.6716                 | 5.7757                       | 8.2243                       | 0.5874                                             |
| 2MM211WI          | 0.4110                                             | 2.6263                 | 5.7543                       | 8.2457                       | 0.5890                                             |
| 2MM212WI          | 0.4098                                             | 2.5901                 | 5.7376                       | 8.2624                       | 0.5902                                             |
| 2MM213WI          | 0.4130                                             | 2.6906                 | 5.7818                       | 8.2182                       | 0.5870                                             |
| 2MM214WI          | 0.4135                                             | 2.7082                 | 5.7891                       | 8.2109                       | 0.5865                                             |
| 2MM215WI          | 0.4177                                             | 2.8554                 | 6.2659                       | 8.7341                       | 0.5823                                             |
| 2MM216WI          | 0.4164                                             | 2.8064                 | 6.2462                       | 8.7538                       | 0.5836                                             |
| 2MM217WI          | 0.4152                                             | 2.7649                 | 6.2281                       | 8.7719                       | 0.5848                                             |
| 2MM218WI          | 0.4142                                             | 2.7301                 | 5.7984                       | 8.2016                       | 0.5858                                             |
| 2MM219WI          | 0.4132                                             | 2.6992                 | 5.7853                       | 8.2147                       | 0.5868                                             |
| 2MM220WI          | 0.4125                                             | 2.6714                 | 5.7744                       | 8.2256                       | 0.5875                                             |
| 2MM222WI          | 0.4110                                             | 2.6263                 | 5.7543                       | 8.2457                       | 0.5890                                             |
| 2MM224WI          | 0.4131                                             | 2.6927                 | 5.7830                       | 8.2170                       | 0.5869                                             |
| 2MM226WI          | 0.4192                                             | 2.9059                 | 7.1260                       | 9.8740                       | 0.5808                                             |
| 2MM230WI          | 0.4124                                             | 2.6714                 | 6.1865                       | 8.8135                       | 0.5876                                             |













## PHYSICAL CHARACTERISTICS - LOAD RATINGS

## RADIAL LOAD RATING AT 33 1/3 RPM Based on 1500 hours L<sub>10</sub> Life and Permissible Speed

| Bearing<br>Number                                        |                                         | ight<br>earing                            | 1                                              | tatic<br>Rating                                     | Dyr                                            | ended<br>namic<br>Ratings                           | Permis-<br>sible<br>Speed                      |                                 |                                  |                                 | Preload                              | Levels **                          |                                      |                                      |                                        |
|----------------------------------------------------------|-----------------------------------------|-------------------------------------------|------------------------------------------------|-----------------------------------------------------|------------------------------------------------|-----------------------------------------------------|------------------------------------------------|---------------------------------|----------------------------------|---------------------------------|--------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|
|                                                          |                                         |                                           |                                                | Co                                                  |                                                | C <sub>e</sub>                                      | Ng *                                           | l                               | ralight<br>DUX)                  | 1                               | ight<br>OUL)                         | 1                                  | dium<br>UM)                          | I                                    | eavy<br>DUH)                           |
|                                                          | lbs                                     | kg                                        | lbs                                            | N                                                   | Ibs                                            | N                                                   | RPM                                            | lbs                             | N                                | lbs                             | N                                    | lbs                                | N                                    | lbs                                  | N                                      |
| 3MM200WI<br>3MM201WI<br>3MM202WI<br>3MM203WI<br>3MM204WI | 0.07<br>0.08<br>0.10<br>0.14<br>0.23    | 0.030<br>0.036<br>0.044<br>0.064<br>0.103 | 640<br>830<br>980<br>1,270<br>1,730            | 2,800<br>3,700<br>4,400<br>5,600<br>7,700           | 1,600<br>1,960<br>2,120<br>2,600<br>3,550      | 7,100<br>8,700<br>9,400<br>11,600<br>15,800         | 56,500<br>51,000<br>43,000<br>37,700<br>32,100 | _<br>_<br>_<br>_                | _<br>_<br>_<br>_                 | 10<br>10<br>15<br>20<br>30      | 40<br>40<br>70<br>90<br>130          | 30<br>30<br>40<br>75<br>80         | 130<br>130<br>180<br>330<br>360      | 60<br>60<br>80<br>100<br>125         | 270<br>270<br>360<br>440<br>560        |
| 3MM205WI<br>3MM206WI<br>3MM207WI<br>3MM208WI<br>3MM209WI | 0.28<br>0.43<br>0.62<br>0.78<br>0.90    | 0.127<br>0.195<br>0.282<br>0.352<br>0.408 | 2,200<br>3,150<br>4,300<br>5,100<br>6,200      | 9,800<br>14,000<br>19,100<br>22,700<br>27,600       | 4,050<br>5,600<br>7,350<br>9,000<br>10,000     | 18,000<br>24,900<br>32,700<br>40,000<br>44,500      | 26,800<br>22,600<br>19,400<br>17,400<br>15,800 | —<br>30<br>35<br>40             | 130<br>160<br>180                | 35<br>50<br>70<br>80<br>100     | 160<br>220<br>310<br>360<br>440      | 90<br>125<br>175<br>200<br>250     | 400<br>560<br>780<br>890<br>1110     | 150<br>200<br>300<br>300<br>400      | 670<br>890<br>1330<br>1330<br>1780     |
| 3MM210WI<br>3MM211WI<br>3MM212WI<br>3MM213WI<br>3MM214WI | 1.01<br>1.34<br>1.74<br>2.20<br>2.37    | 0.457<br>0.608<br>0.787<br>0.998<br>1.074 | 6,800<br>8,650<br>10,600<br>11,800<br>12,900   | 30,200<br>38,500<br>47,100<br>52,500<br>57,400      | 10,400<br>12,900<br>15,600<br>17,000<br>18,600 | 46,300<br>57,400<br>69,400<br>75,600<br>82,700      | 14,400<br>13,100<br>11,900<br>10,900<br>10,300 | 45<br>50<br>55<br>60<br>65      | 200<br>220<br>240<br>270<br>290  | 110<br>140<br>170<br>190<br>200 | 490<br>620<br>760<br>850<br>890      | 275<br>350<br>425<br>475<br>500    | 1220<br>1560<br>1890<br>2110<br>2220 | 450<br>550<br>650<br>750<br>800      | 2000<br>2450<br>2890<br>3340<br>3560   |
| 3MM215WI<br>3MM216WI<br>3MM217WI<br>3MM218WI<br>3MM219WI | 2.59<br>3.19<br>4.01<br>4.84<br>5.88    | 1.174<br>1.448<br>1.817<br>2.196<br>2.669 | 14,000<br>16,600<br>19,300<br>20,800<br>24,000 | 62,300<br>73,800<br>85,800<br>92,500<br>106,800     | 19,300<br>22,000<br>26,000<br>28,500<br>32,000 | 85,800<br>97,900<br>115,600<br>126,800<br>142,300   | 9,700<br>9,100<br>8,500<br>8,000<br>7,600      | 80<br>90<br>100<br>110<br>125   | 360<br>400<br>440<br>490<br>560  | 220<br>250<br>270<br>300<br>350 | 980<br>1110<br>1200<br>1330<br>1560  | 550<br>625<br>675<br>700<br>700    | 2450<br>2780<br>3000<br>3110<br>3110 | 850<br>1000<br>1100<br>1250<br>1400  | 3780<br>4450<br>4890<br>5560<br>6230   |
| 3MM220WI<br>3MM222WI<br>3MM224WI<br>3MM226WI<br>3MM230WI | 7.07<br>9.89<br>11.81<br>14.26<br>22.00 | 3.209<br>4.486<br>5.358<br>6.468<br>9.980 | 27,000<br>34,500<br>39,000<br>47,500<br>65,500 | 120,100<br>153,500<br>173,500<br>211,300<br>291,300 | 36,000<br>42,500<br>46,500<br>52,000<br>67,000 | 160,100<br>189,000<br>206,800<br>231,300<br>298,000 | 7,200<br>6,500<br>6,000<br>5,500<br>4,800      | 135<br>155<br>185<br>220<br>290 | 600<br>690<br>820<br>980<br>1290 | 390<br>460<br>505<br>575<br>700 | 1730<br>2050<br>2250<br>2560<br>3110 | 780<br>920<br>1010<br>1150<br>1400 | 3470<br>4082<br>4480<br>5120<br>6230 | 1560<br>1840<br>2020<br>2300<br>2800 | 6940<br>8180<br>8980<br>10230<br>12450 |

<sup>\*</sup> Limits shown for a single row, spring preloaded and grease lubricated bearing.

<sup>\*\*</sup> All ceramic hybrid bearing preloads are equivalent to the table above.











## Light 3MM200WI Series

### **Superprecision Bearings**

FTF Fundamental Train Frequency: The frequency at which the retainer will operate.

**BSF** Ball Spin Frequency: The frequency at which a single defect on a rolling element will be detected.

**BPFO** Ball Pass Frequency Outer: The frequency at which a single defect in the outer race will be detected.

**BPFI** Ball Pass Frequency Inner: The frequency at which a single defect in the inner race will be detected.

#### **FREQUENCY COEFFICIENTS**

| Bearing<br>Number | FTF                                                | BSF                    | BPFO                         | BPFI                         | FTF                                                |
|-------------------|----------------------------------------------------|------------------------|------------------------------|------------------------------|----------------------------------------------------|
|                   | Fundamental Train<br>Frequency<br>(Inner Rotation) | Ball Spin<br>Frequency | Ball Pass Frequency<br>Outer | Ball Pass Frequency<br>Inner | Fundamental Train<br>Frequency<br>(Outer Rotation) |
| 3MM200WI          | 0.3668                                             | 1.6722                 | 2.9345                       | 5.0655                       | 0.6332                                             |
| 3MM201WI          | 0.3774                                             | 1.7366                 | 3.3966                       | 5.6034                       | 0.6226                                             |
| 3MM202WI          | 0.3921                                             | 2.0021                 | 3.9212                       | 6.0788                       | 0.6079                                             |
| 3MM203WI          | 0.3928                                             | 2.0150                 | 3.9277                       | 6.0723                       | 0.6072                                             |
| 3MM204WI          | 0.3929                                             | 2.0134                 | 3.9290                       | 6.0710                       | 0.6071                                             |
| 3MM205WI          | 0.4070                                             | 2.3463                 | 4.8841                       | 7.1159                       | 0.5930                                             |
| 3MM206WI          | 0.4064                                             | 2.3301                 | 4.8769                       | 7.1231                       | 0.5936                                             |
| 3MM207WI          | 0.4061                                             | 2.3224                 | 4.8734                       | 7.1266                       | 0.5939                                             |
| 3MM208WI          | 0.4043                                             | 2.2757                 | 4.4476                       | 6.5524                       | 0.5957                                             |
| 3MM209WI          | 0.4117                                             | 2.4793                 | 5.3519                       | 7.6481                       | 0.5883                                             |
| 3MM210WI          | 0.4180                                             | 2.6818                 | 5.8519                       | 8.1481                       | 0.5820                                             |
| 3MM211WI          | 0.4166                                             | 2.6367                 | 5.8323                       | 8.1677                       | 0.5834                                             |
| 3MM212WI          | 0.4155                                             | 2.6007                 | 5.8171                       | 8.1829                       | 0.5845                                             |
| 3MM213WI          | 0.4185                                             | 2.7009                 | 5.8587                       | 8.1413                       | 0.5815                                             |
| 3MM214WI          | 0.4189                                             | 2.7182                 | 5.8639                       | 8.1361                       | 0.5811                                             |
| 3MM215WI          | 0.4228                                             | 2.8649                 | 6.3421                       | 8.6579                       | 0.5772                                             |
| 3MM216WI          | 0.4216                                             | 2.8162                 | 6.3241                       | 8.6759                       | 0.5784                                             |
| 3MM217WI          | 0.4205                                             | 2.7748                 | 6.3076                       | 8.6924                       | 0.5795                                             |
| 3MM218WI          | 0.4196                                             | 2.7402                 | 5.8738                       | 8.1262                       | 0.5804                                             |
| 3MM219WI          | 0.4187                                             | 2.7094                 | 5.8618                       | 8.1382                       | 0.5813                                             |
| 3MM220WI          | 0.4179                                             | 2.6816                 | 5.8506                       | 8.1494                       | 0.5821                                             |
| 3MM222WI          | 0.4166                                             | 2.6367                 | 5.8323                       | 8.1677                       | 0.5834                                             |
| 3MM224WI          | 0.4184                                             | 2.7026                 | 5.8573                       | 8.1427                       | 0.5816                                             |
| 3MM226WI          | 0.4241                                             | 2.9151                 | 7.2100                       | 9.7900                       | 0.5759                                             |
| 3MM230WI          | 0.4179                                             | 2.6815                 | 6.2681                       | 8.7319                       | 0.5821                                             |











## Light 200WI Series

## PERMISSIBLE OPERATING SPEEDS – RPM 2MM & 3MM Superprecision Angular Contact Spindle Bearings

|                            |                | GREASE          |                |                 |                 |                 |                 |                | OIL             |                |
|----------------------------|----------------|-----------------|----------------|-----------------|-----------------|-----------------|-----------------|----------------|-----------------|----------------|
|                            |                | "DB" Mounting   | g              | Grease          | e Capacity      | Kluber Iso      | flex NBU 15     |                | "DB" Mounting   |                |
| 15 Degree<br>Contact Angle | (DUL)<br>Light | (DUM)<br>Medium | (DUH)<br>Heavy | 25 %<br>(grams) | 40 %<br>(grams) | 15 %<br>(grams) | 20 %<br>(grams) | (DUL)<br>Light | (DUM)<br>Medium | (DUH)<br>Heavy |
| 2MM200WI                   | 50,200         | 37,700          | 25,100         | 0.3             | 0.5             | 0.20            | 0.27            | 85,300         | 64,100          | 42,700         |
| 2MM201WI                   | 45,400         | 34,000          | 22,200         | 0.4             | 0.6             | 0.25            | 0.33            | 79,100         | 57,800          | 39,400         |
| 2MM202WI                   | 38,200         | 28,700          | 19,100         | 0.5             | 0.8             | 0.32            | 0.43            | 66,300         | 48,800          | 33,200         |
| 2MM203WI                   | 33,500         | 25,100          | 16,500         | 0.7             | 1.1             | 0.45            | 0.59            | 58,100         | 42,700          | 29,100         |
| 2MM204WI                   | 28,600         | 21,400          | 14,300         | 1.1             | 1.7             | 0.72            | 0.96            | 48,600         | 36,400          | 24,300         |
| 2MM205WI                   | 23,800         | 17,900          | 11,900         | 1.3             | 2.1             | 0.88            | 1.18            | 40,500         | 30,400          | 20,200         |
| 2MM206WI                   | 20,000         | 15,100          | 10,000         | 2.0             | 3.1             | 1.31            | 1.74            | 34,200         | 25,600          | 17,000         |
| 2MM207WI                   | 17,300         | 13,000          | 8,600          | 2.7             | 4.4             | 1.82            | 2.43            | 29,400         | 22,000          | 14,600         |
| 2MM208WI                   | 15,400         | 11,600          | 7,700          | 3.7             | 6.0             | 2.49            | 3.32            | 26,200         | 19,700          | 13,100         |
| 2MM209WI                   | 14,000         | 10,500          | 7,000          | 4.2             | 6.6             | 2.77            | 3.70            | 22,800         | 17,900          | 11,900         |
| 2MM210WI                   | 12,500         | 9,600           | 6,400          | 4.8             | 7.6             | 3.2             | 4.3             | 21,800         | 16,300          | 10,900         |
| 2MM211WI                   | 11,600         | 8,700           | 5,800          | 6.1             | 9.7             | 4.1             | 5.4             | 19,700         | 14,800          | 9,900          |
| 2MM212WI                   | 10,600         | 7,920           | 5,300          | 7.5             | 12.0            | 5.0             | 6.7             | 18,000         | 13,500          | 9,000          |
| 2MM213WI                   | 9,700          | 7,260           | 4,800          | 9.2             | 14.6            | 6.1             | 8.1             | 16,500         | 12,300          | 8,200          |
| 2MM214WI                   | 9,100          | 6,840           | 4,600          | 10.6            | 16.9            | 7.0             | 9.4             | 15,500         | 11,600          | 7,800          |
| 2MM215WI                   | 8,600          | 6,480           | 4,300          | 11.6            | 18.6            | 7.8             | 10.3            | 14,600         | 11,020          | 7,300          |
| 2MM216WI                   | 8,100          | 6,060           | 4,000          | 13.7            | 22.0            | 9.2             | 12.2            | 13,800         | 10,300          | 6,800          |
| 2MM217WI                   | 7,500          | 5,640           | 3,800          | 16.9            | 27.1            | 11.3            | 15.1            | 12,800         | 9,590           | 6,500          |
| 2MM218WI                   | 7,100          | 5,340           | 3,600          | 21.5            | 34.4            | 14.4            | 19.1            | 12,100         | 9,080           | 6,100          |
| 2MM219WI                   | 6,700          | 5,040           | 3,400          | 25.8            | 41.4            | 17.3            | 23.0            | 11,400         | 8,570           | 5,800          |
| 2MM220WI                   | 6,400          | 4,800           | 3,200          | 30.7            | 49.1            | 20.5            | 27.3            | 10,900         | 8,160           | 5,400          |
| 2MM222WI                   | 5,800          | 4,320           | 2,900          | 42.3            | 67.6            | 28.2            | 37.6            | 9,900          | 7,340           | 4,900          |
| 2MM224WI                   | 5,400          | 4,020           | 2,700          | 51.4            | 82.3            | 34.3            | 45.8            | 9,200          | 6,830           | 4,600          |
| 2MM226WI                   | 4,900          | 3,660           | 2,400          | 50.8            | 81.3            | 33.9            | 45.2            | 8,300          | 6,220           | 4,100          |
| 2MM230WI                   | 4,200          | 3,180           | 2,160          | 82.4            | 131.9           | 55.0            | 73.4            | 7,100          | 5,410           | 3,600          |

Notes: For 3MM (25 Degree Contact Angle) Spindle Bearings, use 90% of the Permissible Operating Speeds above.

For other bearing configurations beside a back-to-back mounted duplex set, please refer to page E36 to calculate the permissible operating speed (Sp.).

<sup>\*</sup> For 2MMC and 3MMC Spindle Bearings, use 120% of the Permissible Operating Speeds.













## **Axial Stiffness 200WI Series** (For Duplex Set\*)

### 2MM200WI SERIES

## 3MM200WI SERIES

| Bore # | X-Light<br>(10 <sup>6</sup> LB/IN.) | Light<br>(10 <sup>6</sup> LB/IN.) | Medium<br>(10 <sup>6</sup> LB/IN.) | Heavy<br>(10 <sup>6</sup> LB/IN.) | Bore # | Light<br>(10 <sup>6</sup> LB/IN.) | Medium<br>(10 <sup>6</sup> LB/IN.) | Heavy<br>(10 <sup>6</sup> LB/IN.) |
|--------|-------------------------------------|-----------------------------------|------------------------------------|-----------------------------------|--------|-----------------------------------|------------------------------------|-----------------------------------|
| 00     | 0.009                               | 0.106                             | 0.189                              | 0.245                             | 00     | 0.225                             | 0.343                              | 0.456                             |
| 01     | 0.091                               | 0.110                             | 0.195                              | 0.252                             | 01     | 0.256                             | 0.386                              | 0.508                             |
| 02     | 0.097                               | 0.118                             | 0.207                              | 0.284                             | 02     | 0.317                             | 0.460                              | 0.609                             |
| 03     | 0.127                               | 0.146                             | 0.235                              | 0.365                             | 03     | 0.365                             | 0.606                              | 0.682                             |
| 04     | 0.140                               | 0.172                             | 0.264                              | 0.368                             | 04     | 0.430                             | 0.627                              | 0.751                             |
| 05     | 0.169                               | 0.215                             | 0.323                              | 0.428                             | 05     | 0.510                             | 0.733                              | 0.902                             |
| 06     | 0.190                               | 0.219                             | 0.323                              | 0.498                             | 06     | 0.607                             | 0.862                              | 1.043                             |
| 07     | 0.220                               | 0.270                             | 0.434                              | 0.597                             | 07     | 0.723                             | 1.027                              | 1.278                             |
| 08     | 0.233                               | 0.259                             | 0.433                              | 0.603                             | 08     | 0.758                             | 1.074                              | 1.263                             |
| 09     | 0.266                               | 0.321                             | 0.525                              | 0.733                             | 09     | 0.914                             | 1.297                              | 1.568                             |
| 10     | 0.295                               | 0.367                             | 0.547                              | 0.798                             | 10     | 0.993                             | 1.409                              | 1.719                             |
| 11     | 0.310                               | 0.362                             | 0.626                              | 0.879                             | 11     | 1.107                             | 1.572                              | 1.888                             |
| 12     | 0.338                               | 0.444                             | 0.681                              | 0.980                             | 12     | 1.222                             | 1.736                              | 2.061                             |
| 13     | 0.358                               | 0.505                             | 0.722                              | 1.036                             | 13     | 1.290                             | 1.832                              | 2.205                             |
| 14     | 0.388                               | 0.513                             | 0.766                              | 1.069                             | 14     | 1.323                             | 1.878                              | 2.272                             |
| 15     | 0.417                               | 0.586                             | 0.831                              | 1.161                             | 15     | 1.431                             | 2.034                              | 2.425                             |
| 16     | 0.444                               | 0.647                             | 0.910                              | 1.245                             | 16     | 1.543                             | 2.190                              | 2.646                             |
| 17     | 0.461                               | 0.682                             | 0.957                              | 1.339                             | 17     | 1.603                             | 2.272                              | 2.764                             |
| 18     | 0.472                               | 0.668                             | 0.962                              | 1.344                             | 18     | 1.636                             | 2.257                              | 2.848                             |
| 19     | 0.496                               | 0.721                             | 1.029                              | 1.435                             | 19     | 1.774                             | 2.304                              | 3.036                             |
| 20     | 0.508                               | 0.787                             | 1.070                              | 1.494                             | 20     | 1.877                             | 2.438                              | 3.211                             |
| 22     | 0.564                               | 0.880                             | 1.192                              | 1.657                             | 22     | 2.058                             | 2.669                              | 3.510                             |
| 24     | 0.588                               | 0.908                             | 1.233                              | 1.716                             | 24     | 2.160                             | 2.802                              | 3.682                             |
| 26     | 0.693                               | 1.066                             | 1.443                              | 2.003                             | 26     | 2.562                             | 3.319                              | 4.356                             |
| 30     | 0.745                               | 1.102                             | 1.480                              | 2.036                             | 30     | 2.708                             | 3.501                              | 4.580                             |

<sup>\*</sup> DB (back-to-back) or DF (face-to-face) arrangement only; For other mounting arrangements, contact the Torrington Engineering Department.











## Radial Stiffness 200WI Series (For Duplex Set\*)

#### 2MM200WI SERIES

#### 3MM200WI SERIES

| ZIVIIVIZUUVVI SI | LIXILO                            |                                    |                                   | SIVIIVIZOUVVI | LIVILO                            |                                    |                                   |
|------------------|-----------------------------------|------------------------------------|-----------------------------------|---------------|-----------------------------------|------------------------------------|-----------------------------------|
| Bore #           | Light<br>(10 <sup>6</sup> LB/IN.) | Medium<br>(10 <sup>6</sup> LB/IN.) | Heavy<br>(10 <sup>6</sup> LB/IN.) | Bore #        | Light<br>(10 <sup>6</sup> LB/IN.) | Medium<br>(10 <sup>6</sup> LB/IN.) | Heavy<br>(10 <sup>6</sup> LB/IN.) |
| 00               | 0.491                             | 0.778                              | 0.927                             | 00            | 0.484                             | 0.694                              | 0.863                             |
| 01               | 0.549                             | 0.878                              | 1.048                             | 01            | 0.538                             | 0.777                              | 0.969                             |
| 02               | 0.587                             | 0.943                              | 1.175                             | 02            | 0.663                             | 0.916                              | 1.140                             |
| 03               | 0.784                             | 1.129                              | 1.504                             | 03            | 0.760                             | 1.169                              | 1.280                             |
| 04               | 0.963                             | 1.332                              | 1.657                             | 04            | 0.912                             | 1.258                              | 1.448                             |
| 05               | 1.198                             | 1.619                              | 1.949                             | 05            | 1.084                             | 1.478                              | 1.738                             |
| 06               | 1.272                             | 1.733                              | 2.320                             | 06            | 1.298                             | 1.754                              | 2.036                             |
| 07               | 1.540                             | 2.219                              | 2.737                             | 07            | 1.529                             | 2.064                              | 2.449                             |
| 08               | 1.496                             | 2.245                              | 2.797                             | 08            | 1.576                             | 2.131                              | 2.424                             |
| 09               | 1.846                             | 2.702                              | 3.364                             | 09            | 1.899                             | 2.564                              | 2.976                             |
| 10               | 2.094                             | 2.841                              | 3.647                             | 10            | 2.059                             | 2.780                              | 3.249                             |
| 11               | 2.189                             | 3.330                              | 4.143                             | 11            | 2.329                             | 3.143                              | 3.627                             |
| 12               | 2.609                             | 3.615                              | 4.588                             | 12            | 2.573                             | 3.473                              | 3.974                             |
| 13               | 2.926                             | 3.823                              | 4.840                             | 13            | 2.713                             | 3.662                              | 4.232                             |
| 14               | 2.972                             | 4.024                              | 5.010                             | 14            | 2.818                             | 3.806                              | 4.417                             |
| 15               | 3.356                             | 4.349                              | 5.411                             | 15            | 3.046                             | 4.112                              | 4.720                             |
| 16               | 3.659                             | 4.718                              | 5.801                             | 16            | 3.261                             | 4.406                              | 5.115                             |
| 17               | 3.961                             | 5.089                              | 6.336                             | 17            | 3.433                             | 4.645                              | 5.427                             |
| 18               | 3.880                             | 5.097                              | 6.346                             | 18            | 3.481                             | 4.603                              | 5.537                             |
| 19               | 4.156                             | 5.333                              | 6.764                             | 19            | 3.749                             | 4.715                              | 5.885                             |
| 20               | 4.550                             | 5.718                              | 7.124                             | 20            | 3.969                             | 4.994                              | 6.235                             |
| 22               | 5.039                             | 6.336                              | 7.898                             | 22            | 4.359                             | 5.489                              | 6.858                             |
| 24               | 5.300                             | 6.667 8.311                        |                                   | 24            | 4.607                             | 5.802                              | 7.249                             |
| 26               | 6.229                             | 7.847                              | 9.793                             | 26            | 5.455                             | 6.808                              | 8.599                             |
| 30               | 6.500                             | 8.218                              | 10.280                            | 30            | 5.774                             | 7.297                              | 9.138                             |

<sup>\*</sup> DB (back-to-back) or DF (face-to-face) arrangement only; For other mounting arrangements, contact the Torrington Engineering Department.















### 2MM200WI SERIES

### 3MM200WI SERIES

| Bore # | X-Light to<br>Light<br>(in.) | Light to<br>Medium<br>(in.) | Medium to<br>Heavy<br>(in.) | Bore # | X-Light to<br>Light<br>(in.) | Light to<br>Medium<br>(in.) | Medium to<br>Heavy<br>(in.) |
|--------|------------------------------|-----------------------------|-----------------------------|--------|------------------------------|-----------------------------|-----------------------------|
| 00     | 0.00008                      | 0.00041                     | 0.00028                     | 00     | 0.00010                      | 0.00028                     | 0.00030                     |
| 01     | 0.00008                      | 0.00039                     | 0.00027                     | 01     | 0.00009                      | 0.00025                     | 0.00027                     |
| 02     | 0.00007                      | 0.00037                     | 0.00033                     | 02     | 0.00005                      | 0.00026                     | 0.00026                     |
| 03     | 0.00009                      | 0.00042                     | 0.00060                     | 03     | 0.00011                      | 0.00045                     | 0.00016                     |
| 04     | 0.00015                      | 0.00046                     | 0.00051                     | 04     | 0.00013                      | 0.00038                     | 0.00026                     |
| 05     | 0.00019                      | 0.00045                     | 0.00043                     | 05     | 0.00016                      | 0.00035                     | 0.00029                     |
| 06     | 0.00012                      | 0.00044                     | 0.00073                     | 06     | 0.00020                      | 0.00041                     | 0.00031                     |
| 07     | 0.00020                      | 0.00068                     | 0.00066                     | 07     | 0.00027                      | 0.00048                     | 0.00048                     |
| 08     | 0.00011                      | 0.00081                     | 0.00077                     | 08     | 0.00028                      | 0.00052                     | 0.00034                     |
| 09     | 0.00020                      | 0.00080                     | 0.00080                     | 09     | 0.00031                      | 0.00054                     | 0.00042                     |
| 10     | 0.00025                      | 0.00066                     | 0.00089                     | 10     | 0.00030                      | 0.00055                     | 0.00045                     |
| 11     | 0.00019                      | 0.00101                     | 0.00093                     | 11     | 0.00038                      | 0.00062                     | 0.00046                     |
| 12     | 0.00038                      | 0.00089                     | 0.00109                     | 12     | 0.00044                      | 0.00069                     | 0.00047                     |
| 13     | 0.00053                      | 0.00082                     | 0.00114                     | 13     | 0.00047                      | 0.00073                     | 0.00054                     |
| 14     | 0.00044                      | 0.00094                     | 0.00109                     | 14     | 0.00048                      | 0.00075                     | 0.00058                     |
| 15     | 0.00057                      | 0.00085                     | 0.00111                     | 15     | 0.00046                      | 0.00076                     | 0.00054                     |
| 16     | 0.00067                      | 0.00090                     | 0.00112                     | 16     | 0.00049                      | 0.00080                     | 0.00062                     |
| 17     | 0.00075                      | 0.00098                     | 0.00131                     | 17     | 0.00049                      | 0.00083                     | 0.00067                     |
| 18     | 0.00071                      | 0.00110                     | 0.00139                     | 18     | 0.00054                      | 0.00082                     | 0.00086                     |
| 19     | 0.00079                      | 0.00114                     | 0.00146                     | 19     | 0.00060                      | 0.00068                     | 0.00105                     |
| 20     | 0.00102                      | 0.00108                     | 0.00156                     | 20     | 0.00064                      | 0.00072                     | 0.00110                     |
| 22     | 0.00111                      | 0.00116 0.00169             |                             | 22     | 0.00070                      | 0.00078                     | 0.00119                     |
| 24     | 0.00116                      | 0.00123 0.00179             |                             | 24     | 0.00069                      | 0.00081                     | 0.00124                     |
| 26     | 0.00110                      | 0.00118                     | 0.00172                     | 26     | 0.00065                      | 0.00078                     | 0.00120                     |
| 30     | 0.00116                      | 0.00132                     | 0.00194                     | 30     | 0.00069                      | 0.00090                     | 0.00138                     |

<sup>\*</sup> DB (back-to-back) or DF (face-to-face) arrangement only; For other mounting arrangements, contact the Torrington Engineering Department.





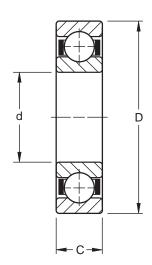






## Light MM200K Series Deep Groove Conrad

#### Superprecision MM:


Superprecision bearings are manufactured to a ABEC-7 (ISO P4) tolerance class.

#### K Construction:

This design incorporates two full shoulders on both the inner and outer rings. The complement of balls are separated by a two-piece cage.

To specify a ceramic hybrid bearing, add "C" to the part number, after the prefix that specifies precision type.





## **DIMENSIONS – TOLERANCES**All inch tolerance in .0001 units

| Bearing<br>Number |              | Во | re         |                                             |              |     | side<br>neter |                                             |              | W  | idth |                             | Maxir<br>Fillet R   | adius |      | Ball<br>plement |
|-------------------|--------------|----|------------|---------------------------------------------|--------------|-----|---------------|---------------------------------------------|--------------|----|------|-----------------------------|---------------------|-------|------|-----------------|
|                   | Nom<br>Dimer |    | +.0<br>+.( | rance<br>1000"<br><mark>Όμm</mark><br>ninus | Nom<br>Dimer |     | +.00          | rance<br>000"<br>J <mark>µm</mark><br>ninus | Nom<br>Dimei |    | +.00 | rance<br>000"<br>µm<br>inus | Bearing<br>will Cle |       |      |                 |
|                   | in.          | mm | in.        | μ <b>m</b>                                  | in.          | mm  | in.           | μ <b>m</b>                                  | in.          | mm | in.  | μ <b>m</b>                  | in.                 | mm    | Qty. | (Dia.)in.       |
| MM201K            | 0.4724       | 12 | 1.5        | 4                                           | 1.2598       | 32  | 2.5           | 6                                           | 0.0394       | 10 | 31   | 80                          | 0.024               | 0.6   | 7    | 15/64           |
| MM202K            | 0.5906       | 15 | 1.5        | 4                                           | 1.3780       | 35  | 2.5           | 6                                           | 0.4331       | 11 | 31   | 80                          | 0.024               | 0.6   | 8    | 15/64           |
| MM203K            | 0.6693       | 17 | 1.5        | 4                                           | 1.5748       | 40  | 2.5           | 6                                           | 0.4724       | 12 | 31   | 80                          | 0.024               | 0.6   | 8    | 17/64           |
| MM204K            | 0.7874       | 20 | 2.0        | 5                                           | 1.8504       | 47  | 2.5           | 6                                           | 0.5512       | 14 | 47   | 130                         | 0.039               | 1.0   | 8    | 5/16            |
| MM205K            | 0.9843       | 25 | 2.0        | 5                                           | 2.0472       | 52  | 3.0           | 7                                           | 0.5906       | 15 | 47   | 130                         | 0.039               | 1.0   | 9    | 5/16            |
| MM206K            | 1.1811       | 30 | 2.0        | 5                                           | 2.4409       | 62  | 3.0           | 7                                           | 0.6299       | 16 | 47   | 130                         | 0.039               | 1.0   | 9    | 3/8             |
| MM207K            | 1.3780       | 35 | 2.5        | 6                                           | 2.8346       | 72  | 3.0           | 7                                           | 0.6693       | 17 | 47   | 130                         | 0.039               | 1.0   | 9    | 7/16            |
| MM208K            | 1.5748       | 40 | 2.5        | 6                                           | 3.1496       | 80  | 3.0           | 7                                           | 0.7087       | 18 | 47   | 130                         | 0.039               | 1.0   | 9    | 1/2             |
| MM209K            | 1.7717       | 45 | 2.5        | 6                                           | 3.3465       | 85  | 3.0           | 8                                           | 0.7480       | 19 | 47   | 130                         | 0.039               | 1.0   | 9    | 1/2             |
| MM210K            | 1.9685       | 50 | 2.5        | 6                                           | 3.5433       | 90  | 3.0           | 8                                           | 0.7874       | 20 | 47   | 130                         | 0.039               | 1.0   | 10   | 1/2             |
| MM211K            | 2.1654       | 55 | 3.0        | 7                                           | 3.9370       | 100 | 3.0           | 8                                           | 0.8268       | 21 | 59   | 150                         | 0.059               | 1.5   | 10   | 9/16            |
| MM212K            | 2.3622       | 60 | 3.0        | 7                                           | 4.3307       | 110 | 3.0           | 8                                           | 0.8661       | 22 | 59   | 150                         | 0.059               | 1.5   | 10   | 5/8             |
| MM213K            | 2.5591       | 65 | 3.0        | 7                                           | 4.7244       | 120 | 3.0           | 8                                           | 0.9055       | 23 | 59   | 150                         | 0.059               | 1.5   | 10   | 21/32           |
| MM214K            | 2.7559       | 70 | 3.0        | 7                                           | 4.9213       | 125 | 3.5           | 9                                           | 0.9449       | 24 | 59   | 150                         | 0.059               | 1.5   | 10   | 11/16           |
| MM215K            | 2.9528       | 75 | 3.0        | 7                                           | 5.1181       | 130 | 3.5           | 9                                           | 0.9843       | 25 | 59   | 150                         | 0.059               | 1.5   | 10   | 11/16           |
| MM216K            | 3.1496       | 80 | 3.0        | 7                                           | 5.5118       | 140 | 3.5           | 9                                           | 1.0236       | 26 | 59   | 150                         | 0.079               | 2.0   | 10   | 3/4             |

<sup>\*\*</sup> ABMA std. 20 (r<sub>as max</sub>).











## Light MM200K Series Deep Groove Conrad

## PHYSICAL CHARACTERISTICS – LOAD RATINGS

| Bearing<br>Number |      | eight<br>Bearing | 1      | atic<br>Rating | Dyn    | Extended<br>Dynamic<br>Load Ratings |        |  |  |
|-------------------|------|------------------|--------|----------------|--------|-------------------------------------|--------|--|--|
|                   |      |                  |        | C <sub>o</sub> |        | $S_{ m e}$                          |        |  |  |
|                   | lbs  | kg               | Ibs    | N              | Ibs    | N                                   | RPM    |  |  |
| MM201K            | 0.08 | 0.035            | 680    | 3,000          | 1,730  | 7,700                               | 52,200 |  |  |
| MM202K            | 0.09 | 0.043            | 830    | 3,700          | 1,930  | 8,600                               | 44,000 |  |  |
| MM203K            | 0.14 | 0.062            | 1,060  | 4,700          | 2,450  | 10,900                              | 38,500 |  |  |
| MM204K            | 0.22 | 0.100            | 1,460  | 6,500          | 3,250  | 14,500                              | 32,800 |  |  |
| MM205K            | 0.27 | 0.122            | 1,760  | 7,800          | 3,600  | 16,000                              | 27,400 |  |  |
| MM206K            | 0.41 | 0.185            | 2,550  | 11,300         | 5,000  | 22,200                              | 23,000 |  |  |
| MM207K            | 0.59 | 0.267            | 3,450  | 15,300         | 6,550  | 29,100                              | 19,800 |  |  |
| MM208K            | 0.74 | 0.337            | 4,500  | 20,000         | 8,300  | 36,900                              | 17,700 |  |  |
| MM209K            | 0.83 | 0.377            | 4,550  | 20,200         | 8,300  | 36,900                              | 16,000 |  |  |
| MM210K            | 0.94 | 0.425            | 5,200  | 23,100         | 9,000  | 40,000                              | 14,600 |  |  |
| MM211K            | 1.24 | 0.564            | 6,550  | 29,100         | 11,000 | 48,900                              | 13,300 |  |  |
| MM212K            | 1.60 | 0.727            | 8,150  | 36,300         | 13,400 | 59,600                              | 12,100 |  |  |
| MM213K            | 2.05 | 0.928            | 9,000  | 40,000         | 14,600 | 64,900                              | 11,100 |  |  |
| MM214K            | 2.19 | 0.994            | 9,800  | 43,600         | 16,000 | 71,200                              | 10,500 |  |  |
| MM215K            | 2.37 | 1.074            | 10,000 | 44,500         | 16,000 | 71,200                              | 9,900  |  |  |
| MM216K            | 2.90 | 1.317            | 12,000 | 53,400         | 18,600 | 82,700                              | 9,200  |  |  |

<sup>\*</sup> Limits shown for a single row, spring preloaded and grease lubricated bearing. For standard, non-preloaded applications, do not exceed 350,000 dN.











# Light MM200K Series Deep Groove Conrad

## **Superprecision Bearings**

FTF Fundamental Train Frequency: The frequency at which the retainer will operate.

**BSF** Ball Spin Frequency: The frequency at which a single defect on a rolling element will be detected.

**BPFO** Ball Pass Frequency Outer: The frequency at which a single defect in the outer race will be detected.

**BPFI** Ball Pass Frequency Inner: The frequency at which a single defect in the inner race will be detected.

#### **FREQUENCY COEFFICIENTS**

| Bearing<br>Number | FTF                                                | BSF                    | BPFO                         | BPFI                         | FTF                                                |
|-------------------|----------------------------------------------------|------------------------|------------------------------|------------------------------|----------------------------------------------------|
|                   | Fundamental Train<br>Frequency<br>(Inner Rotation) | Ball Spin<br>Frequency | Ball Pass Frequency<br>Outer | Ball Pass Frequency<br>Inner | Fundamental Train<br>Frequency<br>(Outer Rotation) |
| MM201K            | 0.3647                                             | 1.7124                 | 2.5529                       | 4.4471                       | 0.6353                                             |
| MM202K            | 0.3809                                             | 1.9808                 | 3.0475                       | 4.9525                       | 0.6191                                             |
| MM203K            | 0.3816                                             | 1.9937                 | 3.0531                       | 4.9469                       | 0.6184                                             |
| MM204K            | 0.3815                                             | 1.9918                 | 3.0522                       | 4.9478                       | 0.6185                                             |
| MM205K            | 0.3971                                             | 2.3275                 | 3.5742                       | 5.4258                       | 0.6029                                             |
| MM206K            | 0.3965                                             | 2.3111                 | 3.5682                       | 5.4318                       | 0.6035                                             |
| MM207K            | 0.3961                                             | 2.3034                 | 3.5653                       | 5.4347                       | 0.6039                                             |
| MM208K            | 0.3942                                             | 2.2564                 | 3.5475                       | 5.4525                       | 0.6058                                             |
| MM209K            | 0.4023                                             | 2.4614                 | 3.6208                       | 5.3792                       | 0.5977                                             |
| MM210K            | 0.4093                                             | 2.6652                 | 4.0929                       | 5.9071                       | 0.5907                                             |
| MM211K            | 0.4078                                             | 2.6200                 | 4.0782                       | 5.9218                       | 0.5922                                             |
| MM212K            | 0.4066                                             | 2.5837                 | 4.0662                       | 5.9338                       | 0.5934                                             |
| MM213K            | 0.4099                                             | 2.6846                 | 4.0990                       | 5.9010                       | 0.5901                                             |
| MM214K            | 0.4104                                             | 2.7022                 | 4.1045                       | 5.8955                       | 0.5896                                             |
| MM215K            | 0.4148                                             | 2.8497                 | 4.1482                       | 5.8518                       | 0.5852                                             |
| MM216K            | 0.4134                                             | 2.8005                 | 4.1341                       | 5.8659                       | 0.5866                                             |



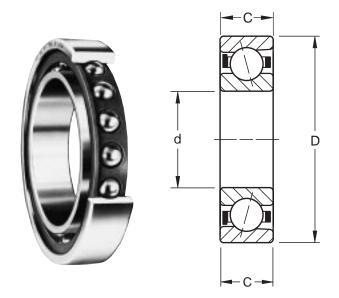











#### Superprecision MM:

Superprecision bearings are manufactured to a ABEC-7 (ISO P4) tolerance class.

#### **WI Construction:**

This design incorporates a low shoulder on the non-thrust side of the outer rings. The maximum complement of balls is separated by a one-piece cage which is piloted against the ground land of the outer ring.

To specify a ceramic hybrid bearing, add "C" to the part number, after the prefix that specifies precision type.



## DIMENSIONS - TOLERANCES All inch tolerance in .0001 units

| Bearing<br>Number |              | Bor | ·e   |                             |                      | Outs<br>Diam |                                           |     |                      | Widt | h *                                       |     | Fillet I                        | mum<br>Radius |           | all<br>Iement |
|-------------------|--------------|-----|------|-----------------------------|----------------------|--------------|-------------------------------------------|-----|----------------------|------|-------------------------------------------|-----|---------------------------------|---------------|-----------|---------------|
|                   | Nom<br>Dimer |     | +.00 | rance<br>000"<br>µm<br>inus | Nominal<br>Dimension |              | Tolerance<br>+.0000"<br>+.0µm<br>to minus |     | Nominal<br>Dimension |      | Tolerance<br>+.0000"<br>+.0µm<br>to minus |     | Bearing Corner<br>will Clear ** |               |           |               |
| 2MM & 3MM         | M in. mm in. |     | μm   | in.                         | mm                   | in.          | μ <b>m</b>                                | in. | mm                   | in.  | μ <b>m</b>                                | in. | mm                              | Qty.          | (Dia.)in. |               |
| 301WI             | 0.4724       | 12  | 1.5  | 4                           | 1.4567               | 37           | 2.5                                       | 6   | 0.4724               | 12   | 31                                        | 80  | 0.039                           | 1.0           | 8         | 9/32          |
| 302WI             | 0.5906       | 15  | 1.5  | 4                           | 1.6535               | 42           | 2.5                                       | 6   | 0.5118               | 13   | 31                                        | 80  | 0.039                           | 1.0           | 10        | 17/64         |
| 303WI             | 0.6693       | 17  | 1.5  | 4                           | 1.8504               | 47           | 2.5                                       | 6   | 0.5512               | 14   | 31                                        | 80  | 0.039                           | 1.0           | 7         | 3/8           |
| 304WI             | 0.7874       | 20  | 2.0  | 5                           | 2.0472               | 52           | 3.0                                       | 7   | 0.5906               | 15   | 47                                        | 120 | 0.039                           | 1.0           | 8         | 13/32         |
| 305WI             | 0.9843       | 25  | 2.0  | 5                           | 2.4409               | 62           | 3.0                                       | 7   | 0.6693               | 17   | 47                                        | 120 | 0.039                           | 1.0           | 9         | 15/32         |
| 306WI             | 1.1811       | 30  | 2.0  | 5                           | 2.8346               | 72           | 3.0                                       | 7   | 0.7480               | 19   | 47                                        | 120 | 0.039                           | 1.0           | 9         | 17/32         |
| 307WI             | 1.3780       | 35  | 2.5  | 6                           | 3.1496               | 80           | 3.0                                       | 7   | 0.8268               | 21   | 47                                        | 120 | 0.059                           | 1.5           | 10        | 9/16          |
| 308WI             | 1.5748       | 40  | 2.5  | 6                           | 3.5433               | 90           | 3.0                                       | 8   | 0.9055               | 23   | 47                                        | 120 | 0.059                           | 1.5           | 10        | 5/8           |
| 309WI             | 1.7717       | 45  | 2.5  | 6                           | 3.9370               | 100          | 3.0                                       | 8   | 0.9843               | 25   | 47                                        | 120 | 0.059                           | 1.5           | 10        | 11/16         |
| 310WI             | 1.9685       | 50  | 2.5  | 6                           | 4.3307               | 110          | 3.0                                       | 8   | 1.0630               | 27   | 47                                        | 120 | 0.079                           | 2.0           | 10        | 3/4           |
| 311WI             | 2.1654       | 55  | 3.0  | 7                           | 4.7244               | 120          | 3.0                                       | 8   | 1.1417               | 29   | 59                                        | 150 | 0.079                           | 2.0           | 10        | 13/16         |
| 312WI             | 2.3622       | 60  | 3.0  | 7                           | 5.1181               | 130          | 3.5                                       | 9   | 1.2205               | 31   | 59                                        | 150 | 0.079                           | 2.0           | 10        | 7/8           |
| 313WI             | 2.5591       | 65  | 3.0  | 7                           | 5.5118               | 140          | 3.5                                       | 9   | 1.2992               | 33   | 59                                        | 150 | 0.079                           | 2.0           | 11        | 15/16         |
| 314WI             | 2.7559       | 70  | 3.0  | 7                           | 5.9055               | 150          | 3.5                                       | 9   | 1.3780               | 35   | 59                                        | 150 | 0.079                           | 2.0           | 11        | 1             |
| 319WI             | 3.7402       | 95  | 3.0  | 7                           | 7.8740               | 200          | 4.0                                       | 10  | 1.7717               | 45   | 79                                        | 200 | 0.118                           | 3.0           | 10        | 1 3/8         |

<sup>\*</sup> Refer to page E4 for width tolerance of preloaded bearings.

\*\* ABMA std.  $\overline{20}$  ( $r_{as max}$ ).











## Medium 2MM300WI Series

## PHYSICAL CHARACTERISTICS - LOAD RATINGS

## RADIAL LOAD RATING AT 33 1/3 RPM Based on 1500 hours L<sub>10</sub> Life and Permissible Speed

| Bearing<br>Number |       | Weight<br>Per Bearing |        | atic<br>Rating | Dyn            | ended<br>amic<br>Ratings | Permis-<br>sible<br>Speed |     |                  |     | Preload I  | Levels ** | *           |                |      |
|-------------------|-------|-----------------------|--------|----------------|----------------|--------------------------|---------------------------|-----|------------------|-----|------------|-----------|-------------|----------------|------|
|                   |       |                       |        | $S_0$          | C <sub>e</sub> |                          | Ng *                      |     | Extralight (DUX) |     | ght<br>UL) |           | dium<br>JM) | Heavy<br>(DUH) |      |
|                   | lbs   | kg                    | lbs    | N              | lbs            | N                        | RPM                       | lbs | N                | lbs | N          | lbs       | N           | lbs            | N    |
| 2MM301WI          | 0.13  | 0.061                 | 1,060  | 4,700          | 2,550          | 11,300                   | 47,600                    | _   | _                | 5   | 20         | 15        | 70          | 40             | 180  |
| 2MM302WI          | 0.19  | 0.087                 | 1,320  | 5,900          | 2,750          | 12,200                   | 38,100                    | _   | _                | 10  | 40         | 25        | 110         | 50             | 220  |
| 2MM303WI          | 0.23  | 0.104                 | 1,630  | 7,300          | 3,900          | 17,300                   | 36,800                    | _   | _                | 15  | 70         | 35        | 160         | 70             | 310  |
| 2MM304WI          | 0.30  | 0.137                 | 2,200  | 9,800          | 5,000          | 22,200                   | 32,200                    | _   | _                | 20  | 90         | 50        | 220         | 90             | 400  |
| 2MM305WI          | 0.49  | 0.221                 | 3,450  | 15,300         | 6,950          | 30,900                   | 26,200                    | _   | _                | 35  | 160        | 75        | 330         | 140            | 620  |
| 2MM306WI          | 0.72  | 0.328                 | 4,500  | 20,000         | 8,800          | 39,100                   | 22,100                    | _   | _                | 40  | 180        | 100       | 440         | 175            | 780  |
| 2MM307WI          | 0.98  | 0.443                 | 5,700  | 25,400         | 10,600         | 47,100                   | 19,200                    | _   | _                | 50  | 220        | 125       | 560         | 225            | 1000 |
| 2MM308WI          | 1.34  | 0.608                 | 7,200  | 32,000         | 12,900         | 57,400                   | 16,900                    | _   | _                | 65  | 290        | 150       | 670         | 275            | 1220 |
| 2MM309WI          | 1.78  | 0.809                 | 8,650  | 38,500         | 15,300         | 68,100                   | 15,100                    | _   | _                | 75  | 330        | 175       | 780         | 350            | 1560 |
| 2MM310WI          | 2.31  | 1.046                 | 10,400 | 46,300         | 18,000         | 80,100                   | 13,600                    | _   | _                | 100 | 440        | 225       | 1000        | 400            | 1780 |
| 2MM311WI          | 2.94  | 1.332                 | 12,200 | 54,300         | 20,800         | 92,500                   | 12,400                    | _   | _                | 125 | 560        | 250       | 1110        | 475            | 2110 |
| 2MM312WI          | 3.67  | 1.665                 | 14,300 | 63,600         | 23,600         | 105,000                  | 11,400                    | _   | _                | 125 | 560        | 300       | 1330        | 550            | 2450 |
| 2MM313WI          | 4.63  | 2.101                 | 18,000 | 80,100         | 28,500         | 126,800                  | 10,500                    | _   | _                | 150 | 670        | 375       | 1670        | 675            | 3000 |
| 2MM314WI          | 5.62  | 2.548                 | 20,800 | 92,500         | 32,000         | 142,300                  | 9,800                     | _   | _                | 175 | 780        | 425       | 1890        | 775            | 3450 |
| 2MM319WI          | 12.32 | 5.587                 | 35,500 | 157,900        | 47,500         | 211,300                  | 7,400                     | _   | _                | 300 | 1330       | 700       | 3110        | 1400           | 6230 |

<sup>\*</sup> Limits shown for a single row, spring preloaded and grease lubricated bearing.

<sup>\*\*</sup> All ceramic hybrid bearing preloads are equivalent to the table above.











## Medium 2MM300WI Series

#### **Superprecision Bearings**

**FTF** Fundamental Train Frequency: The frequency at which the retainer will operate.

**BSF** Ball Spin Frequency: The frequency at which a single defect on a rolling element will be detected.

**BPFO** Ball Pass Frequency Outer: The frequency at which a single defect in the outer race will be detected.

**BPFI** Ball Pass Frequency Inner: The frequency at which a single defect in the inner race will be detected.

### **FREQUENCY COEFFICIENTS**

| Bearing Number | FTF<br>Fundamental Train<br>Frequency<br>(Inner Rotation) | BSF<br>Ball Spin<br>Frequency | BPFO<br>Ball Pass Frequency<br>Outer | BPFI<br>Ball Pass Frequency<br>Inner | FTF<br>Fundamental Train<br>Frequency<br>(Outer Rotation) |
|----------------|-----------------------------------------------------------|-------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------------------------|
| 2MM301WI       | 0.3594                                                    | 1.5791                        | 2.8751                               | 5.1249                               | 0.6406                                                    |
| 2MM302WI       | 0.3861                                                    | 2.0024                        | 3.8609                               | 6.1391                               | 0.6139                                                    |
| 2MM303WI       | 0.3564                                                    | 1.5411                        | 2.4946                               | 4.5054                               | 0.6436                                                    |
| 2MM304WI       | 0.3618                                                    | 1.6111                        | 2.8941                               | 5.1059                               | 0.6382                                                    |
| 2MM305WI       | 0.3681                                                    | 1.6997                        | 3.3127                               | 5.6873                               | 0.6319                                                    |
| 2MM306WI       | 0.3724                                                    | 1.7666                        | 3.3514                               | 5.6486                               | 0.6276                                                    |
| 2MM307WI       | 0.3799                                                    | 1.8962                        | 3.7990                               | 6.2010                               | 0.6201                                                    |
| 2MM308WI       | 0.3820                                                    | 1.9332                        | 3.8203                               | 6.1797                               | 0.6180                                                    |
| 2MM309WI       | 0.3837                                                    | 1.9636                        | 3.8373                               | 6.1627                               | 0.6163                                                    |
| 2MM310WI       | 0.3851                                                    | 1.9889                        | 3.8510                               | 6.1490                               | 0.6149                                                    |
| 2MM311WI       | 0.3861                                                    | 2.0099                        | 3.8606                               | 6.1394                               | 0.6139                                                    |
| 2MM312WI       | 0.3870                                                    | 2.0281                        | 3.8704                               | 6.1296                               | 0.6130                                                    |
| 2MM313WI       | 0.3879                                                    | 2.0440                        | 4.2665                               | 6.7335                               | 0.6121                                                    |
| 2MM314WI       | 0.3884                                                    | 2.0576                        | 4.2729                               | 6.7271                               | 0.6116                                                    |
| 2MM319WI       | 0.3857                                                    | 2.0013                        | 3.8570                               | 6.1430                               | 0.6143                                                    |











## **Medium** 3MM300WI Series

## PHYSICAL CHARACTERISTICS - LOAD RATINGS

#### RADIAL LOAD RATING AT 33 1/3 RPM Based on 1500 hours L<sub>10</sub> Life and Permissible Speed

| PHISICA           | L CHA         | KACII | EKISTI | C3 - LC        | AD KA                          | HINGS         |                  | Based on 1900 flours E <sub>10</sub> Elic and 1 crimissible opeco |                |     |              |                 |      |                |      |  |
|-------------------|---------------|-------|--------|----------------|--------------------------------|---------------|------------------|-------------------------------------------------------------------|----------------|-----|--------------|-----------------|------|----------------|------|--|
| Bearing<br>Number | Wei<br>Per Be | •     |        | atic<br>Rating |                                | ended<br>amic | Permis-<br>sible |                                                                   |                |     | Preload      | Levels **       |      |                |      |  |
|                   |               |       |        | $C_{o}$        | Load Ratings<br>C <sub>e</sub> |               | Speed<br>Ng *    |                                                                   | alight<br>DUX) | 1   | ight<br>OUL) | Medium<br>(DUM) |      | Heavy<br>(DUH) |      |  |
|                   | lbs           | kg    | lbs    | N              | lbs                            | N             | RPM              | lbs                                                               | N              | lbs | N            | lbs             | N    | lbs            | N    |  |
| 3MM301WI          | 0.13          | 0.061 | 1,040  | 4,600          | 2,450                          | 10,900        | 42,800           | _                                                                 | _              | 20  | 90           | 40              | 180  | 70             | 310  |  |
| 3MM302WI          | 0.19          | 0.087 | 1,270  | 5,600          | 2,600                          | 11,600        | 34,300           | _                                                                 | _              | 20  | 90           | 40              | 180  | 80             | 360  |  |
| 3MM303WI          | 0.23          | 0.104 | 1,600  | 7,100          | 3,800                          | 16,900        | 33,100           | _                                                                 | _              | 25  | 110          | 60              | 270  | 100            | 440  |  |
| 3MM304WI          | 0.30          | 0.137 | 2,160  | 9,600          | 4,800                          | 21,400        | 29,000           | _                                                                 | _              | 35  | 160          | 80              | 360  | 140            | 620  |  |
| 3MM305WI          | 0.49          | 0.221 | 3,350  | 14,900         | 6,800                          | 30,200        | 23,600           | _                                                                 | _              | 50  | 220          | 120             | 530  | 200            | 890  |  |
| 3MM306WI          | 0.72          | 0.328 | 4,300  | 19,100         | 8,500                          | 37,800        | 19,900           | _                                                                 | _              | 60  | 270          | 150             | 670  | 250            | 1110 |  |
| 3MM307WI          | 0.98          | 0.443 | 5,600  | 24,900         | 10,200                         | 45,400        | 17,300           | _                                                                 | _              | 80  | 360          | 190             | 850  | 350            | 1560 |  |
| 3MM308WI          | 1.34          | 0.608 | 6,950  | 30,900         | 12,500                         | 55,600        | 15,200           | _                                                                 | _              | 100 | 440          | 250             | 1110 | 400            | 1780 |  |
| 3MM309WI          | 1.78          | 0.808 | 8,500  | 37,800         | 14,600                         | 64,900        | 13,600           | _                                                                 | _              | 120 | 530          | 300             | 1330 | 500            | 2220 |  |
| 3MM310WI          | 2.30          | 1.045 | 10,000 | 44,500         | 17,300                         | 77,000        | 12,200           | _                                                                 | _              | 140 | 620          | 350             | 1560 | 600            | 2670 |  |
| 3MM311WI          | 2.93          | 1.331 | 11,800 | 52,500         | 20,000                         | 89,000        | 11,200           | _                                                                 | _              | 175 | 780          | 400             | 1780 | 700            | 3110 |  |
| 3MM312WI          | 3.67          | 1.663 | 13,700 | 60,900         | 22,800                         | 101,400       | 10,300           | _                                                                 | _              | 200 | 890          | 450             | 2000 | 800            | 3560 |  |
| 3MM313WI          | 4.63          | 2.099 | 17,300 | 77,000         | 27,500                         | 122,300       | 9,500            | _                                                                 | _              | 250 | 1110         | 600             | 2670 | 1000           | 4450 |  |
| 3MM314WI          | 5.61          | 2.546 | 20,000 | 89,000         | 31,000                         | 137,900       | 8,800            | _                                                                 | _              | 275 | 1220         | 650             | 2890 | 1150           | 5120 |  |
| 3MM319WI          | 12.30         | 5.581 | 34,000 | 151,200        | 45,500                         | 202,400       | 6,700            | _                                                                 | _              | 475 | 2110         | 1100            | 4890 | 2000           | 8900 |  |
|                   |               |       |        |                |                                |               |                  |                                                                   |                |     |              |                 |      |                |      |  |

<sup>\*</sup> Limits shown for a single row, spring preloaded and grease lubricated bearing.

\*\* All ceramic hybrid bearing preloads are equivalent to the table above.













### **Medium** 3MM300WI Series

### **Superprecision Bearings**

FTF Fundamental Train Frequency: The frequency at which the retainer will operate.

BSF Ball Spin Frequency: The frequency at which a single defect on a rolling element will be detected.

Ball Pass Frequency Outer: The frequency at which a single defect in the outer race will be detected.

BPFI Ball Pass Frequency Inner: The frequency at which a single defect in the inner race will be detected.

### **FREQUENCY COEFFICIENTS**

| Bearing<br>Number | FTF                                                | BSF                    | BPFO                         | BPFI                         | FTF                                                |
|-------------------|----------------------------------------------------|------------------------|------------------------------|------------------------------|----------------------------------------------------|
|                   | Fundamental Train<br>Frequency<br>(Inner Rotation) | Ball Spin<br>Frequency | Ball Pass Frequency<br>Outer | Ball Pass Frequency<br>Inner | Fundamental Train<br>Frequency<br>(Outer Rotation) |
| 3MM301WI          | 0.3678                                             | 1.5949                 | 2.9425                       | 5.0575                       | 0.6322                                             |
| 3MM302WI          | 0.3928                                             | 2.0149                 | 3.9277                       | 6.0723                       | 0.6072                                             |
| 3MM303WI          | 0.3653                                             | 1.5578                 | 2.5571                       | 4.4429                       | 0.6347                                             |
| 3MM304WI          | 0.3701                                             | 1.6268                 | 2.9611                       | 5.0389                       | 0.6299                                             |
| 3MM305WI          | 0.3761                                             | 1.7147                 | 3.3850                       | 5.6150                       | 0.6239                                             |
| 3MM306WI          | 0.3802                                             | 1.7812                 | 3.4214                       | 5.5786                       | 0.6198                                             |
| 3MM307WI          | 0.3874                                             | 1.9101                 | 3.8736                       | 6.1264                       | 0.6126                                             |
| 3MM308WI          | 0.3894                                             | 1.9470                 | 3.8936                       | 6.1064                       | 0.6106                                             |
| 3MM309WI          | 0.3910                                             | 1.9772                 | 3.9096                       | 6.0904                       | 0.6090                                             |
| 3MM310WI          | 0.3920                                             | 2.0019                 | 3.9205                       | 6.0795                       | 0.6080                                             |
| 3MM311WI          | 0.3931                                             | 2.0231                 | 3.9314                       | 6.0686                       | 0.6069                                             |
| 3MM312WI          | 0.3941                                             | 2.0412                 | 3.9405                       | 6.0595                       | 0.6059                                             |
| 3MM313WI          | 0.3947                                             | 2.0567                 | 4.3415                       | 6.6585                       | 0.6053                                             |
| 3MM314WI          | 0.3954                                             | 2.0705                 | 4.3491                       | 6.6509                       | 0.6046                                             |
| 3MM319WI          | 0.3927                                             | 2.0144                 | 3.9270                       | 6.0730                       | 0.6073                                             |











## Medium 300WI Series

### PERMISSIBLE OPERATING SPEEDS – RPM 2MM & 3MM Superprecision Angular Contact Spindle Bearings

|                            |                | GREASE |        |                                           |      |                                                       |      |                | OIL                         |                         |
|----------------------------|----------------|--------|--------|-------------------------------------------|------|-------------------------------------------------------|------|----------------|-----------------------------|-------------------------|
| 15 Degree<br>Contact Angle | (DUL)<br>Light |        |        | Grease Capacity 25 % 40 % (grams) (grams) |      | Kluber Isoflex NBU 15<br>15 % 20 %<br>(grams) (grams) |      | (DUL)<br>Light | "DB" Mou<br>(DUM)<br>Medium | nting<br>(DUH)<br>Heavy |
| 2MM301WI                   | 35,700         | 28,600 | 19,000 | 0.6                                       | 1.0  | 0.40                                                  | 0.53 | 60,700         | 48,600                      | 32,400                  |
| 2MM302WI                   | 28,600         | 22,900 | 15,200 | 0.7                                       | 1.2  | 0.49                                                  | 0.65 | 48,600         | 38,900                      | 25,900                  |
| 2MM303WI                   | 27,600         | 22,100 | 14,700 | 1.2                                       | 2.0  | 0.83                                                  | 1.10 | 46,900         | 37,500                      | 25,000                  |
| 2MM304WI                   | 24,200         | 19,300 | 12,900 | 1.5                                       | 2.5  | 1.03                                                  | 1.38 | 41,100         | 32,800                      | 21,900                  |
| 2MM305WI                   | 19,700         | 15,700 | 10,500 | 2.3                                       | 3.8  | 1.57                                                  | 2.09 | 33,400         | 26,700                      | 17,800                  |
| 2MM306WI                   | 16,600         | 13,300 | 8,800  | 3.5                                       | 5.6  | 2.35                                                  | 3.14 | 28,200         | 22,500                      | 15,000                  |
| 2MM307WI                   | 14,400         | 11,500 | 7,700  | 4.6                                       | 7.4  | 3.07                                                  | 4.10 | 24,500         | 19,600                      | 13,100                  |
| 2MM308WI                   | 12,700         | 10,100 | 6,800  | 6.4                                       | 10.2 | 4.25                                                  | 5.66 | 21,500         | 17,200                      | 11,500                  |
| 2MM309WI                   | 11,300         | 9,100  | 6,000  | 8.5                                       | 13.6 | 5.68                                                  | 7.58 | 19,300         | 15,400                      | 10,300                  |
| 2MM310WI                   | 10,200         | 8,200  | 5,400  | 11.1                                      | 17.8 | 7.4                                                   | 9.9  | 17,300         | 13,900                      | 9,200                   |
| 2MM311WI                   | 9,300          | 7,400  | 5,000  | 14.2                                      | 22.7 | 9.5                                                   | 12.6 | 15,800         | 12,600                      | 8,400                   |
| 2MM312WI                   | 8,600          | 6,800  | 4,600  | 17.7                                      | 28.3 | 11.8                                                  | 15.8 | 14,500         | 11,600                      | 7,800                   |
| 2MM313WI                   | 7,900          | 6,300  | 4,200  | 20.7                                      | 33.2 | 13.8                                                  | 18.5 | 13,400         | 10,700                      | 7,100                   |
| 2MM314WI                   | 7,400          | 5,900  | 3,900  | 25.2                                      | 40.3 | 16.8                                                  | 22.4 | 12,500         | 10,000                      | 6,700                   |
| 2MM319WI                   | 5,600          | 4,400  | 3,000  | 60.9                                      | 97.4 | 40.6                                                  | 54.1 | 9,400          | 7,500                       | 5,000                   |

Notes: For 3MM (25 Degree Contact Angle) Spindle Bearings, use 90% of the Permissible Operating Speeds above.

For other bearing configurations beside a back-to-back mounted duplex set, please refer to page E36 to calculate the permissible operating speed (Sp.).

<sup>\*</sup> For 2MMC and 3MMC Spindle Bearings, use 120% of the Permissible Operating Speeds.











### Axial Stiffness 300Wl Series (For Duplex Set\*)

### 2MM300WI SERIES

| Bore # | Light<br>(10 <sup>6</sup> LB/IN.) | Medium<br>(10 <sup>6</sup> LB/IN.) | Heavy<br>(10 <sup>6</sup> LB/IN.) |  |
|--------|-----------------------------------|------------------------------------|-----------------------------------|--|
| 00     | _                                 | _                                  |                                   |  |
| 01     | 0.100                             | 0.159                              | 0.253                             |  |
| 02     | 0.157                             | 0.234                              | 0.327                             |  |
| 03     | 0.152                             | 0.222                              | 0.312                             |  |
| 04     | 0.189                             | 0.285                              | 0.380                             |  |
| 05     | 0.264                             | 0.373                              | 0.506                             |  |
| 06     | 0.283                             | 0.427                              | 0.563                             |  |
| 07     | 0.320                             | 0.487                              | 0.654                             |  |
| 08     | 0.370                             | 0.541                              | 0.731                             |  |
| 09     | 0.401                             | 0.589                              | 0.830                             |  |
| 10     | 0.464                             | 0.671                              | 0.892                             |  |
| 11     | 0.504                             | 0.694                              | 0.956                             |  |
| 12     | 0.513                             | 0.765                              | 1.034                             |  |
| 13     | 0.596                             | 0.903                              | 1.208                             |  |
| 14     | 0.634                             | 0.951                              | 1.282                             |  |
| 15     | _                                 | _                                  | _                                 |  |
| 16     | _                                 | _                                  | _                                 |  |
| 17     | _                                 | _                                  | _                                 |  |
| 18     | _                                 | _                                  | _                                 |  |
| 19     | 0.803                             | 1.178                              | 1.660                             |  |

<sup>\*</sup> DB (back-to-back) or DF (face-to-face) arrangement only; For other mounting arrangements, contact the Torrington Engineering Department.

### 3MM300WI SERIES

| Bore # | Light<br>(10 <sup>6</sup> LB/IN.) | Medium<br>(10 <sup>6</sup> LB/IN.) | Heavy<br>(10 <sup>6</sup> LB/IN.) |  |
|--------|-----------------------------------|------------------------------------|-----------------------------------|--|
| 00     | _                                 | _                                  | _                                 |  |
| 01     | 0.335                             | 0.438                              | 0.551                             |  |
| 02     | 0.380                             | 0.496                              | 0.658                             |  |
| 03     | 0.364                             | 0.509                              | 0.626                             |  |
| 04     | 0.453                             | 0.623                              | 0.782                             |  |
| 05     | 0.581                             | 0.813                              | 1.000                             |  |
| 06     | 0.642                             | 0.911                              | 1.121                             |  |
| 07     | 0.771                             | 1.074                              | 1.378                             |  |
| 08     | 0.860                             | 1.224                              | 1.482                             |  |
| 09     | 0.949                             | 1.349                              | 1.661                             |  |
| 10     | 1.022                             | 1.453                              | 1.810                             |  |
| 11     | 1.133                             | 1.557                              | 1.956                             |  |
| 12     | 1.220                             | 1.665                              | 2.103                             |  |
| 13     | 1.425                             | 1.995                              | 2.456                             |  |
| 14     | 1.501                             | 2.087                              | 2.632                             |  |
| 15     | _                                 | _                                  | _                                 |  |
| 16     | _                                 | _                                  | _                                 |  |
| 17     | _                                 | _                                  | _                                 |  |
| 18     | _                                 | _                                  | _                                 |  |
| 19     | 1.880                             | 2.593                              | 3.306                             |  |













### Radial Stiffness 300WI Series (For Duplex Set\*)

### 2MM300WI SERIES

| Doro # | Light<br>(10 <sup>6</sup> LB/IN.) | Medium<br>(10 <sup>6</sup> LB/IN.) | Heavy<br>(10 <sup>6</sup> LB/IN.) |  |
|--------|-----------------------------------|------------------------------------|-----------------------------------|--|
| Bore # | (10° LB/IN.)                      | (10° LB/IIV.)                      | (10° LB/IIV.)                     |  |
| 01     | 0.565                             | 0.878                              | 1.048                             |  |
| 02     | 0.819                             | 0.943                              | 1.175                             |  |
| 03     | 0.843                             | 1.129                              | 1.504                             |  |
| 04     | 1.039                             | 1.332                              | 1.657                             |  |
| 05     | 1.417                             | 1.619                              | 1.949                             |  |
| 06     | 1.551                             | 1.733                              | 2.320                             |  |
| 07     | 1.852                             | 2.219                              | 2.737                             |  |
| 80     | 2.085                             | 2.245                              | 2.797                             |  |
| 09     | 2.248                             | 2.702                              | 3.364                             |  |
| 10     | 2.094                             | 2.841                              | 3.647                             |  |
| 11     | 2.189                             | 3.330                              | 4.143                             |  |
| 12     | 2.609                             | 3.615                              | 4.588                             |  |
| 13     | 2.926                             | 3.823                              | 4.840                             |  |
| 14     | 2.972                             | 4.024                              | 5.010                             |  |
| 15     | 3.356                             | 4.349                              | 5.411                             |  |
| 16     | 3.659                             | 4.718                              | 5.801                             |  |
| 17     | 3.961                             | 5.089                              | 6.336                             |  |
| 18     | 3.880                             | 5.097                              | 6.346                             |  |
| 19     | 4.156                             | 5.333                              | 6.764                             |  |

<sup>\*</sup> DB (back-to-back) or DF (face-to-face) arrangement only; For other mounting arrangements, contact the Torrington Engineering Department.

### 3MM300WI SERIES

| Bore # | Light<br>(10 <sup>6</sup> LB/IN.) | Medium<br>(10 <sup>6</sup> LB/IN.) | Heavy<br>(10 <sup>6</sup> LB/IN.) |  |
|--------|-----------------------------------|------------------------------------|-----------------------------------|--|
| 01     | 0.538                             | 0.777                              | 0.969                             |  |
| 02     | 0.663                             | 0.916                              | 1.140                             |  |
| 03     | 0.760                             | 1.169                              | 1.280                             |  |
| 04     | 0.912                             | 1.258                              | 1.448                             |  |
| 05     | 1.084                             | 1.478                              | 1.738                             |  |
| 06     | 1.298                             | 1.754                              | 2.036                             |  |
| 07     | 1.529                             | 2.064                              | 2.449                             |  |
| 08     | 1.576                             | 2.131                              | 2.424                             |  |
| 09     | 1.899                             | 2.564                              | 2.976                             |  |
| 10     | 2.059                             | 2.780                              | 3.249                             |  |
| 11     | 2.329                             | 3.143                              | 3.627                             |  |
| 12     | 2.573                             | 3.473                              | 3.974                             |  |
| 13     | 2.713                             | 3.662                              | 4.232                             |  |
| 14     | 2.818                             | 3.806                              | 4.417                             |  |
| 15     | 3.046                             | 4.112                              | 4.720                             |  |
| 16     | 3.262                             | 4.406                              | 5.115                             |  |
| 17     | 3.433                             | 4.645                              | 5.427                             |  |
| 18     | 3.481                             | 4.603                              | 5.537                             |  |
| 19     | 3.749                             | 4.715                              | 5.885                             |  |













### Spacer Offsets 300WI Series (For Duplex Set\*)

### 2MM300WI SERIES

|        | _                  |                    |
|--------|--------------------|--------------------|
| Bore # | Light to<br>Medium | Medium to<br>Heavy |
|        | (in.)              | (in.)              |
| 00     | _                  | _                  |
| 01     | 0.00031            | 0.00049            |
| 02     | 0.00031            | 0.00036            |
| 03     | 0.00043            | 0.00053            |
| 04     | 0.00051            | 0.00480            |
| 05     | 0.00050            | 0.00059            |
| 06     | 0.00068            | 0.00061            |
| 07     | 0.00074            | 0.00070            |
| 08     | 0.00075            | 0.00079            |
| 09     | 0.00081            | 0.00099            |
| 10     | 0.00088            | 0.00090            |
| 11     | 0.00084            | 0.00109            |
| 12     | 0.00110            | 0.00111            |
| 13     | 0.00120            | 0.00114            |
| 14     | 0.00127            | 0.00126            |
| 15     | _                  | _                  |
| 16     | _                  | _                  |
| 17     | _                  | _                  |
| 18     | _                  | _                  |
| 19     | 0.00040            | 0.00059            |

<sup>\*</sup> DB (back-to-back) or DF (face-to-face) arrangement only; For other mounting arrangements, contact the Torrington Engineering Department.

### 3MM300WI SERIES

| Bore # | Light to<br>Medium | Medium to<br>Heavy |
|--------|--------------------|--------------------|
|        | (in.)              | (in.)              |
| 00     | _                  | _                  |
| 01     | 0.00021            | 0.00024            |
| 02     | 0.00018            | 0.00028            |
| 03     | 0.00032            | 0.00028            |
| 04     | 0.00033            | 0.00034            |
| 05     | 0.00040            | 0.00035            |
| 06     | 0.00046            | 0.00039            |
| 07     | 0.00048            | 0.00052            |
| 08     | 0.00057            | 0.00044            |
| 09     | 0.00062            | 0.00053            |
| 10     | 0.00068            | 0.00061            |
| 11     | 0.00067            | 0.00068            |
| 12     | 0.00069            | 0.00074            |
| 13     | 0.00082            | 0.00072            |
| 14     | 0.00083            | 0.00085            |
| 15     | _                  | _                  |
| 16     | _                  | _                  |
| 17     | _                  | _                  |
| 18     | _                  | _                  |
| 19     | 0.00111            | 0.00122            |



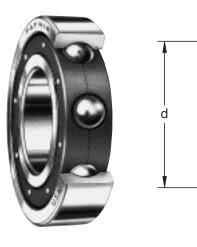


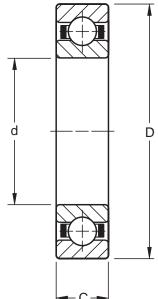






### Medium MM300K Series Deep Groove Conrad


#### Superprecision MM:


Superprecision bearings are manufactured to a ABEC-7 (ISO P4) tolerance class.

### K Construction:

This design incorporates two full shoulders on both the inner and outer rings. The complement of balls are separated by a two-piece cage.

To specify a ceramic hybrid bearing, add "C" to the part number, after the prefix that specifies precision type.





### DIMENSIONS – TOLERANCES All inch tolerance in .0001 units

| Bearing<br>Number | 9      |    |      |                                             | side<br>neter |     | Width                        |                          |        | Maximum<br>Fillet Radius |     |                               | Ball<br>Complement |                   |      |           |
|-------------------|--------|----|------|---------------------------------------------|---------------|-----|------------------------------|--------------------------|--------|--------------------------|-----|-------------------------------|--------------------|-------------------|------|-----------|
|                   |        |    | +.00 | rance<br>000"<br>J <mark>µm</mark><br>ninus |               |     | Toler<br>+.00<br>+.0<br>to m | 000"<br>μ <mark>m</mark> |        |                          | +.0 | rance<br>000"<br>0µm<br>ninus | Bearing<br>will C  | Corner<br>lear ** |      |           |
|                   | in.    | mm | in.  | μ <b>m</b>                                  | in.           | mm  | in.                          | μ <b>m</b>               | in.    | mm                       | in. | μ <b>m</b>                    | in.                | mm                | Qty. | (Dia.)in. |
| MM305K-CR         | 0.9843 | 25 | 2.0  | 5                                           | 2.4409        | 62  | 3.0                          | 7                        | 0.6693 | 17                       | 47  | 130                           | 0.039              | 1                 | 7    | 15/32     |
| MM306K-CR         | 1.1811 | 30 | 2.0  | 5                                           | 2.8346        | 72  | 3.0                          | 7                        | 0.7480 | 19                       | 47  | 130                           | 0.039              | 1                 | 7    | 17/32     |
| MM307K-CR         | 1.378  | 35 | 2.5  | 6                                           | 3.1496        | 80  | 3.0                          | 7                        | 0.8268 | 21                       | 47  | 130                           | 0.059              | 1.5               | 7    | 9/16      |
| MM308K-CR         | 1.5748 | 40 | 2.5  | 6                                           | 3.5433        | 90  | 3.0                          | 8                        | 0.9055 | 23                       | 47  | 130                           | 0.059              | 1.5               | 8    | 5/8       |
| MM309K-CR         | 1.7717 | 45 | 2.5  | 6                                           | 3.9370        | 100 | 3.0                          | 8                        | 0.9843 | 25                       | 47  | 130                           | 0.059              | 1.5               | 8    | 11/16     |
| MM310K-CR         | 1.9685 | 50 | 2.5  | 6                                           | 4.3307        | 110 | 3.0                          | 8                        | 1.0630 | 27                       | 47  | 130                           | 0.059              | 1.5               | 8    | 3/4       |
| MM311K-CR         | 2.1654 | 55 | 3.0  | 7                                           | 4.7244        | 120 | 3.0                          | 8                        | 1.1417 | 29                       | 59  | 150                           | 0.079              | 2                 | 8    | 13/16     |
| MM312K-CR         | 2.3622 | 60 | 3.0  | 7                                           | 5.1181        | 130 | 3.5                          | 9                        | 1.2205 | 31                       | 59  | 150                           | 0.079              | 2                 | 8    | 7/8       |
| MM313K-CR         | 2.5591 | 65 | 3.0  | 7                                           | 5.5118        | 140 | 3.5                          | 9                        | 1.2992 | 33                       | 59  | 150                           | 0.079              | 2                 | 8    | 15/16     |
| MM314K-CR         | 2.7559 | 70 | 3.0  | 7                                           | 5.9055        | 150 | 3.5                          | 9                        | 1.3780 | 35                       | 59  | 150                           | 0.079              | 2                 | 8    | 1         |

Two piece inner ring-piloted composition cage is standard. Check for availability.

<sup>\*\*</sup> ABMA std. 20  $(r_{as max})$ .











### Medium MM300K Series Deep Groove Conrad

### RADIAL LOAD RATING AT 33 $1\!/3$ RPM Based on 1500 Hours L<sub>10</sub> Life and Permissible Speed

| Bearing<br>Number | Weight<br>Per Bearing |       | Static<br>Load Rating<br>C <sub>o</sub> |        | Exto<br>Dyr<br>Load R | Permissible<br>Speed <sup>(2)</sup><br>(grease) |        |
|-------------------|-----------------------|-------|-----------------------------------------|--------|-----------------------|-------------------------------------------------|--------|
|                   | lbs                   | kg    | lbs                                     | N      | lbs                   | N                                               | RPM    |
| MM305K-CR         | 0.49                  | 0.222 | 2,750                                   | 12,200 | 6000                  | 26,700                                          | 26,500 |
| MM306K-CR         | 0.72                  | 0.327 | 3,550                                   | 15,800 | 7,650                 | 34,000                                          | 22,300 |
| MM307K-CR         | 0.95                  | 0.431 | 4,150                                   | 18,500 | 8,500                 | 37,800                                          | 19,400 |
| MM308K-CR         | 1.31                  | 0.594 | 5,100                                   | 22,700 | 10,400                | 46,300                                          | 17,100 |
| MM309K-CR         | 1.78                  | 0.807 | 7,100                                   | 31,600 | 13,400                | 59,600                                          | 15,200 |
| MM310K-CR         | 2.32                  | 1.052 | 8,500                                   | 37,800 | 15,600                | 69,400                                          | 13,800 |
| MM311K-CR         | 2.93                  | 1.329 | 10,000                                  | 44,500 | 18,300                | 81,400                                          | 12,500 |
| MM312K-CR         | 3.67                  | 1.665 | 11,600                                  | 51,600 | 20,800                | 92,500                                          | 11,500 |
| MM313K-CR         | 4.51                  | 2.046 | 13,400                                  | 59,600 | 23,600                | 105,000                                         | 10,700 |
| MM314K-CR         | 5.48                  | 2.486 | 15,300                                  | 68,100 | 26,000                | 115,600                                         | 9,900  |

 $<sup>^{(1)}</sup>$   $C_{\rm e}$  should be used for calculating bearing life only, and should not be confused with  $C_{\rm 0}$  which is the maximum radial load a bearing can safely support.

For standard, non-preloaded applications, do not exceed 350,000 dN.

<sup>(2)</sup> Limits shown for a single row, spring preloaded and grease lubricated bearing.











### Medium MM300K Series Deep Groove Conrad

### **Superprecision Bearings**

**FTF** Fundamental Train Frequency: The frequency at which the retainer will operate.

**BSF** Ball Spin Frequency: The frequency at which a single defect on a rolling element will be detected.

**BPFO** Ball Pass Frequency Outer: The frequency at which a single defect in the outer race will be detected.

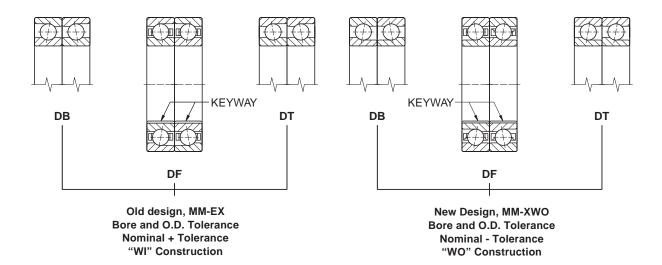
**BPFI** Ball Pass Frequency Inner: The frequency at which a single defect in the inner race will be detected.

#### **FREQUENCY COEFFICIENTS**

| Bearing Number | FTF<br>Fundamental Train<br>Frequency | BSF<br>Ball Spin<br>Frequency | BPFO<br>Ball Pass Frequency<br>Outer | BPFI<br>Ball Pass Frequency<br>Inner |
|----------------|---------------------------------------|-------------------------------|--------------------------------------|--------------------------------------|
| MM301K         | 0.354                                 | 1.569                         | 2.125                                | 3.875                                |
| MM302K         | 0.382                                 | 1.994                         | 3.053                                | 4.947                                |
| MM303K         | 0.351                                 | 1.531                         | 2.107                                | 3.893                                |
| MM304K         | 0.357                                 | 1.601                         | 2.140                                | 3.860                                |
| MM305K         | 0.363                                 | 1.690                         | 2.542                                | 4.458                                |
| MM306K         | 0.368                                 | 1.757                         | 2.574                                | 4.426                                |
| MM307K         | 0.376                                 | 1.888                         | 2.630                                | 4.370                                |
| MM308K         | 0.378                                 | 1.925                         | 2.645                                | 4.355                                |
| MM309K         | 0.380                                 | 1.955                         | 3.037                                | 4.963                                |
| MM310K         | 0.381                                 | 1.981                         | 3.047                                | 4.953                                |
| MM311K         | 0.382                                 | 2.002                         | 3.057                                | 4.943                                |
| MM312K         | 0.383                                 | 2.020                         | 3.064                                | 4.936                                |
| MM313K         | 0.384                                 | 2.036                         | 3.071                                | 4.929                                |
| MM314K         | 0.385                                 | 2.050                         | 3.076                                | 4.924                                |

### **Ex-Cell-O Spindle Bearings**

The original bearing design developed by Ex-Cell-O for use in their spindles incorporated inch dimensions and had bore and O.D. tolerances which were nominal to plus. The "EX" series of bearings are designed to meet Ex-Cell-O replacement requirements. These bearings are Fafnir WI construction.


More recently, Ex-Cell-O established a bearing design with the same inch boundary dimensions, but with bore and O.D. tolerances nominal to minus. These bearings are the Fafnir WO separable construction and the series is designated "XWO."

Spindle shaft and housing diameters were toleranced by Ex-Cell-O to properly fit each of their bearing series.

Repairing older spindles with the new style bearing, or newer spindles with the old style bearing without reworking of shafts and housings can result in improper shaft and housing fits. Measurement of shafts and housings, or reconditioning of parts should determine what style bearing is proper replacement.

The charts which follow show the physical dimensions and part number interchange of Ex-Cell-O bearings. The preload section should be based on the operating speed and the lubrication system of the spindle.

#### FAFNIR MM-EX AND MM-XWO BEARINGS FOR REPLACEMENT ON EX-CELL-O SPINDLES



**Note:** These bearings not intended for new design applications. Consult your local Torrington Company Engineering Sales office

# MM-EX Replacement Bearings For Ex-Cell-O Spindles

| Fafnir<br>Bearing Number | Ex-CeII-O<br>Part No. | Preload<br>lbs. | Bore<br>(in.) | 0.D.<br>(in.) | Width of<br>Pair (in.) | Maximum Speed (RPM) |
|--------------------------|-----------------------|-----------------|---------------|---------------|------------------------|---------------------|
| MM20EXCR DU FS223        | 20                    | 0               | 0.3752/.3750  | 1.1252/1.1250 | 0.6875/.6775           | 65000               |
| MM30EXCR DU FS223        | 30                    | 0               | 0.6252/.6250  | 1.5002/1.5000 | 1.0000/9900            | 35000               |
| MM30EXCR DU 5 #          | 30                    | 5               | 0.6252/.6250  | 1.5002/1.5000 | 1.0000/9900            | 25000               |
| MM50EXCR DU FS223        | 50                    | 0               | 0.8127/.8125  | 2.0002/2.0000 | 1.0000/9900            | 30000               |
| MM50EXCR DU 10 #         | 50                    | 10              | 0.8127/.8125  | 2.0002/2.0000 | 1.0000/9900            | 18000               |
| MM50EXCR DU 50 #         | 50                    | 50              | 0.8127/.8125  | 2.0002/2.0000 | 1.0000/9900            | 5000                |
| *MM55EXCR DU 10 #        | 55                    | 10              | 0.8127/.8125  | 2.0002/2.0000 | 1.0000/9900            | 22000               |
| MM57EXCR DU FS223        | 57                    | 0               | 1.0627/1.0625 | 2.2502/2.2500 | 1.0000/9900            | 30000               |
| MM57EXCR DU 10 #         | 57                    | 10              | 1.0627/1.0625 | 2.2502/2.2500 | 1.0000/9900            | 15000               |
| MM57EXCR DU 50 #         | 57                    | 50              | 1.0627/1.0625 | 2.2502/2.2500 | 1.0000/9900            | 5000                |
| MM67EXCR DU FS223        | 67                    | 0               | 1.2502/1.2500 | 2.4377/2.4375 | 1.2500/1.2400          | 30000               |
| MM67EXCR DU 10 #         | 67                    | 10              | 1.2502/1.2500 | 2.4377/2.4375 | 1.2500/1.2400          | 12500               |
| MM67EXCR DU 30 #         | 67                    | 30              | 1.2502/1.2500 | 2.4377/2.4375 | 1.2500/1.2400          | 7500                |
| MM67EXCR DU 75 #         | 67                    | 75              | 1.2502/1.2500 | 2.4377/2.4375 | 1.2500/1.2400          | 4500                |
| MM90EXCR DU 20 #         | 90                    | 20              | 1.6252/1.6250 | 3.4377/3.4375 | 1.6250/1.6150          | 10000               |
| MM90EXCR DU 100 #        | 90                    | 100             | 1.6252/1.6250 | 3.4377/3.4375 | 1.6250/1.6150          | 4500                |
| MM90EXCR DU 150 #        | 90                    | 150             | 1.6252/1.6250 | 3.4377/3.4375 | 1.6250/1.6150          | 2700                |
| MM90EXCR DU 250 #        | 90                    | 250             | 1.6252/1.6250 | 3.4377/3.4375 | 1.6250/1.6150          | 900                 |
| **MM92EXCR DU 20 #       | 92                    | 20              | 1.7502/1.7500 | 3.4377/3.4375 | 1.6250/1.6150          | 12000               |
| **MM92EXCR DU 100 #      | 92                    | 100             | 1.7502/1.7500 | 3.4377/3.4375 | 1.6250/1.6150          | 4500                |
| **MM92EXCR DU 150 #      | 92                    | 150             | 1.7502/1.7500 | 3.4377/3.4375 | 1.6250/1.6150          | 2700                |
| **MM92EXCR DU 250 #      | 92                    | 250             | 1.7502/1.7500 | 3.4377/3.4375 | 1.6250/1.6150          | 900                 |
| MM115EXCR DU 30 #        | 115                   | 30              | 2.2502/2.2500 | 4.7502/4.7500 | 2.2500/2.2400          | 5000                |
| MM115EXCR DU 250 #       | 115                   | 250             | 2.2502/2.2500 | 4.7502/4.7500 | 2.2500/2.2400          | 3600                |
| MM115EXCR DU 350 #       | 115                   | 350             | 2.2502/2.2500 | 4.7502/4.7500 | 2.2500/2.2400          | 1800                |
| MM135EXCR DU 20 #        | 135                   | 20              | 1.2502/1.2500 | 2.6877/2.6875 | 1.2500/1.2400          | 8000                |
| MM135EXCR DU 75 #        | 135                   | 75              | 1.2502/1.2500 | 2.6877/2.6875 | 1.2500/1.2400          | 4000                |
| MM155EXCR DU 150 #       | 155                   | 150             | 2.7502/2.7500 | 4.7502/4.7500 | 2.2500/2.2400          | 4000                |
| MM155EXCR DU 300 #       | 155                   | 300             | 2.7502/2.7500 | 4.7502/4.7500 | 2.2500/2.2400          | 1800                |
| MM165EXCR DU 200 #       | 165                   | 200             | 3.5002/3.5000 | 6.3127/6.3125 | 3.0000/2.9900          | 2800                |
| MM165EXCR DU 400 #       | 165                   | 400             | 3.5002/3.5000 | 6.3127/6.3125 | 3.0000/2.9900          | 1200                |

<sup>\*</sup> Four slots in outer ring faces.

FS-223 Zero to negative preload.

Do not interchange with MM-XWO.

MM-XWO produced to nominal minus tolerance.

**MM-EX** produced to nominal plus tolerance.

<sup>\*\*</sup> No keyway in bore.

### MM-XWO Replacement Bearings For Ex-Cell-O Spindles

| Fafnir              | Ex-Cell-O   | Preload | Bore            | 0.D.          | Width of     | N      | /laximum Spe | ed    |
|---------------------|-------------|---------|-----------------|---------------|--------------|--------|--------------|-------|
| Bearing Number      | Part No.    | lbs.    | (in.)           | (in.)         | Pair (in.)   | Grease | Oil          | Mist  |
| MM20XWOCRDU E9103A  | XLO 20-107  | 0       | 0.37500/.37485  | 1.1250/1.1248 | 0.6875/.6675 | 40000  | 65000        | 80000 |
| MM30XWOCRDU E9103C  | XLO 30-57   | 10      | 0.62500/.62485  | 1.5000/1.4998 | 1.000/.980   | 27000  | 30000        | 35000 |
| MM30XWOCRDU E9103A  | XLO 30-107  | 0       | 0.62500/.62485  | 1.5000/1.4998 | 1.000/.980   | 35000  | 40000        | 60000 |
| MM55XWOCRDU E9103E  | XLO 55-27   | 50      | 0.81250/.81235  | 2.0000/1.9998 | 1.000/.980   | 5000   | 8000         | 12000 |
| MM55XWOCRDU E9103C  | XLO 55-57   | 20      | 0.81250/.81235  | 2.0000/1.9998 | 1.000/.980   | 20000  | 22000        | 24000 |
| MM55XWOCRDU E9103A  | XLO 55-107  | 0       | 0.81250/.81235  | 2.0000/1.9998 | 1.000/.980   | 24000  | 27000        | 45000 |
| MM57XWOCRDU E9103F  | XLO 57-17   | 100     | 1.06250/1.06235 | 2.2500/2.2498 | 1.000/.980   | 2000   | 4000         | 6000  |
| MM57XWOCRDU E9103C  | XLO 57-57   | 20      | 1.06250/1.06235 | 2.2500/2.2498 | 1.000/.980   | 18000  | 20000        | 22000 |
| MM57XWOCRDU E9103A  | XLO 57-107  | 0       | 1.06250/1.06235 | 2.2500/2.2498 | 1.000/.980   | 22000  | 25000        | 35000 |
| MM67XWOCRDU E9103F  | XLO 67-17   | 90      | 1.2500/1.2498   | 2.4375/2.4373 | 1.250/1.230  | 36000  | 4500         | 6000  |
| MM67XWOCRDU E9103C  | XLO 67-57   | 20      | 1.2500/1.2498   | 2.4375/2.4373 | 1.250/1.230  | 12500  | 15000        | 20000 |
| MM67XWOCRDU E9103A  | XLO 67-107  | 0       | 1.2500/1.2498   | 2.4375/2.4373 | 1.250/1.230  | 16000  | 20000        | 30000 |
| MM90XWOCRDU E9103F  | XLO 90-17   | 250     | 1.6250/1.6248   | 3.4375/3.4372 | 1.625/1.605  | 1000   | 2000         | 4000  |
| MM90XWOCRDU E9103D  | XLO 90-47   | 175     | 1.6250/1.6248   | 3.4375/3.4372 | 1.625/1.605  | 3000   | 5000         | 8000  |
| MM90XWOCRDU E9103C  | XLO 90-57   | 100     | 1.6250/1.6248   | 3.4375/3.4372 | 1.625/1.605  | 5000   | 7000         | 11000 |
| MM90XWOCRDU E9103A  | XLO 90-77   | 20      | 1.6250/1.6248   | 3.4375/3.4372 | 1.625/1.605  | 10000  | 14000        | 20000 |
| MM115XWOCRDU E9103E | XLO 115-27  | 300     | 2.2500/2.2498   | 4.7500/4.7496 | 2.250/2.230  | 1000   | 2000         | 3000  |
| MM115XWOCRDU E9103C | XLO 115-47  | 150     | 2.2500/2.2498   | 4.7500/4.7496 | 2.250/2.230  | 3000   | 4500         | 7000  |
| MM115XWOCRDU E9103A | XLO 115-77  | 30      | 2.2500/2.2498   | 4.7500/4.7496 | 2.250/2.230  | 6000   | 8000         | 15000 |
| MM135XWOCRDU E9103C | XLO 135-67  | 50      | 1.2500/1.2498   | 2.6875/2.6873 | 1.250/1.230  | 6000   | 7000         | 12000 |
| MM135XWOCRDU E9103A | XLO 135-107 | 0       | 1.2500/1.2498   | 2.6875/2.6873 | 1.250/1.230  | 15000  | 19000        | 28000 |
| MM155XWOCRDU E9103D | XLO 155-37  | 300     | 2.7500/2.7498   | 4.7500/4.7496 | 2.250/2.230  | 1000   | 2000         | 3000  |
| MM155XWOCRDU E9103B | XLO 155-67  | 150     | 2.7500/2.7498   | 4.7500/4.7496 | 2.250/2.230  | 4000   | 5000         | 6500  |
| MM155XWOCRDU E9103A | XLO 155-87  | 50      | 2.7500/2.7498   | 4.7500/4.7496 | 2.250/2.230  | 6000   | 7000         | 10000 |
| MM165XWOCRDU E9103E | XLO 165-27  | 800     | 3.50000/3.49975 | 6.3125/6.3121 | 3.000/2.980  | 500    | 1000         | 2000  |
| MM165XWOCRDU E9103C | XLO 165-57  | 250     | 3.50000/3.49975 | 6.3125/6.3121 | 3.000/2.980  | 2000   | 3000         | 5000  |
| MM165XWOCRDU E9103A | XLO 165-87  | 50      | 3.50000/3.49975 | 6.3125/6.3121 | 3.000/2.980  | 5000   | 6500         | 9000  |

Do not interchange with MM-EX.

**MM-XWO** produced to nominal minus tolerance.

 $\ensuremath{\mathbf{MM-EX}}$  produced to nominal plus tolerance.

<sup>\*</sup> Standard preload levels are shown. Other preload variations are attainable by spacer adjustment.

### **Ceramic Hybrid Bearings**

A ceramic hybrid bearing is a combination of ceramic balls with standard steel rings and retainer material appropriate for the application.



### **Ceramic Bearing Benefits**

#### • High Speed

Up to three million DN with reduced skidding, wear and heat generation; grease-lubricated hybrids up to one million DN.

### • Extended Fatigue Life

Three to five times greater than steel when properly applied.

#### • Marginal Lubrication

Unique tribological features enhance operation under low lubrication conditions and extend life and speed capabilities of lubricants.

### • Corrosion resistance

Virtually inert silicone nitride resists corrosion and galling while thin-dense-chrome (TDC) coating may be used to enhance hybrid results.

#### • High Stiffness

Modulus of elasticity 50 percent greater than steel increases bearing rigidity.

#### Low Torque

Low friction, even under marginal lubrication, with extremely fine surface finishes of .1 to .2 micro-inch AA.

#### Long Wear Life

High hardness of Rc78 greatly extends bearing wear characteristics.

#### • Light Weight

60 percent lighter than steel, reducing centrifugal forces and overall system weight.

#### Special Properties

All silicon nitride components are:

- non-magnetic
- electrically insulative

#### Increased Speed

Provides over a 20% increased speed factor over steel balls.

### **Applications**

#### Aerospace

- gas and air turbines
- gearboxes
- auxiliary power units/generators
- valves and nozzles

#### Machine Tools

- ultra and high-speed milling spindles
- ultra and high-speed grinding spindles
- extended life units

#### Instruments

- gyro, gimbal and platform
- spectroscopy

#### Biotechnology

- rotating anode
- medical centrifuge

#### Defense

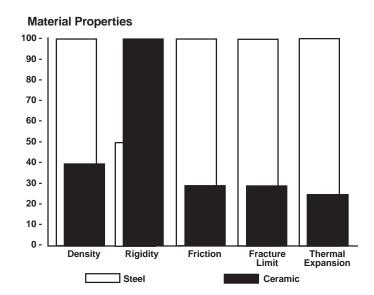
- space
- radar
- missiles

#### Automotive

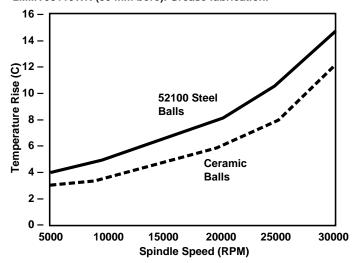
turbochargers

#### General Industry

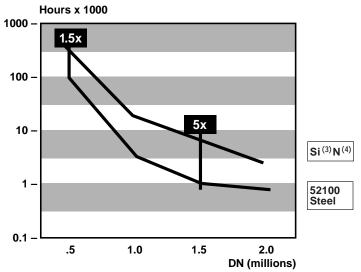
- pumps and compressors
- reactors and mixers
- chemical processing
- cryogenic

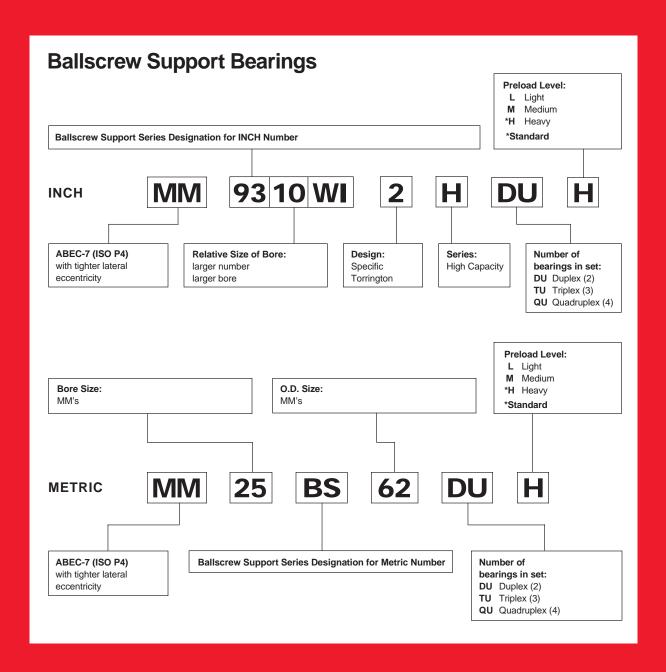

Industry's present day applications place demands on machinery that could not be imagined as little as a decade ago.

Machinery is expected to be more efficient, reliable, faster and last longer with less maintenance. In the future, even the great reliability and wide versatility of the standard Torrington steel bearing may be challenged.


By incorporating ceramic and state-of-the-art bearing technology, The Torrington Company has developed the hybrid ceramic bearing. Designed with increased speed capabilities, the hybrid ceramic bearing features a higher elastic modulus for greater stiffness. Its lower friction characteristics result in less skidding than the all-steel bearing.

The Torrington Company Sales Engineering professional in your area can assist you in determining if the hybrid ceramic bearing is suitable for your application.


When ordering a ceramic hybrid bearing add "C" to the part number after the prefix that specifies precision type, i.e. 2MMVC9110HX or 2MMVC99110WN.




Temperature vs Speed 2MMV99110WN (50 mm bore). Grease lubrication.



Life vs Ball Material 2MMV99110WN DUL (DB Mounting)





### FAFNIR BALLSCREW SUPPORT BEARINGS

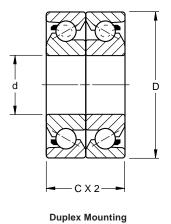
BALLSCREW SUPPORT BEARINGS

### **Ballscrew Support Bearings**

To meet the requirements of the servo-controlled machinery field, Torrington has developed a new series of ball bearings specially designed for ballscrew applications. Design criteria for these bearings with maximum axial rigidity, low drag torque, and extreme control of lateral eccentricity.

These bearings are manufactured to ABEC-7 tolerances and are of the nonseparable angular-contact type design with a 60° contact angle and maximum complement of balls. These bearings are supplied prelubricated with heavy duty grease NLGI #2 . Bearings are supplied packaged in DB arrangement. However, they can be mounted in duplexed pairs and in multiplexed sets in either Back-to-Back (DB), Face-to-Face (DF) or Tandem (DT) arrangements.

Standard sizes are available and are stocked and packaged as duplex pairs, triplex sets or quadruplex sets. These bearings are designed primarily for ballscrew applications and should not be considered in other areas such as spindles or gear-box shafting without approval by our Engineering Department. These bearings are offered in both standard inch and metric envelope dimensions.




### DIMENSIONS – TOLERANCES All inch tolerance in .0001 units

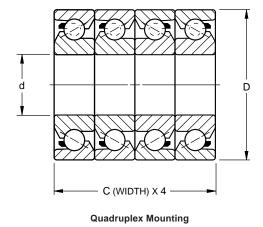
| Bearing<br>Number    |                  | Bor      | e          |                                      |                  | Out:<br>Dian |            |                      |                  | (Single) | Width *  |                     | Fillet         | imum<br>Radius      | Ba<br>Compl |                                      |
|----------------------|------------------|----------|------------|--------------------------------------|------------------|--------------|------------|----------------------|------------------|----------|----------|---------------------|----------------|---------------------|-------------|--------------------------------------|
|                      | Nom<br>Dimei     |          | +.0        | erance<br>1000"<br>O <mark>µm</mark> | Nom<br>Dimer     |              | +.0        | rance<br>000"<br>Dum | Nom<br>Dimei     |          | +.00     | rance<br>000"<br>µm |                | g Corner<br>lear ** |             |                                      |
|                      | d                |          |            | ninus                                | D                | 1            | I          | ninus                | C                | ;        |          | inus                |                |                     |             | Dia.                                 |
|                      | in.              | mm       | in.        | μm                                   | in.              | mm           | in.        | μm                   | in.              | mm       | in.      | μm                  | in.            | mm                  | Qty.        | in.                                  |
| MM9306WI2H           | 0.7874           | 20       | 2.0        | 5                                    | 1.8504           | 47           | 2.5        | 6                    | 0.6250           | 15.9     | 50       | 130                 | 0.031          | 0.8                 | 12          | 5/16                                 |
| MM17BS47<br>MM20BS47 | 0.6693<br>0.7874 | 17<br>20 | 1.5<br>2.0 | 4<br>5                               | 1.8504<br>1.8504 | 47<br>47     | 2.5<br>2.5 | 6<br>6               | 0.5906<br>0.5906 | 15<br>15 | 32<br>50 | 80<br>130           | 0.031<br>0.031 | 0.8<br>0.8          | 12<br>12    | 5/16<br>5/16                         |
|                      |                  |          |            |                                      |                  |              |            |                      |                  |          |          |                     |                |                     |             |                                      |
| MM25BS52             | 0.0983           | 25       | 2.0        | 5                                    | 2.0472           | 52           | 3.0        | 7                    | 0.5906           | 15       | 50       | 130                 | 0.031          | 8.0                 | 13          | 5/16                                 |
| MM9308WI2H           | 0.9385           | 23.8     | 2.0        | 5                                    | 2.4409           | 62           | 3.0        | 7                    | 0.6250           | 15.9     | 50       | 130                 | 0.031          | 8.0                 | 17          | <sup>5</sup> /16                     |
| MM25BS62             | 0.9843           | 25<br>30 | 2.0<br>2.0 | 5<br>5                               | 2.4409           | 62<br>62     | 3.0        | 7<br>7               | 0.5906           | 15<br>15 | 50<br>50 | 130                 | 0.031          | 0.8                 | 17          | <sup>5</sup> /16<br><sup>5</sup> /16 |
| MM30BS62             | 1.1811           |          |            |                                      | 2.4409           |              | 3.0        |                      | 0.5906           |          |          | 130                 | 0.031          | 8.0                 | 17          |                                      |
| MM9310WI2H           | 1.5000           | 38.1     | 2.5        | 6                                    | 2.8346           | 72           | 3.0        | 7                    | 0.6250           | 15.9     | 50       | 130                 | 0.031          | 0.8                 | 18          | 11/32                                |
| MM30BS72<br>MM35BS72 | 1.1811<br>1.3780 | 30<br>35 | 2.0<br>2.5 | 5<br>6                               | 2.8346<br>2.8346 | 72<br>72     | 3.0<br>3.0 | 7<br>7               | 0.5906<br>0.5906 | 15<br>15 | 50<br>50 | 130<br>130          | 0.031<br>0.031 | 0.8<br>0.8          | 18<br>18    | 11/3 <u>2</u><br>11/32               |
| MM40BS72             | 1.5748           | 40       | 2.5        | 6                                    | 2.8346           | 72           | 3.0        | 7                    | 0.5906           | 15       | 50       | 130                 | 0.031          | 0.8                 | 18          | 11/32                                |
| MM9311WI3H           | 1.7510           | 44.5     | 2.5        | 6                                    | 3.0000           | 76.2         | 3.0        | 7                    | 0.6250           | 15.9     | 50       | 130                 | 0.031          | 0.8                 | 20          | 11/32                                |
| MM45BS75             | 1.7717           | 44.5     | 2.5        | 6                                    | 2.9528           | 76.2<br>75   | 3.0        | 7                    | 0.0230           | 15.4     | 50       | 130                 | 0.031          | 0.8                 | 20          | 11/32                                |
| MM9313WI5H           | 2.2500           | 57.2     | 3.0        | 7                                    | 3.5433           | 90           | 3.0        | 8                    | 0.6250           | 15.9     | 60       | 150                 | 0.031          | 0.8                 | 24          | 11/32                                |
| MM40BS90             | 1.5748           | 40       | 2.5        | 6                                    | 3.5433           | 90           | 3.0        | 8                    | 0.6230           | 15.9     | 50       | 130                 | 0.031          | 0.8                 | 24          | 11/32                                |
| MM50BS90             | 1.9685           | 50       | 2.5        | 6                                    | 3.5433           | 90           | 3.0        | 8                    | 0.5906           | 15       | 50       | 130                 | 0.031          | 0.8                 | 24          | 11/32                                |
| MM55BS90             | 2.1654           | 55       | 3.0        | 7                                    | 3.5433           | 90           | 3.0        | 8                    | 0.5906           | 15       | 60       | 150                 | 0.031          | 0.8                 | 24          | 11/32                                |
| MM35BS100            | 1.3780           | 35       | 2.5        | 6                                    | 3.9370           | 100          | 3.0        | 8                    | 0.7874           | 20       | 50       | 130                 | 0.031          | 0.8                 | 18          | 1/2                                  |
| MM40BS100            | 1.5748           | 40       | 2.5        | 6                                    | 3.9370           | 100          | 3.0        | 8                    | 0.7874           | 20       | 50       | 130                 | 0.031          | 0.8                 | 18          | 1/2                                  |
| MM45BS100            | 1.7717           | 45       | 2.5        | 6                                    | 3.9370           | 100          | 3.0        | 8                    | 0.7874           | 20       | 50       | 130                 | 0.031          | 0.8                 | 18          | 1/2                                  |
| MM50BS100            | 1.9685           | 50       | 2.5        | 6                                    | 3.9370           | 100          | 3.0        | 8                    | 0.7874           | 20       | 50       | 130                 | 0.031          | 8.0                 | 18          | 1/2                                  |
| MM9316WI3H           | 3.0000           | 76.2     | 3.0        | 7                                    | 4.3307           | 110          | 3.0        | 8                    | 0.6250           | 15.9     | 60       | 150                 | 0.031          | 0.8                 | 30          | 11/32                                |
| MM75BS110            | 2.9528           | 75       | 3.0        | 7                                    | 4.3307           | 110          | 3.0        | 8                    | 0.5906           | 15       | 60       | 150                 | 0.031          | 0.8                 | 30          | 11/32                                |
| MM55BS120            | 2.1654           | 55       | 3.0        | 7                                    | 4.7244           | 120          | 3.0        | 8                    | 0.7874           | 20       | 60       | 150                 | 0.039          | 1.0                 | 21          | 1/2                                  |
| MM60BS120            | 2.3622           | 60       | 3.0        | 7                                    | 4.7244           | 120          | 3.0        | 8                    | 0.7874           | 20       | 60       | 150                 | 0.039          | 1.0                 | 21          | 1/2                                  |
| MM9321WI3            | 4.0000           | 101.6    | 3.0        | 8                                    | 5.7087           | 145          | 3.5        | 9                    | 0.8750           | 22.2     | 80       | 210                 | 0.039          | 1.0                 | 37          | 3/8                                  |
| MM100BS150           | 3.9370           | 100      | 3.0        | 8                                    | 5.9055           | 150          | 3.5        | 9                    | 0.7874           | 20       | 60       | 150                 | 0.039          | 1.0                 | 26          | 1/2                                  |
| MM9326WI6H           | 5.0000           | 127      | 3.0        | 8                                    | 7.0866           | 180          | 4.0        | 10                   | 0.8750           | 22.2     | 100      | 260                 | 0.039          | 1.0                 | 35          | 1/2                                  |

<sup>\*</sup> Refer to E4 page for width tolerance of preloaded bearings.

<sup>\*\*</sup> ABMA std. 20 ( $r_{as max}$ ).



### PHYSICAL CHARACTERISTICS – LOAD RATINGS


### RADIAL LOAD RATING AT 33 $1\!\!/ 3$ RPM Based on 1500 hours L 10 Life and Permissible Speed

| Bearing<br>Number |      | eight<br>earing | I .    | niting Thrust<br>pacity | Dynam  | d Thrust<br>ic Axial<br>Ratings | Maximum<br>Speed |                        | Spring<br>stant     |        | orque of<br>ded Set | Preloa       | d *   |
|-------------------|------|-----------------|--------|-------------------------|--------|---------------------------------|------------------|------------------------|---------------------|--------|---------------------|--------------|-------|
|                   |      |                 |        | TI                      | C,     | ae                              |                  |                        |                     |        |                     | Heav<br>(DUF | ,     |
| DUPLEX            | lbs  | kg              | lbs    | N                       | lbs    | N                               | RPM              | 10 <sup>6</sup> lbs/in | 10 <sup>6</sup> N/m | in-lbs | N-m                 | lbs(per set) | N     |
| MM9306WI2HDUH     | 0.28 | 0.129           | 5,600  | 24,900                  | 5,600  | 24,900                          | 4,400            | 4.3                    | 750                 | 2.83   | 0.320               | 700          | 3110  |
| MM17BS47DUH       | 0.29 | 0.132           | 5,600  | 24,900                  | 5,600  | 24,900                          | 4,400            | 4.3                    | 750                 | 2.83   | 0.320               | 700          | 3110  |
| MM20BS47DUH       | 0.27 | 0.122           | 5,600  | 24,900                  | 5,600  | 24,900                          | 4,400            | 4.3                    | 750                 | 2.83   | 0.320               | 700          | 3110  |
| MM25BS52DUH       | 0.31 | 0.140           | 6,100  | 27,100                  | 5,850  | 26,000                          | 4,400            | 4.4                    | 780                 | 2.17   | 0.245               | 600          | 2700  |
| MM9308WI2HDUH     | 0.56 | 0.252           | 8,000  | 35,600                  | 6,700  | 29,800                          | 3,200            | 6.0                    | 1050                | 3.89   | 0.439               | 1000         | 4450  |
| MM25BS62DUH       | 0.51 | 0.233           | 8,000  | 35,600                  | 6,700  | 29,800                          | 3,200            | 6.0                    | 1050                | 3.89   | 0.439               | 1000         | 4450  |
| MM30BS62DUH       | 0.46 | 0.208           | 8,000  | 35,600                  | 6,700  | 29,800                          | 3,200            | 6.0                    | 1050                | 3.89   | 0.439               | 1000         | 4450  |
| MM9310WI2HDUH     | 0.62 | 0.281           | 10,200 | 45,400                  | 8,150  | 36,300                          | 2,500            | 7.2                    | 1260                | 3.89   | 0.439               | 1400         | 6230  |
| MM30BS72DUH       | 0.70 | 0.317           | 10,200 | 45,400                  | 8,150  | 36,300                          | 2,500            | 7.2                    | 1260                | 3.89   | 0.439               | 1400         | 6230  |
| MM35BS72DUH       | 0.63 | 0.287           | 10,200 | 45,400                  | 8,150  | 36,300                          | 2,500            | 7.2                    | 1260                | 3.89   | 0.439               | 1400         | 6230  |
| MM40BS72DUH       | 0.56 | 0.252           | 10,200 | 45,400                  | 8,150  | 36,300                          | 2,500            | 7.2                    | 1260                | 3.89   | 0.439               | 1400         | 6230  |
| MM9311WI3HDUH     | 0.63 | 0.284           | 11,400 | 50,700                  | 8,650  | 38,500                          | 2,100            | 7.9                    | 1380                | 4.96   | 0.560               | 1500         | 6670  |
| MM45BS75DUH       | 0.55 | 0.248           | 11,400 | 50,700                  | 8,650  | 38,500                          | 2,100            | 7.9                    | 1380                | 4.96   | 0.560               | 1500         | 6670  |
| MM9313WI5HDUH     | 0.80 | 0.361           | 13,700 | 60,900                  | 9,300  | 41,400                          | 2,000            | 9.5                    | 1660                | 7.26   | 0.820               | 1800         | 8010  |
| MM40BS90DUH       | 1.09 | 0.496           | 13,700 | 60,900                  | 9,300  | 41,400                          | 2,000            | 9.5                    | 1660                | 7.26   | 0.820               | 1800         | 8010  |
| MM50BS90DUH       | 0.91 | 0.413           | 13,700 | 60,900                  | 9,300  | 41,400                          | 2,000            | 9.5                    | 1660                | 7.26   | 0.820               | 1800         | 8010  |
| MM55BS90DUH       | 0.80 | 0.364           | 13,700 | 60,900                  | 9,300  | 41,400                          | 2,000            | 9.5                    | 1660                | 7.26   | 0.820               | 1800         | 8010  |
| MM35BS100DUH      | 1.90 | 0.862           | 21,000 | 93,400                  | 16,000 | 71,200                          | 1,700            | 10.0                   | 1750                | 9.03   | 1.020               | 1            | 12900 |
| MM40BS100DUH      | 1.80 | 0.816           | 21,000 | 93,400                  | 16,000 | 71,200                          | 1,700            | 10.0                   | 1750                | 9.03   | 1.020               |              | 12900 |
| MM45BS100DUH      | 1.68 | 0.763           | 21,000 | 93,400                  | 16,000 | 71,200                          | 1,700            | 10.0                   | 1750                | 9.03   | 1.020               |              | 12900 |
| MM50BS100DUH      | 1.55 | 0.705           | 21,000 | 93,400                  | 16,000 | 71,200                          | 1,700            | 10.0                   | 1750                | 9.03   | 1.020               |              | 12900 |
| MM9316WI3HDUH     | 1.04 | 0.472           | 17,300 | 77,000                  | 10,000 | 44,500                          | 1,400            | 11.9                   | 2080                | 8.85   | 1.000               | 2200         | 9790  |
| MM75BS110DUH      | 1.02 | 0.463           | 17,300 | 77,000                  | 10,000 | 44,500                          | 1,400            | 11.9                   | 2080                | 8.85   | 1.000               | 2200         | 9790  |
| MM55BS120DUH      | 2.49 | 1.128           | 30,000 | 133,400                 | 17,000 | 75,600                          | 1,400            | 12.3                   | 2150                | 12.04  | 1.360               | 3500         | 15570 |
| MM60BS120DUH      | 2.33 | 1.058           | 30,000 | 133,400                 | 17,000 | 75,600                          | 1,400            | 12.3                   | 2150                | 12.04  | 1.360               | 3500         | 15570 |
| MM9321WI3DUH      | 2.60 | 1.178           | 26,000 | 115,600                 | 12,900 | 57,400                          | 1,000            | 19.4                   | 3400                | 19.30  | 2.180               |              | 21350 |
| MM100BS150DUH     | 2.83 | 1.282           | 26,000 | 115,600                 | 12,900 | 57,400                          | 1,000            | 19.4                   | 3400                | 19.30  | 2.180               |              | 21350 |
| MM9326WI6HDUH     | 3.85 | 1.748           | 42,000 | 186,800                 | 21,200 | 94,300                          | 750              | 20.7                   | 3620                | 35.10  | 3.966               | 6000         | 26690 |

<sup>\*</sup> Heavy preload is the standard.

### **Ball Screw Support Series**

The recommended maximum limitations on ballscrew bearing speed limits are based on 50% active duty cycle and a ten minute total cycle period. Speed limitations may be increased somewhat with lighter duty cycles. Please consult our Engineering Department regarding bearing speeds and duty cycles.



### PHYSICAL CHARACTERISTICS - LOAD RATINGS

### RADIAL LOAD RATING AT 33 $1\!\!/ 3$ RPM Based on 1500 hours L $_{10}$ Life and Permissible Speed

| Bearing<br>Number |      | eight<br>Searing | Static Limit<br>Capa | •       | Dynan  | ed Thrust<br>nic Axial<br>Ratings | Maximum<br>Speed |                        | Spring<br>stant     |        | orque of<br>ded Set | Preload      | d *   |
|-------------------|------|------------------|----------------------|---------|--------|-----------------------------------|------------------|------------------------|---------------------|--------|---------------------|--------------|-------|
|                   |      |                  |                      | П       | (      | Sae                               |                  |                        |                     |        |                     | Heav<br>(QUH | ,     |
| Quadruplex        | lbs  | kg               | lbs                  | N       | lbs    | N                                 | RPM              | 10 <sup>6</sup> lbs/in | 10 <sup>6</sup> N/m | in-lbs | N-m                 | lbs(per set) | N     |
| MM9306WI2HQUH     | 0.28 | 0.129            | 11,200               | 49,800  | 9,100  | 40,500                            | 3,700            | 8.6                    | 1510                | 5.66   | 0.639               | 1400         | 6230  |
| MM17BS47QUH       | 0.29 | 0.132            | 11,200               | 49,800  | 9,100  | 40,500                            | 3,700            | 8.6                    | 1510                | 5.66   | 0.639               | 1400         | 6230  |
| MM20BS47QUH       | 0.27 | 0.122            | 11,200               | 49,800  | 9,100  | 40,500                            | 3,700            | 8.6                    | 1510                | 5.66   | 0.639               | 1400         | 6230  |
| MM25BS52QUH       | 0.31 | 0.140            | 12,200               | 54,300  | 9,500  | 42,300                            | 3,700            | 8.9                    | 1560                | 4.34   | 0.490               | 1200         | 5400  |
| MM9308WI2HQUH     | 0.56 | 0.252            | 16,000               | 71,200  | 10,900 | 48,500                            | 2,700            | 12.0                   | 2100                | 7.78   | 0.879               | 2000         | 8900  |
| MM25BS62QUH       | 0.51 | 0.233            | 16,000               | 71,200  | 10,900 | 48,500                            | 2,700            | 12.0                   | 2100                | 7.78   | 0.879               | 2000         | 8900  |
| MM30BS62QUH       | 0.46 | 0.208            | 16,000               | 71,200  | 10,900 | 48,500                            | 2,700            | 12.0                   | 2100                | 7.78   | 0.879               | 2000         | 8900  |
| MM9310WI2HQUH     | 0.62 | 0.281            | 20,400               | 90,700  | 13,200 | 58,700                            | 2,100            | 14.4                   | 2520                | 7.78   | 0.879               | 2800         | 12450 |
| MM30BS72QUH       | 0.70 | 0.317            | 20,400               | 90,700  | 13,200 | 58,700                            | 2,100            | 14.4                   | 2520                | 7.78   | 0.879               | 2800         | 12450 |
| MM35BS72QUH       | 0.63 | 0.287            | 20,400               | 90,700  | 13,200 | 58,700                            | 2,100            | 14.4                   | 2520                | 7.78   | 0.879               | 2800         | 12450 |
| MM40BS72QUH       | 0.56 | 0.252            | 20,400               | 90,700  | 13,200 | 58,700                            | 2,100            | 14.4                   | 2520                | 7.78   | 0.879               | 2800         | 12450 |
| MM9311WI3HQUH     | 0.63 | 0.284            | 22,800               | 101,400 | 14,100 | 62,700                            | 1,800            | 15.8                   | 2770                | 9.92   | 1.121               | 3000         | 13340 |
| MM45BS75QUH       | 0.55 | 0.248            | 22,800               | 101,400 | 14,100 | 62,700                            | 1,800            | 15.8                   | 2770                | 9.92   | 1.121               | 3000         | 13340 |
| MM9313WI5HQUH     | 0.80 | 0.361            | 27,400               | 121,900 | 15,100 | 67,200                            | 1,700            | 19.0                   | 3330                | 14.52  | 1.640               | 3600         | 16010 |
| MM40BS90QUH       | 1.09 | 0.496            | 27,400               | 121,900 | 15,100 | 67,200                            | 1,700            | 19.0                   | 3330                | 14.52  | 1.640               | 3600         | 16010 |
| MM50BS90QUH       | 0.91 | 0.413            | 27,400               | 121,900 | 15,100 | 67,200                            | 1,700            | 19.0                   | 3330                | 14.52  | 1.640               | 3600         | 16010 |
| MM55BS90QUH       | 0.80 | 0.364            | 27,400               | 121,900 | 15,100 | 67,200                            | 1,700            | 19.0                   | 3330                | 14.52  | 1.640               | 3600         | 16010 |
| MM35BS100QUH      | 1.90 | 0.862            | 42,000               | 186,800 | 26,000 | 115,600                           | 1,400            | 20.0                   | 3500                | 18.06  | 2.040               | 5800         | 25800 |
| MM40BS100QUH      | 1.80 | 0.816            | 42,000               | 186,800 | 26,000 | 115,600                           | 1,400            | 20.0                   | 3500                | 18.06  | 2.040               | 5800         | 25800 |
| MM45BS100QUH      | 1.68 | 0.763            | 42,000               | 186,800 | 26,000 | 115,600                           | 1,400            | 20.0                   | 3500                | 18.06  | 2.040               | 5800         | 25800 |
| MM50BS100QUH      | 1.55 | 0.705            | 42,000               | 186,800 | 26,000 | 115,600                           | 1,400            | 20.0                   | 3500                | 18.06  | 2.040               | 5800         | 25800 |
| MM9316WI3HQUH     | 1.04 | 0.472            | 34,600               | 153,900 | 16,200 | 72,100                            | 1,200            | 23.8                   | 4170                | 17.70  | 2.000               | 4400         | 19570 |
| MM75BS110QUH      | 1.02 | 0.463            | 34,600               | 153,900 | 16,200 | 72,100                            | 1,200            | 23.8                   | 4170                | 17.70  | 2.000               | 4400         | 19570 |
| MM55BS120QUH      | 2.49 | 1.128            | 60,000               | 266,900 | 27,600 | 122,800                           | 1,200            | 24.6                   | 4310                | 24.08  | 2.721               | 7000         | 31140 |
| MM60BS120QUH      | 2.33 | 1.058            | 60,000               | 266,900 | 27,600 | 122,800                           | 1,200            | 24.6                   | 4310                | 24.08  | 2.721               | 7000         | 31140 |
| MM9321WI3QUH      | 2.60 | 1.178            | 52,000               | 231,300 | 21,000 | 93,400                            | 900              | 38.8                   | 6790                | 38.60  | 4.361               | 9600         | 42700 |
| MM100BS150QUH     | 2.83 | 1.284            | 52,000               | 231,300 | 21,000 | 93,400                            | 900              | 38.8                   | 6790                | 38.60  | 4.361               | 9600         | 42700 |
| MM9326WI6HQUH     | 3.85 | 1.748            | 84,000               | 373,600 | 34,400 | 153,000                           | 600              | 41.4                   | 7250                | 70.20  | 7.931               | 12000        | 53380 |

<sup>\*</sup> Heavy preload is the standard.

### **Ball Screw Support Series**

### **Superprecision Bearings**

FTF Fundamental Train Frequency: The frequency at which the retainer will operate.

**BSF** Ball Spin Frequency: The frequency at which a single defect on a rolling element will be detected.

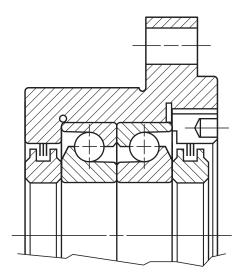
**BPFO** Ball Pass Frequency Outer: The frequency at which a single defect in the outer race will be detected.

**BPFI** Ball Pass Frequency Inner: The frequency at which a single defect in the inner race will be detected.

### FREQUENCY COEFFICIENTS

| Bearing<br>Number | FTF                                                | BSF                    | BPFO                         | BPFI                         | FTF                                                |
|-------------------|----------------------------------------------------|------------------------|------------------------------|------------------------------|----------------------------------------------------|
|                   | Fundamental Train<br>Frequency<br>(Inner Rotation) | Ball Spin<br>Frequency | Ball Pass Frequency<br>Outer | Ball Pass Frequency<br>Inner | Fundamental Train<br>Frequency<br>(Outer Rotation) |
| MM9306WI2H        | 0.4362                                             | 2.1044                 | 5.2349                       | 6.7651                       | 0.5638                                             |
| MM17BS47          | 0.4362                                             | 2.1044                 | 5.2349                       | 6.7651                       | 0.5638                                             |
| MM20BS47          | 0.4362                                             | 2.1044                 | 5.2349                       | 6.7651                       | 0.5638                                             |
| MM25BS52          | 0.4423                                             | 2.3307                 | 5.7494                       | 7.2506                       | 0.5577                                             |
| MM9308WI2H        | 0.4554                                             | 3.0307                 | 7.7410                       | 9.2590                       | 0.5446                                             |
| MM25BS62          | 0.4554                                             | 3.0307                 | 7.7410                       | 9.2590                       | 0.5446                                             |
| MM30BS62          | 0.4554                                             | 3.0307                 | 7.7410                       | 9.2590                       | 0.5446                                             |
| MM9310WI2H        | 0.4569                                             | 3.1286                 | 8.2244                       | 9.7756                       | 0.5431                                             |
| MM30BS72          | 0.4569                                             | 3.1286                 | 8.2244                       | 9.7756                       | 0.5431                                             |
| MM35BS72          | 0.4569                                             | 3.1286                 | 8.2244                       | 9.7756                       | 0.5431                                             |
| MM40BS72          | 0.4569                                             | 3.1286                 | 8.2244                       | 9.7756                       | 0.5431                                             |
| MM9311WI3H        | 0.4605                                             | 3.4145                 | 9.2094                       | 10.7906                      | 0.5395                                             |
| MM45BS75          | 0.4605                                             | 3.4145                 | 9.2094                       | 10.7906                      | 0.5395                                             |
| MM9313WI5H        | 0.4676                                             | 4.1773                 | 11.2230                      | 12.7770                      | 0.5324                                             |
| MM40BS90          | 0.4676                                             | 4.1773                 | 11.2230                      | 12.7770                      | 0.5324                                             |
| MM50BS90          | 0.4676                                             | 4.1773                 | 11.2230                      | 12.7770                      | 0.5324                                             |
| MM55BS90          | 0.4676                                             | 4.1773                 | 11.2230                      | 12.7770                      | 0.5324                                             |
| MM35BS100         | 0.4564                                             | 3.0983                 | 8.2159                       | 9.7841                       | 0.5436                                             |
| MM40BS100         | 0.4564                                             | 3.0983                 | 8.2159                       | 9.7841                       | 0.5436                                             |
| MM45BS100         | 0.4564                                             | 3.0983                 | 8.2159                       | 9.7841                       | 0.5436                                             |
| MM50BS100         | 0.4564                                             | 3.0983                 | 8.2159                       | 9.7841                       | 0.5436                                             |
| MM9316WI3H        | 0.4747                                             | 5.3492                 | 14.2402                      | 15.7598                      | 0.5253                                             |
| MM75BS110         | 0.4747                                             | 5.3492                 | 14.2402                      | 15.7598                      | 0.5253                                             |
| MM55BS120         | 0.4644                                             | 3.7967                 | 9.7516                       | 11.2484                      | 0.5356                                             |
| MM60BS120         | 0.4644                                             | 3.7967                 | 9.7516                       | 11.2484                      | 0.5356                                             |
| MM9321WI3         | 0.4794                                             | 6.4615                 | 17.7378                      | 19.2622                      | 0.5206                                             |
| MM100BS150        | 0.4790                                             | 6.4611                 | 17.7226                      | 19.2774                      | 0.5210                                             |
| MM9326WI6H        | 0.4778                                             | 6.1209                 | 16.7239                      | 18.2761                      | 0.5222                                             |

### BSBU D Standard and Heavy Duty Bearings


The BSBU D series of bearing cartridge units were designed and developed to give the machine manufacturer a ready made unit providing excellent stiffness and accuracy in ballscrew applications. The unit incorporates a flange enabling it to be bolted to a flat surface perpendicular to the ballscrew axis.

These units combine the features of MM-BS-DU (Duplex) ballscrew bearings with an accurately manufactured housing and laminar ring seals.

Each unit is prepacked with a measured quantity of high quality bearing grease and requires no further lubrication.


Units are supplied with the bearings in pairs or quad sets mounted in the "DB" ("O") arrangement. Other bearing arrangements can be accommodated if required and in these cases please contact us with details of your requirements.

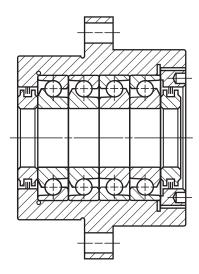
Consult our Engineering Department for recommended shaft and housing fits.



### STANDARD SERIES – DIMENSIONAL TOLERANCES $\pm$ 0.005" ( $\pm$ .13 MM) UNLESS OTHERWISE STATED.

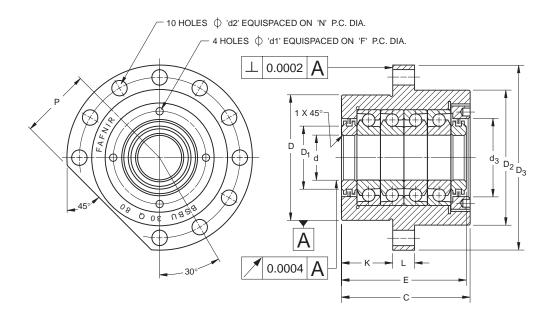
| Shaft<br>Diam. | Unit<br>Number | С    | d                | d <sub>1</sub> | d <sub>2</sub> | $d_3$ | D                | D <sub>1</sub> | D <sub>2</sub> | D <sub>3</sub> | E              | F    | K    | L    | N     | Р    | Wt.  |
|----------------|----------------|------|------------------|----------------|----------------|-------|------------------|----------------|----------------|----------------|----------------|------|------|------|-------|------|------|
|                |                | in.  | in.              | in.            | in.            | in.   | in.              | in.            | in.            | in.            | in.            | in.  | in.  | in.  | in.   | in.  | lbs. |
| mm             |                | mm   | mm               | mm             | mm             | mm    | mm               | mm             | mm             | mm             | mm             | mm   | mm   | mm   | mm    | mm   | kg   |
| 17             | BSBU17D60      | 1.85 | 0.6693<br>0.6691 | 0.17           | 0.26           | 1.42  | 2.3622<br>2.3617 | 1.02           | 2.52           | 3.54           | 1.742<br>1.702 | 1.67 | 1.26 | 0.51 | 2.99  | 1.26 | 2.42 |
|                |                | 47.0 | 17.000<br>16.996 | 4.3            | 6.6            | 36.0  | 60.000<br>59.987 | 26.0           | 64.0           | 90.0           | 44.26<br>43.24 | 42.5 | 32.0 | 13.0 | 76.0  | 32.0 | 1.1  |
| 20             | BSBU20D60      | 1.85 | 0.7874<br>0.7872 | 0.17           | 0.26           | 1.42  | 2.3622<br>2.3617 | 1.02           | 2.52           | 3.54           | 1.742<br>1.702 | 1.67 | 1.26 | 0.51 | 2.99  | 1.26 | 2.42 |
|                |                | 47.0 | 20.000<br>19.996 | 4.3            | 6.6            | 36.0  | 60.000<br>59.987 | 26.0           | 64.0           | 90.0           | 44.26<br>43.24 | 42.5 | 32.0 | 13.0 | 76.0  | 32.0 | 1.1  |
| 25             | BSBU25D80      | 2.05 | 0.9842<br>0.9841 | 0.17           | 0.36           | 1.97  | 3.1496<br>3.1491 | 1.57           | 3.46           | 4.72           | 1.979<br>1.938 | 2.34 | 1.26 | 0.59 | 4.02  | 1.73 | 5.06 |
|                |                | 52.0 | 25.000<br>24.996 | 4.3            | 9.2            | 50.0  | 80.000<br>79.987 | 40.0           | 88.0           | 120.0          | 50.26<br>49.24 | 59.5 | 32.0 | 15.0 | 102.0 | 44.0 | 2.3  |
| 30             | BSBU30D80      | 2.05 | 1.1811<br>1.1809 | 0.17           | 0.36           | 1.97  | 3.1496<br>3.1491 | 1.57           | 3.46           | 4.72           | 1.979<br>1.938 | 2.34 | 1.26 | 0.59 | 4.02  | 1.73 | 4.84 |
|                |                | 52.0 | 30.000<br>29.996 | 4.3            | 9.2            | 50.0  | 80.000<br>79.987 | 40.0           | 88.0           | 120.0          | 50.26<br>49.24 | 59.5 | 32.0 | 15.0 | 102.0 | 44.0 | 2.2  |
| 35             | BSBU35D90      | 2.05 | 1.378<br>1.3778  | 0.17           | 0.36           | 2.36  | 3.5433<br>3.5427 | 1.81           | 3.86           | 5.12           | 1.979<br>1.938 | 2.62 | 1.26 | 0.59 | 4.45  | 1.93 | 7.04 |
|                |                | 52.0 | 35.000<br>34.995 | 4.3            | 9.2            | 60    | 90.000<br>89.985 | 46             | 98             | 130            | 50.26<br>49.24 | 66.5 | 32.0 | 15.0 | 113.0 | 49   | 3.2  |
| 40             | BSBU40D90      | 2.05 | 1.5748<br>1.5746 | 0.17           | 0.36           | 2.36  | 3.5433<br>3.5427 | 1.81           | 3.86           | 5.12           | 1.979<br>1.938 | 2.62 | 1.26 | 0.59 | 4.45  | 1.93 | 6.82 |
|                |                | 52.0 | 40.000<br>39.995 | 4.3            | 9.2            | 60.0  | 90.000<br>89.985 | 46.0           | 98             | 130.0          | 50.26<br>49.24 | 66.5 | 32.0 | 15.0 | 113.0 | 49   | 3.1  |




### HEAVY DUTY SERIES – DIMENSIONAL TOLERANCES $\pm$ 0.005" ( $\pm$ .13 MM) UNLESS OTHERWISE STATED.

| Shaft<br>Diam. | Unit<br>Number | С    | d                | d <sub>1</sub> | $d_2$ | $d_3$ | D                  | $D_1$ | $D_2$ | $D_3$ | E              | F    | K    | L    | N     | Р    | Wt.    |
|----------------|----------------|------|------------------|----------------|-------|-------|--------------------|-------|-------|-------|----------------|------|------|------|-------|------|--------|
|                |                | in.  | in.              | in.            | in.   | in.   | in.                | in.   | in.   | in.   | in.            | in.  | in.  | in.  | in.   | in.  | lbs.   |
| mm             |                | mm   | mm               | mm             | mm    | mm    | mm                 | mm    | mm    | mm    | mm             | mm   | mm   | mm   | mm    | mm   | kg     |
| 35             | BSBU35D124     | 2.6  | 1.3780<br>1.3778 | 0.21           | 0.45  | 2.99  | 4.8819<br>4.8812   | 2.6   | 5.04  | 6.5   | 2.530<br>2.490 | 3.54 | 1.71 | 0.67 | 5.75  | 2.52 | 13.86  |
|                |                | 66.0 | 35.000<br>34.995 | 5.3            | 11.4  | 76.0  | 124.000<br>123.982 | 66.0  | 128   | 165.0 | 64.26<br>63.24 | 90.0 | 43.5 | 17.0 | 146.0 | 64.0 | 6.3    |
| 40             | BSBU40D124     | 2.6  | 1.5748<br>1.5746 | 0.21           | 0.45  | 2.99  | 4.8819<br>4.8812   | 2.6   | 5.04  | 6.5   | 2.530<br>2.490 | 3.54 | 1.71 | 0.67 | 5.75  | 2.52 | 13.42  |
|                |                | 66.0 | 40.000<br>39.995 | 5.3            | 11.4  | 76.0  | 124.000<br>123.982 | 66.0  | 128   | 165.0 | 64.26<br>63.24 | 90.0 | 43.5 | 17.0 | 146.0 | 64.0 | 6.1    |
| 45             | BSBU45D124     | 2.6  | 1.7716<br>1.7714 | 0.21           | 0.45  | 2.99  | 4.8819<br>4.8812   | 2.6   | 5.04  | 6.5   | 2.530<br>2.490 | 3.54 | 1.71 | 0.67 | 5.75  | 2.52 | 13.2   |
|                |                | 66.0 | 45.000<br>44.995 | 5.3            | 11.4  | 76.0  | 124.000<br>123.982 | 66.0  | 128   | 165.0 | 64.26<br>63.24 | 90.0 | 43.5 | 17.0 | 146.0 | 64.0 | 6.0    |
| 50             | BSBU50D124     | 2.6  | 1.9685<br>1.9683 | 0.21           | 0.45  | 2.99  | 4.8819<br>4.8812   | 2.6   | 5.04  | 6.5   | 2.530<br>2.490 | 3.54 | 1.71 | 0.67 | 5.75  | 2.52 | 12.898 |
|                |                | 66.0 | 50.000<br>49.995 | 5.3            | 11.4  | 76.0  | 124.000<br>123.982 | 66.0  | 128   | 165.0 | 64.26<br>63.24 | 90.0 | 43.5 | 17.0 | 146.0 | 64.0 | 5.9    |

### BSBU Q Standard and Heavy Duty Bearings


The BSBU Q series are similar in design and features to the BSBU D series except MM-BS-QU Quadruplex bearings are used.

Consult our Engineering Department for recommended shaft and housing fits.



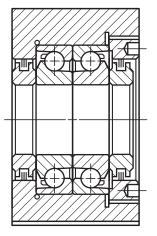
### STANDARD SERIES - DIMENSIONAL TOLERANCES ±.005" (±.13 mm) UNLESS OTHERWISE STATED

| Shaft<br>Diam. | Unit<br>Number | С    | d                | d <sub>1</sub> | d <sub>2</sub> | d <sub>3</sub> | D                | D <sub>1</sub> | D <sub>2</sub> | D <sub>3</sub> | E              | F    | K    | L    | N     | Р    | Wt.   |
|----------------|----------------|------|------------------|----------------|----------------|----------------|------------------|----------------|----------------|----------------|----------------|------|------|------|-------|------|-------|
|                |                | in.  | in.              | in.            | in.            | in.            | in.              | in.            | in.            | in.            | in.            | in.  | in.  | in.  | in.   | in.  | lbs.  |
| mm             |                | mm   | mm               | mm             | mm             | mm             | mm               | mm             | mm             | mm             | mm             | mm   | mm   | mm   | mm    | mm   | kg    |
| 17             | BSBU17Q60      | 3.03 | 0.6693<br>0.6690 | 0.17           | 0.26           | 1.42           | 2.3622<br>2.3617 | 1.02           | 2.52           | 3.54           | 2.924<br>2.864 | 1.67 | 1.26 | 0.51 | 2.99  | 1.26 | 3.74  |
|                |                | 77.0 | 17.000<br>16.993 | 4.3            | 6.6            | 36.0           | 60.000<br>59.987 | 26.0           | 64.0           | 90.0           | 74.26<br>72.74 | 42.5 | 32.0 | 13.0 | 76.0  | 32.0 | 1.7   |
| 20             | BSBU20Q60      | 3.03 | 0.7874<br>0.7872 | 0.17           | 0.26           | 1.42           | 2.3622<br>2.3617 | 1.02           | 2.52           | 3.54           | 2.924<br>2.864 | 1.67 | 1.26 | 0.51 | 2.99  | 1.26 | 3.74  |
|                |                | 77.0 | 20.000<br>19.996 | 4.3            | 6.6            | 36.0           | 60.000<br>59.987 | 26.0           | 64.0           | 90.0           | 74.26<br>72.74 | 42.5 | 32.0 | 13.0 | 76.0  | 32.0 | 1.7   |
| 25             | BSBU25Q80      | 3.23 | 0.9842<br>0.9841 | 0.17           | 0.36           | 1.97           | 3.1496<br>3.1491 | 1.57           | 3.46           | 4.72           | 3.160<br>3.100 | 2.34 | 1.26 | 0.59 | 4.02  | 1.73 | 7.7   |
|                |                | 82.0 | 25.000<br>24.996 | 4.3            | 9.2            | 50.0           | 80.000<br>79.987 | 40.0           | 88.0           | 120.0          | 80.26<br>78.74 | 59.5 | 32.0 | 15.0 | 102.0 | 44.0 | 3.5   |
| 30             | BSBU30Q80      | 3.23 | 1.1811<br>1.1809 | 0.17           | 0.36           | 1.97           | 3.1496<br>3.1491 | 1.57           | 3.46           | 4.72           | 3.160<br>3.100 | 2.34 | 1.26 | 0.59 | 4.02  | 1.73 | 7.48  |
|                |                | 82.0 | 30.000<br>29.995 | 4.3            | 9.2            | 50.0           | 80.000<br>79.987 | 40.0           | 88.0           | 120.0          | 80.26<br>78.74 | 59.5 | 32.0 | 15.0 | 102.0 | 44.0 | 3.4   |
| 35             | BSBU35Q90      | 3.23 | 1.3780<br>1.3778 | 0.17           | 0.36           | 2.36           | 3.5433<br>3.5427 | 1.81           | 3.86           | 5.12           | 3.160<br>3.100 | 2.62 | 1.26 | 0.59 | 4.45  | 1.93 | 10.12 |
|                |                | 82.0 | 40.000<br>39.000 | 4.3            | 9.2            | 60             | 90.000<br>89.985 | 46             | 98             | 130            | 80.26<br>78.74 | 66.5 | 32.0 | 15.0 | 113.0 | 49   | 4.6   |
| 40             | BSBU40Q90      | 3.23 | 1.5748<br>1.5746 | 0.17           | 0.36           | 2.36           | 3.5433<br>3.5427 | 1.81           | 3.86           | 5.12           | 3.160<br>3.100 | 2.62 | 1.26 | 0.59 | 4.45  | 1.93 | 9.9   |
|                |                | 82.0 | 40.000<br>39.995 | 4.3            | 9.2            | 60.0           | 90.000<br>89.985 | 46.0           | 98             | 130.0          | 80.26<br>78.74 | 66.5 | 32.0 | 15.0 | 113.0 | 49   | 4.5   |



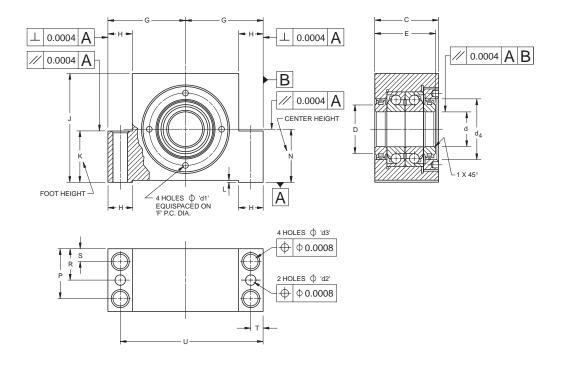
### HEAVY DUTY SERIES - DIMENSIONAL TOLERANCES ±.005" (±.13 mm) UNLESS OTHERWISE STATED

| Shaft<br>Diam. | Unit<br>Number | С        | d      | $d_1$ | $d_2$ | $d_3$ | D       | $D_1$ | $D_2$ | $D_3$ | E      | F    | K    | L    | N     | Р    | Wt.   |
|----------------|----------------|----------|--------|-------|-------|-------|---------|-------|-------|-------|--------|------|------|------|-------|------|-------|
| Diam.          | IVAIIIDCI      | <b>.</b> |        |       |       |       |         |       |       |       |        |      |      |      |       |      |       |
|                |                | in.      | in.    | in.   | in.   | in.   | in.     | in.   | in.   | in.   | in.    | in.  | in.  | in.  | in.   | in.  | lbs.  |
| mm             |                | mm       | mm     | mm    | mm    | mm    | mm      | mm    | mm    | mm    | mm     | mm   | mm   | mm   | mm    | mm   | kg    |
| 35             | BSBU35Q124     | 4.17     | 1.3780 | 0.21  | 0.45  | 2.99  | 4.8819  | 2.6   | 5.04  | 6.5   | 4.105  | 3.54 | 1.71 | 0.67 | 5.75  | 2.52 | 22.22 |
|                |                |          | 1.3778 |       |       |       | 4.8812  |       |       |       | 4.045  |      |      |      |       |      |       |
|                |                | 106.0    | 35.000 | 5.3   | 11.4  | 76.0  | 124.000 | 66.0  | 128   | 165.0 | 104.26 | 90.0 | 43.5 | 17.0 | 146.0 | 64.0 | 10.1  |
|                |                |          | 34.995 |       |       |       | 123.982 |       |       |       | 102.74 |      |      |      |       |      |       |
| 40             | BSBU40Q124     | 4.17     | 1.5748 | 0.21  | 0.45  | 2.99  | 4.8819  | 2.6   | 5.04  | 6.5   | 4.105  | 3.54 | 1.71 | 0.67 | 5.75  | 2.52 | 21.34 |
|                |                |          | 1.5746 |       |       |       | 4.8812  |       |       |       | 4.045  |      |      |      |       |      |       |
|                |                | 106.0    | 40.000 | 5.3   | 11.4  | 76.0  | 124.000 | 66.0  | 128   | 165.0 | 104.26 | 90.0 | 43.5 | 17.0 | 146.0 | 64.0 | 9.7   |
|                |                |          | 39.995 |       |       |       | 123.982 |       |       |       | 102.74 |      |      |      |       |      |       |
| 45             | BSBU45Q124     | 4.17     | 1.7716 | 0.21  | 0.45  | 2.99  | 4.8819  | 2.6   | 5.04  | 6.5   | 4.105  | 3.54 | 1.71 | 0.67 | 5.75  | 2.52 | 20.9  |
|                |                |          | 1.7714 |       |       |       | 4.8812  |       |       |       | 4.045  |      |      |      |       |      |       |
|                |                | 106.0    | 45.000 | 5.3   | 11.4  | 76.0  | 124.000 | 66.0  | 128   | 165.0 | 104.26 | 90.0 | 43.5 | 17.0 | 146.0 | 64.0 | 9.5   |
|                |                |          | 44.995 |       |       |       | 123.982 |       |       |       | 102.74 |      |      |      |       |      |       |
| 50             | BSBU50Q124     | 4.17     | 1.9685 | 0.21  | 0.45  | 2.99  | 4.8819  | 2.6   | 5.04  | 6.5   | 4.105  | 3.54 | 1.71 | 0.67 | 5.75  | 2.52 | 20.46 |
|                |                |          | 1.9683 |       |       |       | 4.8812  |       |       |       | 4.045  |      |      |      |       |      |       |
|                |                | 106.0    | 50.000 | 5.3   | 11.4  | 76.0  | 124.000 | 66.0  | 128   | 165.0 | 104.26 | 90.0 | 43.5 | 17.0 | 146.0 | 64.0 | 9.3   |
|                |                |          | 49.995 |       |       |       | 123.982 |       |       |       | 102.74 |      |      |      |       |      |       |


### BSPB D Standard and Heavy Duty Bearings

The BSPB D series is a design of bearing pillow block unit for ballscrew applications.

The unit incorporates similar features to the BSBU D series but is designed to bolt down onto a flat surface, parallel to the ballscrew axis.


In the standard unit, pilot holes for dowels are provided. Units with finished holes for dowels can be supplied by special order if required.

Consult our Engineering Department for recommended shaft and housing fits.



### STANDARD SERIES – DIMENSIONAL TOLERANCES $\pm .005$ " ( $\pm .13$ mm) UNLESS OTHERWISE STATED.

| Shaft<br>Diam. | Unit<br>Number | С                                  | d                                    | d <sub>1</sub> | $d_2$       | d <sub>3</sub> | d <sub>4</sub> | D            | E                                | F         | G                                    | Н         | J          | K            | L         | N                                    | Р         | R            | S           | T           | U         | Wt.         |
|----------------|----------------|------------------------------------|--------------------------------------|----------------|-------------|----------------|----------------|--------------|----------------------------------|-----------|--------------------------------------|-----------|------------|--------------|-----------|--------------------------------------|-----------|--------------|-------------|-------------|-----------|-------------|
| mm             |                | in.                                | in.<br>mm                            | in.<br>mm      | in.<br>mm   | in.<br>mm      | in.<br>mm      | in.<br>mm    | in.<br>mm                        | in.<br>mm | in.                                  | in.<br>mm | in.<br>mm  | in.<br>mm    | in.<br>mm | in.                                  | in.<br>mm | in.<br>mm    | in.<br>mm   | in.<br>mm   | in.<br>mm | lbs.<br>kg  |
| 17             | BSPB17D32      | 1.850<br>1.848<br>47.000<br>46.950 | 0.6693<br>0.6691<br>17.000<br>16.996 | 0.17           |             | 0.35           |                | 1.02         | 1.742<br>1.702<br>44.26<br>43.24 | 1.67      |                                      | 0.67      |            | 1.26         | 0.04      | 1.2598<br>1.2593<br>32.000<br>31.987 | 1.50      | 0.87         | 0.35<br>9.0 |             | 3.37      |             |
| 20             | BSPB20D32      | 1.850<br>1.848<br>47.000<br>46.950 | 0.7874<br>0.7872<br>20.000<br>19.996 |                | 0.31<br>7.8 |                | 1.42<br>36.0   |              | 1.742<br>1.702<br>44.26<br>43.24 |           | 1.8504<br>1.8499<br>47.000<br>46.987 |           | 2.44<br>62 | 1.65<br>42.0 |           | 1.2598<br>1.2593<br>32.000<br>31.987 |           | 0.87         | 0.35<br>9.0 | 0.33<br>8.5 |           | 3.3<br>1.5  |
| 25             | BSPB25D42      | 2.047<br>2.045<br>52.000<br>51.950 | 0.9842<br>0.9841<br>25.000<br>24.996 |                |             |                |                | 1.57<br>40.0 | 1.979<br>1.938<br>50.26<br>49.24 |           | 2.4606<br>2.4601<br>62.500<br>62.487 |           | 3.35<br>85 | 1.65<br>42.0 |           | 1.6535<br>1.6530<br>42.000<br>41.987 |           | 0.98<br>25.0 |             | 0.39        |           |             |
| 30             | BSPB30D42      | 2.047<br>2.045<br>52.000<br>51.920 | 1.1811<br>1.1809<br>30.000<br>29.996 |                |             |                |                | 1.57         | 1.979<br>1.938<br>50.26<br>49.24 |           | 2.4606<br>2.4601<br>62.500<br>62.487 |           | 3.35<br>85 | 1.97<br>50.0 |           | 1.6535<br>1.6530<br>42.000<br>41.987 |           | 0.98<br>25.0 |             | 0.39        |           |             |
| 35             | BSPB35D50      | 2.047<br>2.045<br>52.000<br>51.950 | 1.378<br>1.3778<br>35.000<br>34.995  |                |             |                | 2.36           |              | 1.979<br>1.938<br>50.26<br>49.24 |           | 2.6772<br>2.6767<br>68.000<br>67.987 |           | 3.74<br>95 | 1.97<br>50.0 |           | 1.9685<br>1.9680<br>50.000<br>49.987 |           | 0.98<br>25.0 | 0.39        | 0.39        |           | 8.36<br>3.8 |
| 40             | BSPB40D50      | 2.047<br>2.045<br>52.000<br>51.950 | 1.5748<br>1.5746<br>40.000<br>39.995 |                |             | 0.51           |                |              | 1.979<br>1.938<br>50.26<br>49.24 |           | 2.6772<br>2.6767<br>68.000<br>67.987 |           |            | 1.26<br>32.0 |           | 1.9685<br>1.9680<br>50.000<br>49.987 |           | 0.98<br>25.0 | 0.39        | 0.39        |           | 8.14<br>3.7 |



### HEAVY DUTY SERIES - DIMENSIONAL TOLERANCES ±.005" (±.13mm) UNLESS OTHERWISE STATED.

| Shaft<br>Diam. | Unit<br>Number | С                | d                | d1   | d2   | d3   | d4   | D    | E              | F    | G                | Н    | J     | K          | L    | N                | Р    | R    | S    | T      | U     | Wt.   |
|----------------|----------------|------------------|------------------|------|------|------|------|------|----------------|------|------------------|------|-------|------------|------|------------------|------|------|------|--------|-------|-------|
|                |                | in.              | in.              | in.  | in.  | in.  | in.  | in.  | in.            | in.  | in.              | in.  | in.   | in.        | in.  | in.              | in.  | in.  | in.  | in.    | in.   | lbs.  |
| mm             |                | mm               | mm               | mm   | mm   | mm   | mm   | mm   | mm             | mm   | mm               | mm   | mm    | mm         | mm   | mm               | mm   | mm   | mm   | mm     | mm    | kg    |
| 35             | BSPB35D65      | 2.598<br>2.596   | 1.3780<br>1.3778 | 0.21 | 0.46 | 0.71 | 2.99 | 2.6  | 2.530<br>2.490 | 3.54 | 3.7402<br>3.7396 |      | 5.12  | 2.56       | 0.04 | 2.5590<br>2.5585 | 2.09 | 1.26 | 0.51 | 0.59   | 6.89  | 21.34 |
|                |                | 66.000<br>65.950 | 35.000<br>34.995 | 5.3  | 11.8 | 18.0 | 76.0 | 66.0 | 64.26<br>63.24 | 90.0 | 95.000<br>94.987 | 30.0 | 130.0 | 65         | 1.0  | 65.000<br>64.987 | 53.0 | 32.0 | 13.0 | 15.0 1 | 175.0 | 9.7   |
| 40             | BSPB40D65      | 2.598<br>2.596   | 1.5748<br>1.5746 | 0.21 | 0.46 | 0.71 | 2.99 | 2.6  | 2.530<br>2.490 | 3.54 | 3.7402<br>3.7396 |      | 5.12  | 2.56       | 0.04 | 2.5590<br>2.5585 | 2.09 | 1.26 | 0.51 | 0.59   | 6.89  | 20.9  |
|                |                | 66.000<br>65.950 | 40.000<br>39.995 | 5.3  | 11.8 | 18.0 | 76.0 | 66.0 | 64.26<br>63.24 | 90.0 | 95.000<br>94.987 | 30.0 | 130.0 | 65         | 1.0  | 65.000<br>64.987 | 53.0 | 32.0 | 13.0 | 15.0 1 | 175.0 | 9.5   |
| 45             | BSPB45D65      | 2.598<br>2.596   | 1.7716<br>1.7714 |      |      | 0.71 | 2.99 | 2.6  | 2.530<br>2.490 | 3.54 | 3.7402<br>3.7396 |      |       |            | 0.04 | 2.5590<br>2.5585 |      | 1.26 | 0.51 |        |       |       |
|                |                | 66.000<br>65.950 | 45.000<br>44.995 | 5.3  | 11.8 | 18.0 | 76.0 | 66.0 | 64.26<br>63.24 | 90.0 | 95.000<br>94.987 | 30.0 | 130.0 | 65         | 1.0  | 65.000<br>64.987 | 53.0 | 32.0 | 13.0 | 15.0 1 | 175.0 | 9.3   |
| 50             | BSPB50D65      | 2.598<br>2.596   | 1.9685<br>1.9683 | 0.21 | 0.46 | 0.71 | 2.99 | 2.6  | 2.530<br>2.490 | 3.54 | 3.7402<br>3.7396 |      | 5.12  | 2.56       | 0.04 | 2.5590<br>2.5585 | 2.09 | 1.26 | 0.51 | 0.59   | 6.89  | 20.02 |
|                |                | 66.000<br>65.950 | 50.000<br>49.995 | 5.3  | 11.8 | 18.0 | 76.0 | 66.0 | 64.26<br>63.24 | 90.0 | 95.000<br>94.987 | 30.0 | 130.0 | <b>6</b> 5 | 1.0  | 65.000<br>64.987 | 53.0 | 32.0 | 13.0 | 15.0 1 | 175.0 | 9.1   |

### BSPB Q Standard and Heavy Duty Bearings

The BSPB Q series is similar in design and features to the BSPB D series except MM-BS-QU Quadruplex bearings are used.

Consult our Engineering Department for recommended shaft and housing fits.



### STANDARD SERIES – DIMENSIONAL TOLERANCES $\pm .005$ " ( $\pm .13$ MM) UNLESS OTHERWISE STATED

| Shaft<br>Diam. | Unit<br>Number | С                | d                | d <sub>1</sub> | d <sub>2</sub> | d <sub>3</sub> | d <sub>4</sub> | D    | E              | F    | G                | Н    | J    | K    | L    | N                | Р    | R    | S    | Т    | U     | Wt.   |
|----------------|----------------|------------------|------------------|----------------|----------------|----------------|----------------|------|----------------|------|------------------|------|------|------|------|------------------|------|------|------|------|-------|-------|
|                |                | in.              | in.              | in.            | in.            | in.            | in.            | in.  | in.            | in.  | in.              | in.  | in.  | in.  | in.  | in.              | in.  | in.  | in.  | in.  | in.   | lbs.  |
| mm             |                | mm               | mm               | mm             | mm             | mm             | mm             | mm   | mm             | mm   | mm               | mm   | mm   | mm   | mm   | mm               | mm   | mm   | mm   | mm   | mm    | kg    |
| 17             | BSPB17Q32      | 3.031            | 0.6693           | 0.17           | 0.31           | 0.35           | 1.42           | 1.02 | 2.924          | 1.67 | 1.8504           | 0.67 | 2.44 | 1.26 | 0.04 | 1.2598           | 2.68 | 0.87 | 0.35 | 0.33 | 3.37  | 5.72  |
|                |                | 3.030            | 0.6691           |                |                |                |                |      | 2.864          |      | 1.8499           |      |      |      |      | 1.2593           |      |      |      |      |       |       |
|                |                | 77.000           | 17.000           | 4.3            | 7.8            | 9.0            | 36.0           | 26.0 | 74.26          | 42.5 | 47.000           | 17   | 62   | 32.0 | 1.0  | 32.000           | 68.0 | 22.0 | 9.0  | 8.5  | 85.5  | 2.6   |
|                |                | 76.950           | 16.996           |                |                |                |                |      | 72.74          |      | 46.987           |      |      |      |      | 31.987           |      |      |      |      |       |       |
| 20             | BSPB20Q32      | 3.031            | 0.7874           |                | 0.31           | 0.35           | 1.42           | 1.02 | 2.924          | 1.67 |                  | 0.67 | 2.44 | 1.26 | 0.04 |                  | 2.68 | 0.87 | 0.35 | 0.33 | 3.37  | 5.5   |
|                |                | 3.030            | 0.7872           |                | 7.0            |                |                |      | 2.864          |      | 1.8499           |      |      |      |      | 1.2593           |      |      |      |      |       |       |
|                |                | 77.000<br>76.950 | 20.000<br>19.996 | 4.3            | 7.8            | 9.0            | 36.0           | 26.0 |                | 42.5 | 47.000           | 17   | 62   | 32.0 | 1.0  | 32.000           | 68.0 | 22.0 | 9.0  | 8.5  | 85.5  | 2.5   |
|                |                |                  |                  |                |                |                |                |      | 72.74          |      | 46.987           |      |      |      |      | 31.987           |      |      |      |      |       |       |
| 25             | BSPB25Q42      | 3.228            | 0.9842           |                | 0.39           | 0.43           | 1.97           | 1.57 |                | 2.34 | 2.4606           | 0.79 | 3.35 | 1.65 | 0.04 | 1.6535           | 2.83 | 0.98 | 0.39 | 0.39 | 4.53  | 10.12 |
|                |                | 3.226<br>82.000  | 0.9841<br>25.000 | 4.3            | 0.0            | 11.0           | 50.0           | 40.0 | 3.100<br>80.26 | 59.5 | 2.4601<br>62.500 | 20   | 85   | 42.0 | 1.0  | 1.6530<br>42.000 | 72.0 | 25.0 | 10.0 | 10.0 | 115.0 | 16    |
|                |                | 81.950           | 24.995           | 4.3            | 7.0            | 11.0           | 50.0           | 40.0 | 78.74          | 37.3 | 62.487           | 20   | 00   | 42.0 | 1.0  | 41.987           | 72.0 | 25.0 | 10.0 | 10.0 | 113.0 | 4.0   |
| 30             | BSPB30Q42      | 3.228            | 1.1811           | 0.17           | 0.20           | 0.43           | 1.97           | 1.57 | 3.160          | 2.34 |                  | 0.79 | 3.35 | 1.65 | 0.04 |                  | 2.83 | 0.00 | 0.20 | 0.39 | 1.52  | 9.9   |
| 30             | D3FD30Q42      | 3.226            | 1.1809           |                | 0.37           | 0.43           | 1.77           | 1.57 | 3.100          | 2.34 | 2.4601           | 0.79 | 3.33 | 1.05 | 0.04 | 1.6530           | 2.03 | 0.70 | 0.37 | 0.37 | 4.55  | 7.7   |
|                |                | 82.000           | 30.000           | 4.3            | 9.8            | 11.0           | 50.0           | 40.0 | 80.26          | 59.5 |                  | 20   | 85   | 42.0 | 1.0  | 42.000           | 72.0 | 25.0 | 10.0 | 10.0 | 115.0 | 4.5   |
|                |                | 81.950           | 29.996           |                |                |                |                |      | 78.74          |      | 62.487           |      |      |      |      | 41.987           |      |      |      |      |       |       |
| 35             | BSPB35Q50      | 3.228            | 1.378            | 0.17           | 0.51           | 0.51           | 2.36           | 1.81 | 3.160          | 2.62 | 2.6772           | 0.81 | 3.74 | 1.97 | 0.04 | 1.9685           | 2.83 | 0.98 | 0.39 | 0.39 | 4.96  | 13.64 |
|                |                | 3.226            | 1.3778           |                |                |                |                |      | 3.100          |      | 2.6767           |      |      |      |      | 1.9680           |      |      |      |      |       |       |
|                |                | 82.000           | 35.000           | 4.3            | 13.0           | 13.0           | 60.0           | 46.0 |                | 66.5 |                  | 20.5 | 95   | 50.0 | 1.0  | 50.000           | 72.0 | 25.0 | 10.0 | 10.0 | 126.0 | 6.2   |
|                |                | 81.950           | 34.995           |                |                |                |                |      | 78.74          |      | 67.987           |      |      |      |      | 49.987           |      |      |      |      |       |       |
| 40             | BSPB40Q50      | 3.228            | 1.5748           |                | 0.51           | 0.51           | 2.36           | 1.81 | 3.160          | 2.62 |                  | 0.81 | 3.74 | 1.97 | 0.04 | 1.9685           | 2.83 | 0.98 | 0.39 | 0.39 | 4.96  | 13.2  |
|                |                | 3.226            | 1.5746           |                |                |                |                |      | 3.100          |      | 2.6767           |      |      |      |      | 1.9680           |      |      |      |      |       |       |
|                |                | 82.000           | 40.000           | 4.3            | 13.0           | 13.0           | 60.0           | 46.0 |                | 66.5 |                  | 20.5 | 95   | 50.0 | 1.0  | 50.000           | 72.0 | 25.0 | 10.0 | 10.0 | 126.0 | 6     |
|                |                | 81.950           | 39.995           |                |                |                |                |      | 78.74          |      | 67.987           |      |      |      |      | 49.987           |      |      |      |      |       |       |



### HEAVY DUTY SERIES – DIMENSIONAL TOLERANCES $\pm .005$ " ( $\pm .13$ MM) UNLESS OTHERWISE STATED

| Shaft<br>Diam. | Unit<br>Number | С                  | d                | d <sub>1</sub> | d <sub>2</sub> | d <sub>3</sub> | $d_4$ | D    | E                | F    | G                | Н    | J     | K    | L    | N                | Р    | R    | S    | T    | U     | Wt.   |
|----------------|----------------|--------------------|------------------|----------------|----------------|----------------|-------|------|------------------|------|------------------|------|-------|------|------|------------------|------|------|------|------|-------|-------|
|                |                | in.                | in.              | in.            | in.            | in.            | in.   | in.  | in.              | in.  | in.              | in.  | in.   | in.  | in.  | in.              | in.  | in.  | in.  | in.  | in.   | lbs.  |
| mm             |                | mm                 | mm               | mm             | mm             | mm             | mm    | mm   | mm               | mm   | mm               | mm   | mm    | mm   | mm   | mm               | mm   | mm   | mm   | mm   | mm    | kg    |
| 35             | BSPB35Q65      | 4.173<br>4.171     | 1.3780<br>1.3778 |                | 0.46           | 0.71           | 2.99  | 2.6  | 4.105<br>4.045   | 3.54 | 3.7402<br>3.7396 |      | 5.12  | 2.56 | 0.04 | 2.5590<br>2.5585 |      | 1.26 | 0.51 | 0.59 | 6.89  | 34.98 |
|                |                | 106.000<br>105.950 | 35.000<br>34.995 | 5.3            | 11.8           | 18.0           | 76.0  | 66.0 | 104.26<br>102.74 | 90.0 | 95.000<br>94.987 | 30.0 | 130.0 | 65.0 | 1.0  | 65.000<br>65.987 | 93.0 | 32.0 | 13.0 | 15.0 | 175.0 | 15.9  |
| 40             | BSPB40Q65      | 4.173<br>4.171     | 1.5748<br>1.5746 |                | 0.46           | 0.71           | 2.99  | 2.6  | 4.105<br>4.045   | 3.54 | 3.7402<br>3.7396 |      | 5.12  | 2.56 | 0.04 | 2.5590<br>2.5585 |      | 1.26 | 0.51 | 0.59 | 6.89  | 34.54 |
|                |                | 106.000<br>105.950 | 40.000<br>39.995 | 5.3            | 11.8           | 18.0           | 76.0  | 66.0 | 104.26<br>102.74 | 90.0 | 95.000<br>94.987 | 30.0 | 130.0 | 65.0 | 1.0  | 65.000<br>65.987 | 93.0 | 32.0 | 13.0 | 15.0 | 175.0 | 15.7  |
| 45             | BSPB45Q65      | 4.173<br>4.171     | 1.7716<br>1.7714 |                | 0.46           | 0.71           | 2.99  | 2.6  | 4.105<br>4.045   | 3.54 | 3.7402<br>3.7396 |      | 5.12  | 2.56 | 0.04 | 2.5590<br>2.5585 |      | 1.26 | 0.51 | 0.59 | 6.89  | 33.88 |
|                |                | 106.000<br>105.950 | 45.000<br>44.995 | 5.3            | 11.8           | 18.0           | 76.0  | 66.0 | 104.26<br>102.74 | 90.0 | 95.000<br>94.987 | 30.0 | 130.0 | 65.0 | 1.0  | 65.000<br>65.987 | 93.0 | 32.0 | 13.0 | 15.0 | 175.0 | 15.4  |
| 50             | BSPB50Q65      | 4.173<br>4.171     | 1.9685<br>1.9683 |                | 0.46           | 0.71           | 2.99  | 2.6  | 4.105<br>4.045   | 3.54 | 3.7402<br>3.7396 |      | 5.12  | 2.56 | 0.04 | 2.5590<br>2.5585 |      | 1.26 | 0.51 | 0.59 | 6.89  | 33.22 |
|                |                | 106.000<br>105.950 | 50.000<br>49.995 | 5.3            | 11.8           | 18.0           | 76.0  | 66.0 | 104.26<br>102.74 | 90.0 | 95.000<br>94.987 | 30.0 | 130.0 | 65.0 | 1.0  | 65.000<br>65.987 | 93.0 | 32.0 | 13.0 | 15.0 | 175.0 | 15.1  |

### FAFNIR BALLSCREW SUPPORT BEARINGS

### FAFNIR BALLSCREW SUPPORT BEARING HOUSED UNITS

| Unit Ref.  | Bearing<br>Set Ref. | Unit Ref.  | Bearing<br>Set Ref. |
|------------|---------------------|------------|---------------------|
| BSBU17D60  | MM17BS47DUH         | BSBU17Q60  | MM17BS47QUH         |
| BSBU20D60  | MM20BS47DUH         | BSBU20Q60  | MM20BS47QUH         |
| BSBU25D80  | MM25BS62DUH         | BSBU25Q80  | MM25BS62QUH         |
| BSBU30D80  | MM30BS62DUH         | BSBU30Q80  | MM30BS62QUH         |
| BSBU35D90  | MM35BS72DUH         | BSBU35Q90  | MM35BS72QUH         |
| BSBU40D90  | MM40BS72DUH         | BSBU40Q90  | MM40BS72QUH         |
| BSBU35D124 | MM35BS100DUH        | BSBU35Q124 | MM35BS100QUH        |
| BSBU40D124 | MM40BS100DUH        | BSBU40Q124 | MM40BS100QUH        |
| BSBU45D124 | MM45BS100DUH        | BSBU45Q124 | MM45BS100QUH        |
| BSBU50D124 | MM50BS100DUH        | BSBU50Q124 | MM50BS100QUH        |

| Unit Ref. | Bearing<br>Set Ref. | Unit Ref. | Bearing<br>Set Ref. |
|-----------|---------------------|-----------|---------------------|
| BSPB17D32 | MM17BS47DUH         | BSPB17Q32 | MM17BS47QUH         |
| BSPB20D32 | MM20BS47DUH         | BSPB20Q32 | MM20BS47QUH         |
| BSPB25D42 | MM25BS62DUH         | BSPB25Q42 | MM25BS62QUH         |
| BSPB30D42 | MM30BS62DUH         | BSPB30Q42 | MM30BS62QUH         |
| BSPB35D50 | MM35BS72DUH         | BSPB35Q50 | MM35BS72QUH         |
| BSPB40D50 | MM40BS72DUH         | BSPB40Q50 | MM40BS72QUH         |
| BSPB35D65 | MM35BS100DUH        | BSPB35Q65 | MM35BS100QUH        |
| BSPB40D65 | MM40BS100DUH        | BSPB40Q65 | MM40BS100QUH        |
| BSPB45D65 | MM45BS100DUH        | BSPB45Q65 | MM45BS100QUH        |
| BSPB50D65 | MM50BS100DUH        | BSPB50Q65 | MM50BS100QUH        |

ENGINEERING

102800 E1

#### **Foreword**

Work and tool spindles are the most important tool components of machine tools. Consequently, to reach the requirements for spindle speed, work accuracy and finish, selection of the proper size and type of ball bearings to support these spindles is a critical design problem.

Of all the anti-friction bearing types, superprecision ball bearings have proved to be the best value for the wide variety of bearing applications covering broad ranges of operating loads, speeds and lubrication conditions. Duplexed, preloaded, angular-contact bearings with one-piece composition retainers, have excellent capacity and provide maximum spindle rigidity. These bearings are widely used in achieving faster speeds, greater accuracy, smoother finishes and higher production rates at minimum costs.

Many considerations are involved in the choice of bearings for precision applications. Among those which influence the performance of machine tool spindles are the internal fit-up and geometry of the bearings, the mounting arrangement, the shaft and housing mounting fits, the balance and alignment of the rotating parts, and last, but equally important, the lubrication. While many of these factors are significant in slow-speed applications, all of them must be considered for high-speed spindles.

To minimize deflection under load, shafts for machine tool spindles are designed to have a minimum unsupported length and maximum cross-section. For the same reason, spindle housings are designed heavy enough to carry the work load. Their cross-sections are made as uniform as possible to reduce stress concentration during uneven deflection of the frame due to thermal changes. In addition, heavy, well-proportioned housings can function as sinks to conduct heat away from ball bearings.

E2 102800

#### **Tolerances**

The Annular Bearing Engineers' Committee has established four classes of tolerances for ball bearings, known as ABEC-1, ABEC-5, ABEC-7, and ABEC-9. The highest number indicates the class with the most exacting tolerances.

Every ball bearing manufactured by The Torrington Company is made to close tolerances, adhering to the established ABEC standards. Even the most liberal classification of ABEC -1 assures a precision product. Many applications in numerous types of machines can be satisfactorily operated with ABEC-1 tolerance bearings.

However, for applications involving high speeds, extreme accuracy and rigidity in such equipment as high-grade machine tools, precision wheelheads and workheads, woodworking machines, superchargers, jet engines, sensitive precision instruments and digital computers, Torrington manufactures a complete line of superprecision ball bearings made to ABEC-9 tolerances.

Basically single row construction, these ball bearings are available in four series, named ultra-light (9300), extra-light (9100), light (200) and medium (300), providing a considerable range in external dimension relationships.

In Figure 1, the chart shows the various classes of tolerances for 35-millimeter bore size, light series bearings (207). To meet the requirements of the machine tool industry, even ABEC-9 tolerances do not represent the ultimate, since some special applications require even higher precision.

### ABEC Tolerances (Figure 1)

Before it can be determined which type and classification of Fafnir precision bearing is the best suited for a particular application, all details of the bearing mounting, bearing tolerances and eccentricities as listed in the dimension tables – and cost – must be thoroughly explored. Obviously, it is not economical to attempt the use of low precision bearings on an application where extra-high speeds and ultra-precision bearings are required.

Assuring consistent performance and interchangeability, Fafnir precision bearings are manufactured to close tolerances. To take full advantage of this precision product, it is expected that equally close tolerances be used in the production of mounting components (housings). Therefore, special consideration must be given to the particular details relating to proper shaft and housing fits and the housing design.

Values of standard tolerances ABEC-7 and ABEC-9, for superprecision ball bearings used in machine tool applications are shown on pages E4 and E5.

### ABEC TOLERANCES 35 MM Bore Light Series Bearing

| Tolerance     | Bore<br>Diameter |   |   |   | Outside<br>Diameter |   |   |   |   | ner R<br>centr |   |   | Outer Ring<br>Eccentricity |   |   |  |     | Inn<br>Side | er F | Ring<br>unou | ıt |   | 0.D<br>w | ). Squ<br>ith Sid | are<br>de |  |
|---------------|------------------|---|---|---|---------------------|---|---|---|---|----------------|---|---|----------------------------|---|---|--|-----|-------------|------|--------------|----|---|----------|-------------------|-----------|--|
| ABEC<br>.0000 | 1                | 5 | 7 | 9 | 1                   | 5 | 7 | 9 | 1 | l 5            | 5 | 7 | 9                          | 1 | 5 |  | 7 9 | 1           | 5    |              | 7  | 9 | 1        | 5                 | 5 7       |  |
| .0001         |                  |   |   |   |                     |   |   |   |   |                |   |   |                            |   |   |  |     |             |      |              |    |   |          |                   |           |  |
| .0002         |                  | ┸ |   |   |                     | 1 |   |   |   |                |   |   |                            |   |   |  |     |             |      |              |    |   |          |                   | Ŀ         |  |
| .0003         |                  |   |   |   |                     | ┸ |   |   |   |                |   |   |                            |   |   |  |     |             |      |              |    |   |          |                   |           |  |
| .0004         |                  |   |   |   |                     | _ |   |   |   |                |   |   |                            |   |   |  |     |             |      |              |    |   |          |                   |           |  |
| .0005         |                  |   |   |   |                     |   |   |   |   |                |   |   |                            |   |   |  |     |             |      |              |    |   |          |                   |           |  |
| .0006         |                  |   |   |   |                     |   |   |   |   |                |   |   |                            |   |   |  |     |             |      |              |    |   |          |                   |           |  |
| .0007         |                  |   |   |   |                     |   |   |   |   |                |   |   |                            |   |   |  |     |             |      |              |    |   |          |                   |           |  |
| .0008         |                  |   |   |   |                     |   |   |   |   |                |   |   |                            |   |   |  |     |             |      |              |    |   |          |                   |           |  |
| .0009         |                  |   |   |   |                     |   |   |   |   |                |   |   |                            |   |   |  |     |             |      |              |    |   |          |                   |           |  |
| .0010         |                  |   |   |   |                     |   |   |   |   |                |   |   |                            |   |   |  |     |             |      |              |    |   |          |                   |           |  |
|               |                  |   |   |   |                     |   |   |   |   |                |   |   |                            |   |   |  |     |             |      |              |    |   |          |                   |           |  |

Figure 1 — ABEC Tolerances

102800 **E3** 

### **Standard Tolerances**

### Inner Ring ABEC - 7,9—ISO P4, P2

Depending upon the requirement, various degrees of bearing accuracy may be required.

Among the tolerance classes, ABEC-1 applies to ball bearings for normal usage. The other classes ABEC-3,5,7,9 apply to ball bearings of increased precision as required.

Values of tolerances ABEC-7 and ABEC-9 for superprecision ball bearings are shown below.

### ABMA/ISO Symbols - Inner Ring

Δdmp Single plane mean bore diameter deviation from the basic bore diameter,i.e.,bore tolerance.

 $\mathbf{K}_{ia}$  Radial runout of assembled bearing inner ring, i.e., radial runout of raceway.

**V**<sub>Bs</sub> Inner ring width variation, i.e. parallelism.

**S**<sub>d</sub> Inner ring reference face runout with bore, i.e., squareness – bore to face.

**S**<sub>ia</sub> Axial runout af assembled bearing inner ring, i.e., lateral (axial) runout of raceway.

 $\Delta_{\mbox{\footnotesize{Bs}}}$  Single inner ring width deviation from basic, i.e., width tolerance.

#### STANDARD ABEC TOLERANCES - INNER RING

All tolerances in number of ten-thousandths inches (.0001") and micrometers (μm)

|            | d<br>ng Bore | Δdr<br>Bore Dia<br>+.0000",+<br>to m | meter <sup>(1)</sup>     | V <sub>Bs</sub><br>Width Variation<br>(Parallelism) |                               | Race                          | K <sub>ia</sub><br>Raceway<br>Radial Runout |                               | Runout<br>Bore<br>eness)      | S <sub>i</sub><br>Race<br>Axial R | way                                | Δ <sub>Bs</sub> & Δ <sub>Cs</sub> Width Inner & Outer Rings +.0000",+.000mm to minus |
|------------|--------------|--------------------------------------|--------------------------|-----------------------------------------------------|-------------------------------|-------------------------------|---------------------------------------------|-------------------------------|-------------------------------|-----------------------------------|------------------------------------|--------------------------------------------------------------------------------------|
|            |              | MMV<br>ABEC<br>7                     | ABEC<br>9                | ABEC<br>7                                           | MMV<br>ABEC<br>9              | ABEC<br>7                     | MMV<br>ABEC<br>9                            | ABEC<br>7                     | MMV<br>ABEC<br>9              | ABEC<br>7                         | MMV<br>ABEC<br>9                   | ABEC 7,9                                                                             |
| Over<br>mm | Incl.<br>mm  | inch<br>µm                           | inch<br><mark>µm</mark>  | inch<br>µm                                          | inch<br>μ <b>m</b>            | inch<br>µm                    | inch<br>μ <b>m</b>                          | inch<br>µm                    | inch<br><mark>µm</mark>       | inch<br>µm                        | inch<br><mark>µm</mark>            | inch<br>µm                                                                           |
| 0          | 10           | -1 <sup>1</sup> /2 <b>-4</b>         | -1<br>-2 <sup>1</sup> /2 | 1<br>2.5                                            | 1/2<br>1 1/2                  | 1<br>2 1/2                    | 1/2<br>1 1/2                                | 1 3                           | 1/2<br>1 1/2                  | 1<br>3                            | 1/2<br>1 1/2                       | 0.0016<br>0.04                                                                       |
| 10         | 18           | -1 <sup>1</sup> /2<br>-4             | -1<br><b>-2</b> 1/2      | 1<br>2.5                                            | 1/2<br>1 1/2                  | 1<br>2 1/2                    | 1/2<br>1 1/2                                | 1<br>3                        | 1/2<br>1 1/2                  | 1<br>3                            | 1/2<br>1 1/2                       | 0.0031<br>0.08                                                                       |
| 18         | 30           | -2<br>-5                             | -1<br><b>-2</b> 1/2      | 1<br>2.5                                            | 1/2<br>1 1/2                  | 1<br>3                        | 1<br>2 <sup>1</sup> / <sub>2</sub>          | 1 <sup>1</sup> /2<br><b>4</b> | 1/2<br>1 1/2                  | 1 <sup>1</sup> /2<br>4            | 1<br>2 <sup>1</sup> / <sub>2</sub> | 0.0047<br><b>0.12</b>                                                                |
| 30         | 50           | -2 <sup>1</sup> /2<br>-6             | -1<br>-2 1/2             | 1 3                                                 | 1/2<br>1 1/2                  | 1 <sup>1</sup> /2<br><b>4</b> | 1<br>2 1/2                                  | 1 <sup>1</sup> /2<br><b>4</b> | 1/2<br>1 1/2                  | 1 <sup>1</sup> /2<br><b>4</b>     | 1<br>2 <sup>1</sup> / <sub>2</sub> | 0.0047<br><b>0.12</b>                                                                |
| 50         | 80           | -3<br>-7                             | -1 <sup>1</sup> /2<br>-4 | 1 <sup>1</sup> /2 <b>4</b>                          | 1/2<br>1 1/2                  | 1 <sup>1</sup> /2 <b>4</b>    | 1<br>2 1/2                                  | 2<br><b>5</b>                 | 1/2<br>1 1/2                  | 2<br><b>5</b>                     | 1<br>2 <sup>1</sup> / <sub>2</sub> | 0.0059<br><b>0.15</b>                                                                |
| 80         | 120          | -3<br>-8                             | -2<br>-5                 | 1 <sup>1</sup> /2 <b>4</b>                          | 1<br>2 1/2                    | 2<br><b>5</b>                 | 1<br>2 1/2                                  | 2<br><b>5</b>                 | 1<br>2 1/2                    | 2<br><b>5</b>                     | 1<br>2 <sup>1</sup> / <sub>2</sub> | 0.0079<br><b>0.20</b>                                                                |
| 120        | 150          | -4<br>-10                            | -3<br>- <b>7</b>         | 2<br><b>5</b>                                       | 1<br>2 <sup>1</sup> /2        | 2<br><b>5</b>                 | 1<br>2 <sup>1</sup> / <sub>2</sub>          | 2 <sup>1</sup> /2 <b>6</b>    | 1<br>2 1/2                    | 3<br><b>7</b>                     | 1<br>2 <sup>1</sup> /2             | 0.0098<br><b>0.25</b>                                                                |
| 150        | 180          | -4<br>-10                            | -3<br>- <b>7</b>         | 2<br><b>5</b>                                       | 1 <sup>1</sup> /2<br><b>4</b> | 2 <sup>1</sup> /2 <b>6</b>    | 2<br><b>5</b>                               | 2 <sup>1</sup> /2 <b>6</b>    | 1 <sup>1</sup> /2<br><b>4</b> | 3<br><b>7</b>                     | 2<br><b>5</b>                      | 0.0098<br><b>0.25</b>                                                                |
| 180        | 250          | -4 <sup>1</sup> / <sub>2</sub>       | -3<br>-8                 | 2 <sup>1</sup> / <sub>2</sub> 6                     | 2<br><b>5</b>                 | 3<br><b>8</b>                 | 2<br><b>5</b>                               | 3<br><b>7</b>                 | 2<br><b>5</b>                 | 3<br><b>8</b>                     | 2<br><b>5</b>                      | 0.0118<br>0.30                                                                       |

<sup>(1)</sup> dMIN and dMAX (the smallest single diameter and the largest single diameter of a bore in a single radial plane, respectively) may fall outside limits shown.

 $\underline{\text{d}\textbf{MIN} + \text{d}\textbf{MAX}} \text{ in a single radial plane must be within bore diameter tabulated. For further details see ABMA Standard 20 and Standard 4.}$ 

2

#### Width Tolerances:

The width tolerances for individual inner and outer rings are shown in the above table but, to allow for the face grinding on two bearings for various preloads, the total width tolerances of duplex pairs of bearings are as shown.

#### Preloaded Duplex Set Width Tolerance

|      | nal bore<br>meters | Wid<br>Toler   |                |
|------|--------------------|----------------|----------------|
| Over | Inclusive          | Maximum        | Minimum        |
| 0    | 200                | .000"<br>.00mm | .010"<br>.25mm |

E4 102800

### **Standard Tolerances**

#### Outer Ring ABEC - 7,9—ISO P4, P2

Depending upon the requirement, various degrees of bearing accuracy may be required.

Among the tolerance classes, ABEC-1 applies to ball bearings for normal usage. The other classes ABEC-3,5,7,9 apply to ball bearings of increased precision as required.

Values of tolerances ABEC-7 and ABEC-9 for superprecision ball bearings are shown below.

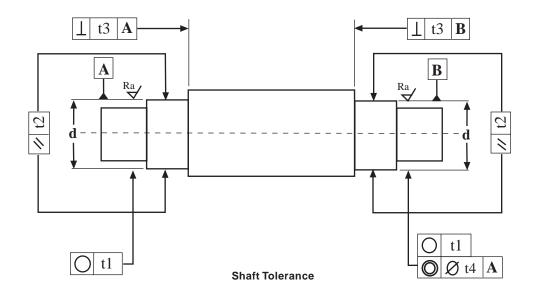
#### ABMA/ISO Symbols – Outer Ring

- Δ**Dmp** Single plane mean outside diameter deviation from basic outside diameter,i.e.,O.D. tolerance.
  - **K**<sub>ea</sub> Radial runout of assembled bearing outer ring, i.e., radial runout of raceway.
  - $\textbf{V}_{\textbf{Cs}}$  . Outer ring width variation, i.e. parallelism.
  - **S**<sub>D</sub> Outside cylindrical surface runout with outer ring refernece face, i.e., squareness O.D. to face.
  - **S**<sub>ea</sub> Axial runout af assembled bearing outer ring, i.e. lateral (axial) runout of raceway.
  - $\Delta \mathbf{C_s} \quad \text{Single outer ring width deviation from basic, i.e.,} \\ \quad \text{width tolerance.}$

#### STANDARD ABEC TOLERANCES - OUTER RING

All tolerances in number of ten-thousandths inches (.0001") and micrometers (µm)

| D<br>Bearing<br>O.D. |       | ΔDr<br>Outside Di<br>+.0000",+ | ameter <sup>(1)</sup>           | Width \                    | cs<br>/ariation<br>lelism) | Race                          | <sup>ea</sup><br>eway<br>Runout | Rac                           | eway<br>Runout             | S <sub>D</sub><br>Outside Diameter<br>Runout With Face<br>(Squareness) |                            |  |
|----------------------|-------|--------------------------------|---------------------------------|----------------------------|----------------------------|-------------------------------|---------------------------------|-------------------------------|----------------------------|------------------------------------------------------------------------|----------------------------|--|
|                      |       | MMV<br>ABEC<br>7               | ABEC<br>9                       | ABEC<br>7                  | MMV<br>ABEC<br>9           | ABEC<br>7                     | <i>MMV</i><br>ABEC<br>9         | ABEC<br>7                     | MMV<br>ABEC<br>9           | ABEC<br>7                                                              | MMV<br>ABEC<br>9           |  |
| Over<br><b>mm</b>    | Incl. | inch<br>µm                     | inch<br>µm                      | inch<br>µm                 | inch<br>µm                 | inch<br>µm                    | inch<br>µm                      | inch<br>µm                    | inch<br>µm                 | inch<br>µm                                                             | inch<br>µm                 |  |
| 0                    | 18    | -1 1/2<br>-4                   | -1<br>-2 1/2                    | 1<br>2 1/2                 | 1/2<br>1 1/2               | 1 3                           | 1/2<br>1 1/2                    | 2 5                           | 1/2<br>1 1/2               | 1 <sup>1</sup> /2 <b>4</b>                                             | 1/2<br>1 1/2               |  |
| 18                   | 30    | -2<br>-5                       | -1 <sup>1</sup> /2<br><b>-4</b> | 1<br>2 1/2                 | 1/2<br>1 1/2               | 1 <sup>1</sup> /2 <b>4</b>    | 1<br>2 1/2                      | 2<br><b>5</b>                 | 1<br>2 1/2                 | 1 <sup>1</sup> / <sub>2</sub>                                          | 1/2<br>1 1/2               |  |
| 30                   | 50    | -2 <sup>1</sup> /2<br>-6       | -1 <sup>1</sup> / <sub>2</sub>  | 1<br>2 1/2                 | 1/2<br>1 1/2               | 2<br><b>5</b>                 | 1<br>2 1/2                      | 2 5                           | 1<br>2 1/2                 | 1 <sup>1</sup> / <sub>2</sub>                                          | 1/2<br>1 1/2               |  |
| 50                   | 80    | -3<br>-7                       | -1 1/2<br><b>-4</b>             | 1 3                        | 1/2<br><b>1 1/2</b>        | 2<br><b>5</b>                 | 1 <sup>1</sup> /2 <b>4</b>      | 2 5                           | 1 <sup>1</sup> /2 <b>4</b> | 1 1/2<br>4                                                             | 1/2<br>1 1/2               |  |
| 80                   | 120   | -3<br>-8                       | -2<br>- <b>5</b>                | 1 <sup>1</sup> /2 <b>4</b> | 1<br>2 1/2                 | 2 <sup>1</sup> / <sub>2</sub> | 2<br><b>5</b>                   | 2 <sup>1</sup> / <sub>2</sub> | 2<br><b>5</b>              | 2<br><b>5</b>                                                          | 1<br>2 1/2                 |  |
| 120                  | 150   | -3 <sup>1</sup> /2<br>-9       | -2<br><b>-5</b>                 | 2<br><b>5</b>              | 1<br>2 1/2                 | 3<br><b>7</b>                 | 2<br><b>5</b>                   | 3 7                           | 2<br><b>5</b>              | 2<br><b>5</b>                                                          | 1<br>2 1/2                 |  |
| 150                  | 180   | -4<br>-10                      | -3<br><b>-7</b>                 | 2 5                        | 1<br>2 1/2                 | 3<br><b>8</b>                 | 2<br><b>5</b>                   | 3 8                           | 2<br><b>5</b>              | 2 5                                                                    | 1<br>2 1/2                 |  |
| 180                  | 250   | -4 <sup>1</sup> /2<br>-11      | -3<br>-8                        | 3<br>7                     | 1 <sup>1</sup> /2 <b>4</b> | 4<br>10                       | 3<br><b>7</b>                   | 4<br>10                       | 3<br><b>7</b>              | 3<br>7                                                                 | 1 <sup>1</sup> /2 <b>4</b> |  |
| 250                  | 315   | -5<br><b>-13</b>               | -3<br>-8                        | 3<br>7                     | 2<br><b>5</b>              | 4 <sup>1</sup> / <sub>2</sub> | 3<br><b>7</b>                   | 4<br>10                       | 3<br><b>7</b>              | 3<br><b>8</b>                                                          | 2 5                        |  |
| 315                  | 400   | -6<br>-15                      | -4<br><b>-10</b>                | 3 8                        | 3 7                        | 5<br><b>13</b>                | 3                               | 5<br><b>13</b>                | 3                          | 4<br>10                                                                | 3<br><b>7</b>              |  |


<sup>(1)</sup> **DMIN** and **DMAX** (the smallest single diameter and the largest single diameter of a O.D. in a single radial plane, respectively) may fall outside limits shown.

 $\underline{\textbf{DMIN} + \textbf{DMAX}} \text{ in a single radial plane must be within O.D. diameter tabulated. For further details see ABMA Standard 20 and Standard 4.}$ 

2

102800 **E5** 

### **Shaft Geometry Requirements**



| Description    | Symbol | Tolerance<br>Value | MM<br>ABEC 7 | MMV<br>HG | MMX<br>ABEC 9 |
|----------------|--------|--------------------|--------------|-----------|---------------|
| Roundness      | 0      | t1                 | IT2          | IT1       | IT0           |
| Parallelism    | \\     | t2                 | IT2          | IT1       | IT0           |
| Squareness     | Τ      | t3                 | IT2          | IT1       | IT0           |
| Concentricity  | 0      | t4                 | IT3          | IT2       | IT2           |
| Surface Finish | Ra     |                    | 16 μ"        | or        | 0.4 μm        |

Shaft Journal

Diameter d

 $\mathsf{mm}$ 

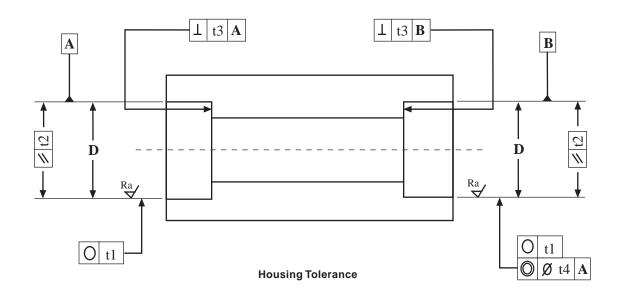
IT0

Units - Microinches (µin.)

IT2

IT3

IT1


| Sh<br>Jou<br>Diame<br><mark>m</mark> | rnal<br>ter (d) | IT0 | Units – Micr<br>IT1 | ometer (µm) | )<br>IT3 |
|--------------------------------------|-----------------|-----|---------------------|-------------|----------|
| >                                    | <               |     |                     |             |          |
| _                                    | 10              | 0.6 | 1.0                 | 1.5         | 2.5      |
| 10                                   | 18              | 0.8 | 1.2                 | 2.0         | 3.0      |
| 18                                   | 30              | 1.0 | 1.5                 | 2.5         | 4.0      |
| 30                                   | 50              | 1.0 | 1.5                 | 2.5         | 4.0      |
| 50                                   | 80              | 1.2 | 2.0                 | 3.0         | 5.0      |
| 80                                   | 120             | 1.5 | 2.5                 | 4.0         | 6.0      |
| 120                                  | 180             | 2.0 | 3.5                 | 5.0         | 8.0      |
| 180                                  | 250             | 3.0 | 4.5                 | 7.0         | 10.0     |
| 250                                  | 315             | _   | 6.0                 | 8.0         | 12.0     |

| 60  |
|-----|
| 80  |
| 100 |
| 140 |
| 180 |
| 240 |
| 1:  |

Reference ISO 286.

**E6** 

# **Housing Geometry Requirements**



| Description    | Symbol | Tolerance<br>Value | MM<br>ABEC 7 | MMV<br>HG | MMX<br>ABEC 9 |
|----------------|--------|--------------------|--------------|-----------|---------------|
| Roundness      | 0      | t1                 | IT2          | IT1       | IT0           |
| Parallelism    | \\     | t2                 | IT2          | IT1       | IT0           |
| Squareness     |        | t3                 | IT2          | IT1       | IT0           |
| Concentricity  | 0      | t4                 | IT3          | IT2       | IT2           |
| Surface Finish | Ra     |                    | 16 μ"        | or        | 0.4 μm        |

| Jour<br>Diamet | Housing<br>Journal<br>Diameter (D)<br><mark>mm</mark> |     | Units – Micro | meter (µm) | IT3  |
|----------------|-------------------------------------------------------|-----|---------------|------------|------|
| >              | <                                                     |     |               |            |      |
| 10             | 18                                                    | 0.8 | 1.2           | 2.0        | 3.0  |
| 18             | 30                                                    | 1.0 | 1.5           | 2.5        | 4.0  |
| 30             | 50                                                    | 1.0 | 1.5           | 2.5        | 4.0  |
| 50             | 80                                                    | 1.2 | 2.0           | 3.0        | 5.0  |
| 80             | 120                                                   | 1.5 | 2.5           | 4.0        | 6.0  |
| 120            | 180                                                   | 2.0 | 3.5           | 5.0        | 8.0  |
| 180            | 250                                                   | 3.0 | 4.5           | 7.0        | 10.0 |
| 250            | 315                                                   | 3.5 | 6.0           | 8.0        | 12.0 |
| 315            | 400                                                   | 4.5 | 6.0           | 8.0        | 12.0 |

Reference ISO 286.

| Jou<br>Diam | Housing<br>Journal<br>Diameter D<br>mm |     | Units – Microinches (μίπ.)<br>ITO IT1 IT2 |     |     |  |  |  |
|-------------|----------------------------------------|-----|-------------------------------------------|-----|-----|--|--|--|
| >           | <                                      |     |                                           |     |     |  |  |  |
| 10          | 18                                     | 30  | 50                                        | 80  | 120 |  |  |  |
| 18          | 30                                     | 40  | 60                                        | 100 | 160 |  |  |  |
| 30          | 50                                     | 40  | 60                                        | 100 | 160 |  |  |  |
| 50          | 80                                     | 50  | 80                                        | 120 | 200 |  |  |  |
| 80          | 120                                    | 60  | 100                                       | 160 | 240 |  |  |  |
| 120         | 180                                    | 80  | 140                                       | 200 | 310 |  |  |  |
| 180         | 250                                    | 120 | 180                                       | 280 | 390 |  |  |  |
| 250         | 315                                    | 140 | 240                                       | 310 | 470 |  |  |  |
| 315         | 400                                    | 180 | 240                                       | 310 | 470 |  |  |  |

# **Recommended Spindle Shaft Tolerances**

# \* SHAFT MOUNTING FITS - ABEC - 7 (ISO P4)

| Bearing        |              | Bearing      | g Bore     |                         | Rotating Shaft |              |                         |            |               |               |             |             |
|----------------|--------------|--------------|------------|-------------------------|----------------|--------------|-------------------------|------------|---------------|---------------|-------------|-------------|
| Bore<br>Number |              | Diam         | eter       |                         | Shaft Diameter |              |                         |            |               | Mounti        | ng Fits     |             |
|                | max.<br>inch | min.<br>inch | max.<br>mm | min.<br><mark>mm</mark> | min.<br>inch   | max.<br>inch | min.<br><mark>mm</mark> | max.<br>mm | loose<br>inch | tight<br>inch | loose<br>mm | tight<br>mm |
| 00             | 0.3937       | 0.39355      | 10         | 9.996                   | 0.3935         | 0.3937       | 9.995                   | 10.000     | 0.0002        | 0.00015       | 0.005       | 0.004       |
| 01             | 0.4724       | 0.47225      | 12         | 11.996                  | 0.4722         | 0.4724       | 11.995                  | 12.000     | 0.0002        | 0.00015       | 0.005       | 0.004       |
| 02             | 0.5906       | 0.59045      | 15         | 14.996                  | 0.5904         | 0.5906       | 14.995                  | 15.000     | 0.0002        | 0.00015       | 0.005       | 0.004       |
| 03             | 0.6693       | 0.66915      | 17         | 16.996                  | 0.6691         | 0.6693       | 16.995                  | 17.000     | 0.0002        | 0.00015       | 0.005       | 0.004       |
| 04             | 0.7874       | 0.78720      | 20         | 19.995                  | 0.7872         | 0.7874       | 19.995                  | 20.000     | 0.0002        | 0.00020       | 0.005       | 0.005       |
| 05             | 0.9843       | 0.98410      | 25         | 24.995                  | 0.9841         | 0.9843       | 24.995                  | 25.000     | 0.0002        | 0.00020       | 0.005       | 0.005       |
| 06             | 1.1811       | 1.18090      | 30         | 29.995                  | 1.1809         | 1.1811       | 29.995                  | 30.000     | 0.0002        | 0.00020       | 0.005       | 0.005       |
| 07             | 1.3780       | 1.37775      | 35         | 34.994                  | 1.3778         | 1.3780       | 34.995                  | 35.000     | 0.0002        | 0.00025       | 0.005       | 0.006       |
| 08             | 1.5748       | 1.57455      | 40         | 39.994                  | 1.5746         | 1.5748       | 39.995                  | 40.000     | 0.0002        | 0.00025       | 0.005       | 0.006       |
| 09             | 1.7717       | 1.77145      | 45         | 44.994                  | 1.7715         | 1.7717       | 44.995                  | 45.000     | 0.0002        | 0.00025       | 0.005       | 0.006       |
| 10             | 1.9685       | 1.96825      | 50         | 49.994                  | 1.9683         | 1.9685       | 49.995                  | 50.000     | 0.0002        | 0.00025       | 0.005       | 0.006       |
| 11             | 2.1654       | 2.16510      | 55         | 54.993                  | 2.1652         | 2.1654       | 54.995                  | 55.000     | 0.0002        | 0.00030       | 0.005       | 0.007       |
| 12             | 2.3622       | 2.36190      | 60         | 59.993                  | 2.3620         | 2.3622       | 59.995                  | 60.000     | 0.0002        | 0.00030       | 0.005       | 0.007       |
| 13             | 2.5591       | 2.55880      | 65         | 64.993                  | 2.5589         | 2.5591       | 64.995                  | 65.000     | 0.0002        | 0.00030       | 0.005       | 0.007       |
| 14             | 2.7559       | 2.75560      | 70         | 69.993                  | 2.7557         | 2.7559       | 69.995                  | 70.000     | 0.0002        | 0.00030       | 0.005       | 0.007       |
| 15             | 2.9528       | 2.95250      | 75         | 74.993                  | 2.9526         | 2.9530       | 74.995                  | 75.005     | 0.0002        | 0.00050       | 0.005       | 0.012       |
| 16             | 3.1496       | 3.14930      | 80         | 79.993                  | 3.1494         | 3.1498       | 79.995                  | 80.005     | 0.0002        | 0.00050       | 0.005       | 0.012       |
| 17             | 3.3465       | 3.34620      | 85         | 84.992                  | 3.3463         | 3.3467       | 84.995                  | 85.005     | 0.0002        | 0.00050       | 0.005       | 0.012       |
| 18             | 3.5433       | 3.5430       | 90         | 89.992                  | 3.5431         | 3.5435       | 89.995                  | 90.005     | 0.0002        | 0.00050       | 0.005       | 0.013       |
| 19             | 3.7402       | 3.73990      | 95         | 94.992                  | 3.7400         | 3.7404       | 94.995                  | 95.005     | 0.0002        | 0.00050       | 0.005       | 0.013       |

<sup>\*</sup> Over 750,000 dN, consult with Torrington Engineering Department.

E8 102800

# \* SHAFT MOUNTING FITS - ABEC - 7 (ISO P4)

| Bearing        |              | Bearing      | g Bore     |            | Rotating Shaft |              |            |            |               |               |             |             |  |
|----------------|--------------|--------------|------------|------------|----------------|--------------|------------|------------|---------------|---------------|-------------|-------------|--|
| Bore<br>Number |              | Diam         | eter       |            | Shaft Diameter |              |            |            | Mounting Fits |               |             |             |  |
|                | max.<br>inch | min.<br>inch | max.<br>mm | min.<br>mm | min.<br>inch   | max.<br>inch | min.<br>mm | max.<br>mm | loose<br>inch | tight<br>inch | loose<br>mm | tight<br>mm |  |
| 20             | 3.9370       | 3.93670      | 100        | 99.992     | 3.9368         | 3.9372       | 99.995     | 100.005    | 0.0002        | 0.0005        | 0.005       | 0.013       |  |
| 21             | 4.1339       | 4.13360      | 105        | 104.992    | 4.1337         | 4.1341       | 104.995    | 105.005    | 0.0002        | 0.0005        | 0.005       | 0.013       |  |
| 22             | 4.3307       | 4.33040      | 110        | 109.992    | 4.3305         | 4.3309       | 109.995    | 110.005    | 0.0002        | 0.0005        | 0.005       | 0.013       |  |
| 24             | 4.7244       | 4.72410      | 120        | 119.992    | 4.7242         | 4.7246       | 119.995    | 120.005    | 0.0002        | 0.0005        | 0.005       | 0.013       |  |
| 26             | 5.1181       | 5.11770      | 130        | 129.990    | 5.1179         | 5.1183       | 129.995    | 130.005    | 0.0002        | 0.0006        | 0.005       | 0.015       |  |
| 28             | 5.5118       | 5.51140      | 140        | 139.990    | 5.5116         | 5.5120       | 139.995    | 140.005    | 0.0002        | 0.0006        | 0.005       | 0.015       |  |
| 30             | 5.9055       | 5.90510      | 150        | 149.990    | 5.9053         | 5.9057       | 149.995    | 150.005    | 0.0002        | 0.0006        | 0.005       | 0.015       |  |
| 32             | 6.2992       | 6.29880      | 160        | 159.990    | 6.2990         | 6.2994       | 159.995    | 160.005    | 0.0002        | 0.0006        | 0.005       | 0.015       |  |
| 34             | 6.6929       | 6.69250      | 170        | 169.990    | 6.6927         | 6.6931       | 169.995    | 170.005    | 0.0002        | 0.0006        | 0.005       | 0.015       |  |
| 36             | 7.0866       | 7.08620      | 180        | 179.990    | 7.0863         | 7.0869       | 179.993    | 180.008    | 0.0003        | 0.0007        | 0.007       | 0.018       |  |
| 38             | 7.4803       | 7.47985      | 190        | 189.990    | 7.4800         | 7.4806       | 189.993    | 190.008    | 0.0003        | 0.0008        | 0.007       | 0.019       |  |
| 40             | 7.8740       | 7.87355      | 200        | 199.990    | 7.8737         | 7.8743       | 199.993    | 200.008    | 0.0003        | 0.0008        | 0.007       | 0.019       |  |

<sup>\*</sup> Over 750,000 dN, consult with Torrington Engineering Department.

# **Recommended Spindle Housing Tolerances**

# HOUSING MOUNTING FITS (FIXED) - ABEC - 7 (ISO P4)

|        | ring O.D. |        | Stationary | / Housing |         |
|--------|-----------|--------|------------|-----------|---------|
| וט     | ameter    | Housin | g Bore     | Mountin   | g Fits  |
| max.   | min.      | min.   | max.       | tight     | loose   |
| inch   | inch      | inch   | inch       | inch      | inch    |
| mm     | mm        | mm     | mm         | mm        | mm      |
| 0.8661 | 0.8659    | 0.8661 | 0.8663     | 0.0000    | 0.0004  |
| 22     | 21.995    | 22     | 22.005     | 0.000     | 0.010   |
| 0.9449 | 0.9447    | 0.9449 | 0.9451     | 0.0000    | 0.0004  |
| 24     | 23.995    | 24     | 24.005     | 0.000     | 0.010   |
| 1.0236 | 1.0234    | 1.0236 | 1.0238     | 0.0000    | 0.0004  |
| 26     | 25.995    | 26     | 26.005     | 0.000     | 0.010   |
| 1.1024 | 1.1022    | 1.1024 | 1.1026     | 0.0000    | 0.0004  |
| 28     | 27.995    | 28     | 28.005     | 0.000     | 0.010   |
| 1.1811 | 1.1809    | 1.1811 | 1.1813     | 0.0000    | 0.0004  |
| 30     | 29.995    | 30     | 30.005     | 0.000     | 0.010   |
| 1.2598 | 1.25955   | 1.2598 | 1.2600     | 0.0000    | 0.00045 |
| 32     | 31.994    | 32     | 32.005     | 0.000     | 0.011   |
| 1.3780 | 1.37775   | 1.3780 | 1.3783     | 0.0000    | 0.0005  |
| 35     | 34.994    | 35     | 35.006     | 0.000     | 0.012   |
| 1.4567 | 1.45645   | 1.4567 | 1.4570     | 0.0000    | 0.0005  |
| 37     | 36.994    | 37     | 37.006     | 0.000     | 0.012   |
| 1.5748 | 1.57455   | 1.5748 | 1.5751     | 0.0000    | 0.0005  |
| 40     | 39.994    | 40     | 40.006     | 0.000     | 0.012   |
| 1.6535 | 1.65325   | 1.6535 | 1.6538     | 0.0000    | 0.0005  |
| 42     | 41.994    | 42     | 42.006     | 0.000     | 0.012   |
| 1.8504 | 1.85015   | 1.8504 | 1.8507     | 0.0000    | 0.0005  |
| 47     | 46.994    | 47     | 47.006     | 0.000     | 0.012   |
| 2.0472 | 2.0469    | 2.0472 | 2.0475     | 0.0000    | 0.00055 |
| 52     | 51.993    | 52     | 52.006     | 0.000     | 0.013   |
| 2.1654 | 2.1651    | 2.1654 | 2.1657     | 0.0000    | 0.0006  |
| 55     | 54.993    | 55     | 55.008     | 0.000     | 0.015   |
| 2.4409 | 2.4406    | 2.4409 | 2.4412     | 0.0000    | 0.0006  |
| 62     | 61.993    | 62     | 62.008     | 0.000     | 0.015   |
| 2.6772 | 2.6769    | 2.6772 | 2.6775     | 0.0000    | 0.0006  |
| 68     | 67.993    | 68     | 68.008     | 0.000     | 0.015   |
| 2.8346 | 2.8343    | 2.8346 | 2.8349     | 0.0000    | 0.0006  |
| 72     | 71.993    | 72     | 72.008     | 0.000     | 0.015   |

E10 102800

# HOUSING MOUNTING FITS (FIXED) - ABEC - 7 (ISO P4)

|        | ing O.D. |        | Stationary | Housing |         |
|--------|----------|--------|------------|---------|---------|
| DIA    | ameter   | Housi  | ng Bore    | Mountir | ng Fits |
| max.   | min.     | min.   | max.       | tight   | loose   |
| inch   | inch     | inch   | inch       | inch    | inch    |
| mm     | mm       | mm     | mm         | mm      | mm      |
| 2.9528 | 2.9525   | 2.9528 | 2.9531     | 0.0000  | 0.0006  |
| 75     | 74.993   | 75     | 75.008     | 0.000   | 0.015   |
| 3.1496 | 3.1493   | 3.1496 | 3.1499     | 0.0000  | 0.0006  |
| 80     | 79.993   | 80     | 80.008     | 0.000   | 0.015   |
| 3.3465 | 3.3462   | 3.3465 | 3.3468     | 0.0000  | 0.0006  |
| 85     | 84.992   | 85     | 85.008     | 0.000   | 0.016   |
| 3.5433 | 3.543    | 3.5433 | 3.5436     | 0.0000  | 0.0006  |
| 90     | 89.992   | 90     | 90.008     | 0.000   | 0.016   |
| 3.7402 | 3.7399   | 3.7402 | 3.7405     | 0.0000  | 0.0006  |
| 95     | 94.992   | 95     | 95.008     | 0.000   | 0.016   |
| 3.9370 | 3.9367   | 3.9370 | 3.9373     | 0.0000  | 0.0006  |
| 100    | 99.992   | 100    | 100.008    | 0.000   | 0.016   |
| 4.1339 | 4.1336   | 4.1339 | 4.1342     | 0.0000  | 0.0006  |
| 105    | 104.992  | 105    | 105.008    | 0.000   | 0.016   |
| 4.3307 | 4.3304   | 4.3307 | 4.3310     | 0.0000  | 0.0006  |
| 110    | 109.992  | 110    | 110.008    | 0.000   | 0.016   |
| 4.5276 | 4.5273   | 4.5276 | 4.5279     | 0.0000  | 0.0006  |
| 115    | 114.992  | 115    | 115.008    | 0.000   | 0.016   |
| 4.7244 | 4.7241   | 4.7244 | 4.7247     | 0.0000  | 0.0006  |
| 120    | 119.992  | 120    | 120.008    | 0.000   | 0.016   |
| 4.9213 | 4.92095  | 4.9213 | 4.9216     | 0.0000  | 0.0007  |
| 125    | 124.991  | 125    | 125.008    | 0.000   | 0.017   |
| 5.1181 | 5.11775  | 5.1181 | 5.1185     | 0.0000  | 0.0007  |
| 130    | 129.991  | 130    | 130.009    | 0.000   | 0.018   |
| 5.5118 | 5.51145  | 5.5118 | 5.5122     | 0.0000  | 0.0007  |
| 140    | 139.991  | 140    | 140.009    | 0.000   | 0.018   |
| 5.7087 | 5.70835  | 5.7087 | 5.7091     | 0.0000  | 0.0007  |
| 145    | 144.991  | 145    | 145.009    | 0.000   | 0.018   |
| 5.9055 | 5.90515  | 5.9055 | 5.9059     | 0.0000  | 0.0007  |
| 150    | 149.991  | 150    | 150.009    | 0.000   | 0.018   |
| 6.2992 | 6.2988   | 6.2992 | 6.2996     | 0.0000  | 0.0008  |
| 160    | 159.990  | 160    | 160.009    | 0.000   | 0.0219  |

# **Recommended Spindle Housing Tolerances**

# HOUSING MOUNTING FITS (FIXED) - ABEC - 7 (ISO P4)

|         | ring O.D.<br>iameter |         | Stationar | y Housing |          |
|---------|----------------------|---------|-----------|-----------|----------|
|         |                      | Housin  | g Bore    | Mount     | ing Fits |
| max.    | min.                 | min.    | max.      | tight     | loose    |
| inch    | inch                 | inch    | inch      | inch      | inch     |
| mm      | mm                   | mm      | mm        | mm        | mm       |
| 6.4961  | 6.4957               | 6.4961  | 6.4965    | 0.0000    | 0.0008   |
| 165     | 164.990              | 165     | 165.010   | 0.000     | 0.020    |
| 6.6929  | 6.6925               | 6.6929  | 6.6933    | 0.0000    | 0.0008   |
| 170     | 169.990              | 170     | 170.010   | 0.000     | 0.020    |
| 7.0866  | 7.0862               | 7.0866  | 7.0870    | 0.0000    | 0.0008   |
| 180     | 179.990              | 180     | 180.010   | 0.000     | 0.020    |
| 7.4803  | 7.47985              | 7.4803  | 7.4807    | 0.0000    | 0.0008   |
| 190     | 189.989              | 190     | 190.010   | 0.000     | 0.021    |
| 7.8740  | 7.87355              | 7.8740  | 7.8745    | 0.0000    | 0.0009   |
| 200     | 199.989              | 200     | 200.011   | 0.000     | 0.022    |
| 8.2677  | 8.26725              | 8.2677  | 8.2682    | 0.0000    | 0.0009   |
| 210     | 209.989              | 210     | 210.011   | 0.000     | 0.022    |
| 8.4646  | 8.46415              | 8.4646  | 8.4651    | 0.0000    | 0.0009   |
| 215     | 214.989              | 215     | 215.011   | 0.000     | 0.022    |
| 8.8583  | 8.85785              | 8.8583  | 8.8588    | 0.0000    | 0.0009   |
| 225     | 224.989              | 225     | 225.011   | 0.000     | 0.022    |
| 9.0551  | 9.05465              | 9.0551  | 9.0556    | 0.0000    | 0.0009   |
| 230     | 229.989              | 230     | 230.011   | 0.000     | 0.022    |
| 9.4488  | 9.44835              | 9.4488  | 9.4493    | 0.0000    | 0.0009   |
| 240     | 239.989              | 240     | 240.011   | 0.000     | 0.022    |
| 10.2362 | 10.2357              | 10.2362 | 10.2367   | 0.0000    | 0.0010   |
| 260     | 259.987              | 260     | 260.011   | 0.000     | 0.024    |
| 10.6299 | 10.6294              | 10.6299 | 10.6304   | 0.0000    | 0.0010   |
| 270     | 269.987              | 270     | 270.013   | 0.000     | 0.026    |
| 11.0236 | 11.0231              | 11.0236 | 11.0241   | 0.0000    | 0.0010   |
| 280     | 279.987              | 280     | 280.013   | 0.000     | 0.026    |
| 12.2047 | 12.2042              | 12.2047 | 12.2052   | 0.0000    | 0.0010   |
| 310     | 309.987              | 310     | 310.013   | 0.000     | 0.026    |

E12 102800

# HOUSING MOUNTING FITS (FLOAT) - ABEC - 7 (ISO P4)

|        | ing O.D. |         | Stationar | y Housing |           |
|--------|----------|---------|-----------|-----------|-----------|
| Dia    | meter    | Housir  | ng Bore   | Housing ( | Clearance |
| max.   | min.     | max.    | min.      | max.      | min.      |
| inch   | inch     | inch    | inch      | inch      | inch      |
| mm     | mm       | mm      | mm        | mm        | mm        |
| 0.8661 | 0.8659   | 0.8665  | 0.8663    | 0.0006    | 0.0002    |
| 22     | 21.995   | 22.010  | 22.005    | 0.015     | 0.005     |
| 0.9449 | 0.9447   | 0.9453  | 0.9451    | 0.0006    | 0.0002    |
| 24     | 23.995   | 24.010  | 24.005    | 0.015     | 0.005     |
| 1.0236 | 1.0234   | 1.0240  | 1.0238    | 0.0006    | 0.0002    |
| 26     | 25.995   | 26.010  | 26.005    | 0.015     | 0.005     |
| 1.1024 | 1.1022   | 1.1028  | 1.1026    | 0.0006    | 0.0002    |
| 28     | 27.995   | 28.010  | 28.005    | 0.015     | 0.005     |
| 1.1811 | 1.1809   | 1.1815  | 1.1813    | 0.0006    | 0.0002    |
| 30     | 29.995   | 30.010  | 30.005    | 0.015     | 0.005     |
| 1.2598 | 1.2596   | 1.2602  | 1.2600    | 0.0007    | 0.0002    |
| 32     | 31.994   | 32.010  | 32.005    | 0.016     | 0.005     |
| 1.3780 | 1.3778   | 1.3784  | 1.3782    | 0.0007    | 0.0002    |
| 35     | 34.994   | 35.010  | 35.005    | 0.016     | 0.005     |
| 1.4567 | 1.4565   | 1.4571  | 1.4569    | 0.0007    | 0.0002    |
| 37     | 36.994   | 37.010  | 37.005    | 0.016     | 0.005     |
| 1.5748 | 1.5746   | 1.5752  | 1.5750    | 0.0007    | 0.0002    |
| 40     | 39.994   | 40.010  | 40.005    | 0.016     | 0.005     |
| 1.6535 | 1.6533   | 1.6539  | 1.6537    | 0.0007    | 0.0002    |
| 42     | 41.994   | 42.010  | 42.005    | 0.016     | 0.005     |
| 1.8504 | 1.8502   | 1.8509  | 1.8507    | 0.0008    | 0.0003    |
| 47     | 46.994   | 47.012  | 47.007    | 0.018     | 0.007     |
| 2.0472 | 2.0469   | 2.0477  | 2.0475    | 0.0008    | 0.0003    |
| 52     | 51.993   | 52.012  | 52.007    | 0.019     | 0.007     |
| 2.1654 | 2.1651   | 2.1659  | 2.1657    | 0.0008    | 0.0003    |
| 55     | 54.993   | 55.012  | 55.007    | 0.019     | 0.007     |
| 2.4409 | 2.4406   | 2.4414  | 2.4412    | 0.0008    | 0.0003    |
| 62     | 61.993   | 62.012  | 62.007    | 0.019     | 0.007     |
| 2.6772 | 2.6769   | 2.6777  | 2.6775    | 0.0008    | 0.0003    |
| 68     | 67.993   | 68.012  | 68.007    | 0.019     | 0.007     |
| 2.8346 | 2.8343   | 2.8351  | 2.8349    | 0.0008    | 0.0003    |
| 72     | 71.993   | 72.0112 | 72.007    | 0.019     | 0.007     |

# **Recommended Spindle Housing Tolerances**

# HOUSING MOUNTING FITS (FLOAT) - ABEC - 7 (ISO P4)

|            | ng O.D.<br>neter |         | Stationary | Housing   |           |
|------------|------------------|---------|------------|-----------|-----------|
| Diai       | neter            | Housi   | ng Bore    | Housing ( | Clearance |
| max.       | min.             | max.    | min.       | max.      | min.      |
| inch       | inch             | inch    | inch       | inch      | inch      |
| mm         | mm               | mm      | mm         | mm        | mm        |
| 2.9528     | 2.9525           | 2.9533  | 2.9531     | 0.0008    | 0.0003    |
| 75         | 74.992           | 75.014  | 75.009     | 0.022     | 0.009     |
| 3.1496     | 3.1493           | 3.1501  | 3.1499     | 0.0008    | 0.0003    |
| 80         | 79.992           | 80.012  | 80.008     | 0.020     | 0.008     |
| 3.3465     | 3.3462           | 3.3471  | 3.3468     | 0.0009    | 0.0003    |
| 85         | 84.992           | 85.016  | 85.009     | 0.024     | 0.009     |
| 3.5433     | 3.5430           | 3.5439  | 3.5436     | 0.0009    | 0.0003    |
| 90         | 89.992           | 90.015  | 90.007     | 0.023     | 0.007     |
| 3.7402     | 3.7399           | 3.7408  | 3.7405     | 0.0009    | 0.0003    |
| <b>9</b> 5 | 94.992           | 95.016  | 95.009     | 0.024     | 0.009     |
| 3.9370     | 3.9367           | 3.9377  | 3.9374     | 0.001     | 0.0004    |
| 100        | 99.992           | 100.018 | 100.010    | 0.025     | 0.010     |
| 4.1339     | 4.1336           | 4.1346  | 4.1343     | 0.001     | 0.0004    |
| 105        | 104.992          | 105.019 | 105.011    | 0.026     | 0.011     |
| 4.3307     | 4.3304           | 4.3314  | 4.3311     | 0.001     | 0.0004    |
| 110        | 109.992          | 110.018 | 110.010    | 0.025     | 0.010     |
| 4.5276     | 4.5273           | 4.5283  | 4.5280     | 0.001     | 0.0004    |
| 115        | 114.992          | 115.019 | 115.011    | 0.026     | 0.010     |
| 4.7244     | 4.7241           | 4.7251  | 4.7248     | 0.001     | 0.0004    |
| 120        | 119.992          | 120.018 | 120.010    | 0.025     | 0.010     |
| 4.9213     | 4.9210           | 4.9221  | 4.9217     | 0.0012    | 0.0004    |
| 125        | 124.991          | 125.021 | 125.011    | 0.030     | 0.011     |
| 5.1181     | 5.1177           | 5.1189  | 5.1185     | 0.0011    | 0.0004    |
| 130        | 129.991          | 130.020 | 130.010    | 0.029     | 0.010     |
| 5.5118     | 5.5115           | 5.5126  | 5.5122     | 0.0011    | 0.0004    |
| 140        | 139.991          | 140.020 | 140.010    | 0.029     | 0.010     |
| 5.9055     | 5.9051           | 5.7095  | 5.7091     | 0.0011    | 0.0004    |
| 145        | 144.991          | 145.021 | 145.011    | 0.030     | 0.011     |
| 6.2992     | 6.2988           | 5.9064  | 5.9060     | 0.0012    | 0.0005    |
| 150        | 149.991          | 150.023 | 150.012    | 0.032     | 0.012     |
| 6.6929     | 6.6925           | 6.3001  | 6.2997     | 0.0013    | 0.0005    |
| 160        | 159.989          | 160.022 | 160.012    | 0.033     | 0.012     |

E14 102800

# HOUSING MOUNTING FITS (FLOAT) - ABEC - 7 (ISO P4)

| Bearing |         |         | Stationary | Housing   |           |
|---------|---------|---------|------------|-----------|-----------|
| Diam    | leter   | Housin  | ig Bore    | Housing ( | Clearance |
| max.    | min.    | max.    | min.       | max.      | min.      |
| inch    | inch    | inch    | inch       | inch      | inch      |
| mm      | mm      | mm      | mm         | mm        | mm        |
| 6.4961  | 6.4957  | 6.4970  | 6.4966     | 0.0013    | 0.0005    |
| 165     | 164.990 | 165.022 | 165.012    | 0.032     | 0.012     |
| 6.6929  | 6.6925  | 6.6938  | 6.6934     | 0.0013    | 0.0005    |
| 170     | 169.990 | 170.022 | 170.012    | 0.032     | 0.012     |
| 7.0866  | 7.0862  | 7.0875  | 7.0871     | 0.0013    | 0.0005    |
| 180     | 179.990 | 180.022 | 180.012    | 0.032     | 0.012     |
| 7.4803  | 7.4799  | 7.4812  | 7.4808     | 0.0014    | 0.0005    |
| 190     | 189.989 | 190.022 | 190.012    | 0.033     | 0.012     |
| 7.8740  | 7.8736  | 7.8750  | 7.8746     | 0.0015    | 0.0006    |
| 200     | 199.989 | 200.025 | 200.015    | 0.036     | 0.015     |
| 8.2677  | 8.2673  | 8.2687  | 8.2683     | 0.0015    | 0.0006    |
| 210     | 209.989 | 210.025 | 210.015    | 0.036     | 0.015     |
| 8.4646  | 8.4642  | 8.4656  | 8.4652     | 0.0015    | 0.0006    |
| 215     | 214.989 | 215.025 | 215.015    | 0.036     | 0.015     |
| 8.8583  | 8.8579  | 8.8593  | 8.8589     | 0.0015    | 0.0006    |
| 225     | 224.989 | 225.025 | 225.015    | 0.036     | 0.015     |
| 9.0551  | 9.0547  | 9.0561  | 9.0557     | 0.0015    | 0.0006    |
| 230     | 229.989 | 230.025 | 230.015    | 0.036     | 0.015     |
| 9.4488  | 9.4484  | 9.4500  | 9.4494     | 0.0016    | 0.0006    |
| 240     | 239.989 | 240.025 | 240.015    | 0.041     | 0.015     |
| 10.2362 | 10.2357 | 10.2375 | 10.2370    | 0.0018    | 0.0008    |
| 260     | 259.987 | 260.030 | 260.015    | 0.044     | 0.018     |
| 10.6299 | 10.6294 | 10.6312 | 10.6307    | 0.0018    | 0.0008    |
| 270     | 269.987 | 270.031 | 270.018    | 0.044     | 0.018     |
| 11.0236 | 11.0231 | 11.0249 | 11.0244    | 0.0018    | 0.0008    |
| 280     | 279.987 | 280.031 | 280.018    | 0.044     | 0.018     |
| 11.4173 | 11.4168 | 11.4186 | 11.4181    | 0.0018    | 0.0008    |
| 290     | 289.987 | 290.031 | 290.018    | 0.044     | 0.018     |
| 12.2047 | 12.2042 | 12.2060 | 12.2055    | 0.0018    | 0.0008    |
| 310     | 309.987 | 310.031 | 310.018    | 0.044     | 0.0       |

# **Ball Screw Support Series Shaft and Housing Shoulder Dimensions**

# SHAFT AND HOUSING SHOULDER DIMENSIONS (INCH SERIES)

| Bearing<br>Number | S      | haft   | Ho     | using  | Fil<br>Rad |     |
|-------------------|--------|--------|--------|--------|------------|-----|
| rumbor            | ±.005" | ±.13mm | ±.005" | ±.13mm | (ma        |     |
|                   | in.    | mm     | in.    | mm     | in.        | mm  |
| MM9306WI2H        | 1.078  | 27.4   | 1.636  | 41.6   | 0.031      | 0.8 |
| MM9308WI2H        | 1.316  | 33.4   | 2.174  | 55.2   | 0.031      | 0.8 |
| MM9310WI2H        | 1.860  | 47.2   | 2.474  | 62.8   | 0.031      | 0.8 |
| MM9311WI3H        | 2.052  | 52.1   | 2.667  | 67.7   | 0.031      | 0.8 |
| MM9313WI5H        | 2.572  | 65.3   | 3.191  | 81.1   | 0.031      | 0.8 |
| MM9316WI3H        | 3.375  | 85.7   | 3.995  | 101.5  | 0.031      | 0.8 |
| MM9321WI3         | 4.413  | 112.1  | 5.296  | 134.5  | 0.039      | 1.0 |
| MM9326WI6H        | 5.664  | 143.9  | 6.606  | 167.8  | 0.039      | 1.0 |

# SHAFT AND HOUSING SHOULDER DIMENSIONS (METRIC SERIES)

| Bearing    | SI     | haft   | Ho     | using  |       | let          | Bearing     | SI     | haft   | Ho     | using  |       | let          |
|------------|--------|--------|--------|--------|-------|--------------|-------------|--------|--------|--------|--------|-------|--------------|
| Number     | ±.005" | ±.13mm | ±.005" | ±.13mm |       | dius<br>ax.) | Size        | ±.005" | ±.13mm | ±.005" | ±.13mm |       | dius<br>ax.) |
|            | in.    | mm     | in.    | mm     | in.   | mm           |             | in.    | mm     | in.    | mm     | in.   | mm           |
| MM17BS 47  | 0.905  | 23.00  | 1.634  | 41.50  | 0.031 | 0.8          | MM45BS 75   | 2.047  | 52.00  | 2.717  | 69.00  | 0.039 | 1.0          |
| MM20BS 47  | 1.024  | 26.00  | 1.634  | 41.50  | 0.031 | 0.8          | MM45BS 100  | 2.126  | 54.00  | 3.543  | 90.00  | 0.039 | 1.0          |
| MM25BS 62  | 1.378  | 35.00  | 2.205  | 56.00  | 0.031 | 0.8          | MM50BS 90   | 2.323  | 59.00  | 3.228  | 82.00  | 0.039 | 1.0          |
| MM30BS 62  | 1.575  | 40.00  | 2.205  | 56.00  | 0.031 | 0.8          | MM50BS 100  | 2.323  | 59.00  | 3.543  | 90.00  | 0.039 | 1.0          |
| MM30BS 72  | 1.575  | 40.00  | 2.205  | 56.00  | 0.031 | 0.8          | MM55BS 90   | 2.48   | 63.00  | 3.228  | 82.00  | 0.039 | 1.0          |
| MM35BS 72  | 1.653  | 42.00  | 2.520  | 64.00  | 0.031 | 0.8          | MM55BS 120  | 2.559  | 65.00  | 4.331  | 110.00 | 0.039 | 1.0          |
| MM35BS 100 | 1.653  | 42.00  | 3.543  | 90.00  | 0.031 | 0.8          | MM60BS 120  | 2.756  | 70.00  | 4.331  | 110.00 | 0.039 | 1.0          |
| MM40BS 72  | 1.850  | 47.00  | 2.520  | 64.00  | 0.031 | 0.8          | MM75BS 110  | 3.307  | 84.00  | 4.016  | 102.00 | 0.039 | 1.0          |
| MM40BS 90  | 1.850  | 47.00  | 3.228  | 82.00  | 0.031 | 0.8          | MM100BS 150 | 4.331  | 110.00 | 5.433  | 138.00 | 0.039 | 1.0          |
| MM40BS 100 | 1.850  | 47.00  | 3.543  | 90.00  | 0.031 | 0.8          |             |        |        |        |        |       |              |

E16 102800

# **ULTRA-LIGHT 9300 SERIES**

# **EXTRA LIGHT 9100 SERIES**

| Basic             |      | Shoulder | Diameters |       | Basic             |      | Shoulder | Diameters |       |
|-------------------|------|----------|-----------|-------|-------------------|------|----------|-----------|-------|
| Bearing<br>Number | Sł   | naft     | Hou       | ısing | Bearing<br>Number | Sh   | aft      | Hou       | ısing |
|                   | max. | min.     | max.      | min.  |                   | max. | min.     | max.      | min.  |
|                   | inch | inch     | inch      | inch  |                   | inch | inch     | inch      | inch  |
|                   | mm   | mm       | mm        | mm    |                   | mm   | mm       | mm        | mm    |
| 9300              | 0.52 | 0.51     | 0.77      | 0.76  | 9100              | 0.54 | 0.53     | 0.92      | 0.91  |
|                   | 13.2 | 13.0     | 19.6      | 19.3  |                   | 13.6 | 13.3     | 23.2      | 23.0  |
| 9301              | 0.60 | 0.59     | 0.85      | 0.84  | 9101              | 0.64 | 0.63     | 1.01      | 1.00  |
|                   | 15.2 | 14.9     | 21.6      | 21.3  |                   | 16.1 | 15.9     | 25.5      | 25.3  |
| 9302              | 0.72 | 0.71     | 1.00      | 0.99  | 9102              | 0.76 | 0.75     | 1.13      | 1.12  |
|                   | 18.3 | 18.1     | 25.5      | 25.2  |                   | 19.2 | 18.9     | 28.6      | 28.3  |
| 9303              | 0.80 | 0.79     | 1.08      | 1.07  | 9103              | 0.86 | 0.85     | 1.23      | 1.22  |
|                   | 20.3 | 20.0     | 27.5      | 27.2  |                   | 21.7 | 21.5     | 31.1      | 30.9  |
| 9304              | 0.95 | 0.94     | 1.33      | 1.32  | 9104              | 0.99 | 0.98     | 1.49      | 1.48  |
|                   | 24.1 | 23.9     | 33.7      | 33.4  |                   | 25.0 | 24.8     | 37.7      | 37.5  |
| 9305              | 1.15 | 1.14     | 1.52      | 1.51  | 9105              | 1.19 | 1.18     | 1.68      | 1.67  |
|                   | 29.1 | 28.9     | 38.7      | 38.4  |                   | 30.1 | 29.9     | 42.6      | 42.3  |
| 9306              | 1.34 | 1.33     | 1.72      | 1.71  | 9106              | 1.43 | 1.42     | 2.00      | 1.99  |
|                   | 34.1 | 33.9     | 43.7      | 43.4  |                   | 36.2 | 35.9     | 50.7      | 50.4  |
| 9307              | 1.57 | 1.55     | 2.01      | 1.99  | 9107              | 1.62 | 1.60     | 2.23      | 2.21  |
|                   | 40.0 | 39.5     | 51.1      | 50.6  |                   | 41.2 | 40.6     | 56.6      | 56.1  |
| 9308              | 1.78 | 1.76     | 2.28      | 2.26  | 9108              | 1.82 | 1.80     | 2.45      | 2.43  |
|                   | 45.1 | 44.6     | 57.9      | 57.4  |                   | 46.2 | 45.7     | 62.2      | 61.7  |
| 9309              | 1.99 | 1.97     | 2.50      | 2.48  | 9109              | 2.04 | 2.02     | 2.73      | 2.71  |
|                   | 50.7 | 50.1     | 63.4      | 62.9  |                   | 51.8 | 51.3     | 69.3      | 68.8  |
| 9310              | 2.17 | 2.15     | 2.67      | 2.65  | 9110              | 2.23 | 2.21     | 2.92      | 2.90  |
|                   | 55.1 | 54.6     | 67.9      | 67.4  |                   | 56.6 | 56.1     | 74.2      | 73.7  |
| 9311              | 2.40 | 2.38     | 2.96      | 2.94  | 9111              | 2.47 | 2.45     | 3.28      | 3.26  |
|                   | 60.9 | 60.4     | 75.2      | 74.7  |                   | 62.7 | 62.2     | 83.3      | 82.8  |
| 9312              | 2.59 | 2.57     | 3.16      | 3.14  | 9112              | 2.67 | 2.65     | 3.47      | 3.45  |
|                   | 65.8 | 65.3     | 80.2      | 79.7  |                   | 67.8 | 67.3     | 88.1      | 87.6  |
| 9313              | 2.79 | 2.77     | 3.35      | 3.33  | 9113              | 2.86 | 2.84     | 3.67      | 3.65  |
|                   | 70.8 | 70.3     | 85.2      | 84.7  |                   | 72.6 | 72.1     | 93.2      | 92.7  |
| 9314              | 3.02 | 3.00     | 3.71      | 3.69  | 9114              | 3.08 | 3.06     | 4.03      | 4.01  |
|                   | 76.8 | 76.3     | 94.3      | 93.8  |                   | 78.2 | 77.7     | 102.4     | 101.9 |

# **ULTRA-LIGHT 9300 SERIES**

# **EXTRA LIGHT 9100 SERIES**

| Basic<br>Bearing |                       | Shoulde       | r Diameters   |                      | Basic<br>Bearing |               | Shoulder      | Diameters     |               |
|------------------|-----------------------|---------------|---------------|----------------------|------------------|---------------|---------------|---------------|---------------|
| Number           | S                     | Shaft         | Но            | using                | Number           | S             | haft          | Hou           | ısing         |
|                  | max.                  | min.          | max.          | min.                 |                  | max.          | min.          | max.          | min.          |
|                  | inch                  | inch          | inch          | inch                 |                  | inch          | inch          | inch          | inch          |
|                  | mm                    | mm            | mm            | mm                   |                  | mm            | mm            | mm            | mm            |
| 9315             | 3.22                  | 3.19          | 3.91          | 3.88                 | 9115             | 3.29          | 3.26          | 4.23          | 4.20          |
|                  | 81.9                  | 81.1          | 99.4          | 98.6                 |                  | 83.4          | 82.7          | 107.3         | 106.6         |
| 9316             | 3.42                  | 3.39          | 4.11          | 4.08                 | 9116             | 3.52          | 3.49          | 4.59          | 4.56          |
|                  | 86.9                  | 86.1          | 104.4         | 103.6                |                  | 89.3          | 88.5          | 116.5         | 115.7         |
| 9317             | 3.69                  | 3.66          | 4.44          | 4.41                 | 9117             | 3.74          | 3.71          | 4.81          | 4.78          |
|                  | 93.6                  | 92.8          | 112.7         | 111.9                |                  | 94.9          | 94.1          | 122.1         | 121.3         |
| 9318             | 3.85                  | 3.82          | 4.66          | 4.63                 | 9118             | 3.96          | 3.93          | 5.16          | 5.13          |
|                  | 97.8                  | 97.0          | 118.5         | 117.7                |                  | 100.5         | 99.7          | 130.9         | 130.2         |
| 9319             | 4.05                  | 4.02          | 4.86          | 4.83                 | 9119             | 4.16          | 4.13          | 5.35          | 5.32          |
|                  | 102.8                 | 102.0         | 123.5         | 122.7                |                  | 105.5         | 104.8         | 135.8         | 135.0         |
| 9320             | 4.34                  | 4.31          | 5.16          | 5.13                 | 9120             | 4.36          | 4.33          | 5.55          | 5.52          |
|                  | 110.3                 | 109.5         | 131.0         | 130.2                |                  | 110.6         | 109.9         | 140.8         | 140.1         |
| 9322             | 4.74                  | 4.71          | 5.55          | 5.52                 | 9121             | 4.59          | 4.56          | 5.91          | 5.88          |
|                  | 120.3                 | 119.5         | 141.0         | 140.2                |                  | 116.5         | 115.7         | 150.0         | 149.2         |
| 9324             | 5.16<br>131.2         | 5.13<br>130.4 | 6.10<br>155.0 | 6.07<br>154.3        | 9122             | 4.85<br>123.1 | 4.82<br>122.3 | 6.24<br>158.4 | 6.21<br>157.6 |
|                  |                       |               |               |                      |                  |               |               |               |               |
| 9326             | 5.60<br><b>142.1</b>  | 5.57<br>141.4 | 6.66<br>169.2 | 6.63<br>168.4        | 9124             | 5.25<br>133.2 | 5.22<br>132.5 | 6.63<br>168.3 | 6.60<br>167.5 |
|                  |                       |               |               |                      | 0.404            |               |               |               |               |
| 9328             | 5.99<br><b>152.1</b>  | 5.96<br>151.4 | 7.05<br>179.2 | 7.02<br>178.4        | 9126             | 5.71<br>144.9 | 5.68<br>144.2 | 7.35<br>186.6 | 7.32<br>185.8 |
| 0220             |                       | 6.39          | 7.80          |                      | 0120             |               | 6.08          |               |               |
| 9330             | 6.42<br><b>163</b> .1 | 6.39<br>162.4 | 7.80<br>198.2 | 7.77<br><b>197.4</b> | 9128             | 6.11<br>155.1 | 154.3         | 7.74<br>196.5 | 7.71<br>195.7 |
| 9332             | 6.82                  | 6.79          | 8.20          | 8.17                 | 9130             | 6.54          | 6.51          | 8.30          | 8.27          |
| 7332             | 173.2                 | 172.4         | 208.2         | 207.4                | 7130             | 166.0         | 165.2         | 210.7         | 209.9         |
| 9334             | 7.30                  | 7.27          | 8.51          | 8.48                 | 9132             | 6.97          | 6.94          | 8.85          | 8.82          |
| 7334             | 185.4                 | 184.7         | 216.1         | 215.4                | 7132             | 176.9         | 176.2         | 224.7         | 223.9         |
| 9336             | 7.68                  | 7.65          | 9.31          | 9.28                 | 9134             | 7.43          | 7.40          | 9.56          | 9.53          |
|                  | 195.0                 | 194.2         | 236.4         | 235.6                |                  | 188.6         | 187.8         | 242.7         | 241.9         |
| 9338             | 8.07                  | 8.04          | 9.70          | 9.67                 | 9136             | 7.90          | 7.87          | 10.28         | 10.25         |
|                  | 205.0                 | 204.2         | 246.4         | 245.6                |                  | 200.5         | 199.8         | 261.0         | 260.2         |
| 9340             | 8.54                  | 8.51          | 10.41         | 10.38                | 9140             | 8.76          | 8.73          | 11.39         | 11.36         |
|                  | 216.8                 | 216.0         | 264.5         | 263.7                |                  | 222.4         | 221.6         | 289.2         | 288.4         |

E18 102800

# **EXTRA LIGHT 9100HX SERIES**

| Basic<br>Bearing |      | Shoulder | Diameters |      | Basic<br>Bearing |       | Shoulder | Diameters |       |
|------------------|------|----------|-----------|------|------------------|-------|----------|-----------|-------|
| Number           | Sh   | naft     | Hou       | sing | Number           | Sh    | aft      | Hous      | sing  |
|                  | max. | min.     | max.      | min. |                  | max.  | min.     | max.      | min.  |
|                  | inch | inch     | inch      | inch |                  | inch  | inch     | inch      | inch  |
|                  | mm   | mm       | mm        | mm   |                  | mm    | mm       | mm        | mm    |
| 9104             | 0.98 | 0.97     | 1.48      | 1.47 | 9114             | 3.18  | 3.16     | 3.93      | 3.91  |
|                  | 24.8 | 24.5     | 37.5      | 37.2 |                  | 80.8  | 80.3     | 99.8      | 99.3  |
| 9105             | 1.15 | 1.14     | 1.71      | 1.70 | 9115             | 3.38  | 3.35     | 4.14      | 4.11  |
|                  | 29.1 | 28.8     | 43.3      | 43.1 |                  | 85.7  | 85.0     | 105.0     | 104.3 |
| 9106             | 1.37 | 1.36     | 2.00      | 1.99 | 9116             | 3.62  | 3.59     | 4.49      | 4.46  |
|                  | 34.7 | 34.4     | 50.7      | 50.4 |                  | 91.8  | 91.1     | 113.9     | 113.2 |
| 9107             | 1.61 | 1.59     | 2.23      | 2.21 | 9117             | 3.81  | 3.78     | 4.69      | 4.66  |
|                  | 40.9 | 40.4     | 56.6      | 56.1 |                  | 96.7  | 95.9     | 119.0     | 118.2 |
| 9108             | 1.82 | 1.80     | 2.45      | 2.43 | 9118             | 4.11  | 4.08     | 4.99      | 4.96  |
|                  | 46.2 | 45.7     | 62.2      | 61.7 |                  | 104.3 | 103.5    | 126.6     | 125.9 |
| 9109             | 2.00 | 1.98     | 2.75      | 2.73 | 9119             | 4.24  | 4.21     | 5.25      | 5.22  |
|                  | 50.8 | 50.3     | 69.9      | 69.3 |                  | 107.6 | 106.8    | 133.2     | 132.5 |
| 9110             | 2.19 | 2.17     | 2.95      | 2.93 | 9120             | 4.44  | 4.41     | 5.44      | 5.41  |
|                  | 55.6 | 55.1     | 74.9      | 74.4 |                  | 112.7 | 111.9    | 138.1     | 137.3 |
| 9111             | 2.55 | 2.53     | 3.18      | 3.16 | 9121             | 4.73  | 4.70     | 5.74      | 5.71  |
|                  | 64.8 | 64.3     | 8.08      | 80.3 |                  | 120.0 | 119.3    | 145.7     | 144.9 |
| 9112             | 2.75 | 2.73     | 3.37      | 3.35 | 9122             | 5.03  | 5.00     | 6.03      | 6.00  |
|                  | 69.9 | 69.3     | 85.6      | 85.1 |                  | 127.6 | 126.9    | 153.0     | 152.3 |
| 9113             | 2.91 | 2.89     | 3.60      | 3.58 | 9124             | 5.36  | 5.33     | 6.49      | 6.46  |
|                  | 73.9 | 73.4     | 91.4      | 90.9 |                  | 136.0 | 135.3    | 164.7     | 164.0 |

# **LIGHT 200 SERIES**

| Basic   |      | Shoulder | r Diameters |       | Basic   |       | Shoulder | Diameters |       |
|---------|------|----------|-------------|-------|---------|-------|----------|-----------|-------|
| Bearing |      |          |             |       | Bearing |       |          |           |       |
| Number  |      | naft     |             | using | Number  |       | Shaft    | Hou       | 3     |
|         | max. | min.     | max.        | min.  |         | max.  | min.     | max.      | min.  |
|         | inch | inch     | inch        | inch  |         | inch  | inch     | inch      | inch  |
|         | mm   | mm       | mm          | mm    |         | mm    | mm       | mm        | mm    |
| 200     | 0.60 | 0.59     | 1.03        | 1.02  | 213     | 3.00  | 2.98     | 4.32      | 4.30  |
|         | 15.1 | 14.9     | 26.0        | 25.8  |         | 76.2  | 75.7     | 109.7     | 109.2 |
| 201     | 0.66 | 0.65     | 1.11        | 1.10  | 214     | 3.18  | 3.16     | 4.56      | 4.54  |
|         | 16.6 | 16.4     | 28.1        | 27.8  |         | 80.8  | 80.3     | 115.8     | 115.3 |
| 202     | 0.76 | 0.75     | 1.23        | 1.22  | 215     | 3.39  | 3.36     | 4.76      | 4.73  |
|         | 19.2 | 18.9     | 31.1        | 30.9  |         | 86.0  | 85.2     | 120.8     | 120.0 |
| 203     | 0.86 | 0.85     | 1.41        | 1.40  | 216     | 3.60  | 3.57     | 5.12      | 5.09  |
|         | 21.7 | 21.5     | 35.7        | 35.4  |         | 91.3  | 90.6     | 129.9     | 129.2 |
| 204     | 1.03 | 1.02     | 1.64        | 1.63  | 217     | 3.84  | 3.81     | 5.47      | 5.44  |
|         | 26.0 | 25.8     | 41.5        | 41.3  |         | 97.4  | 96.7     | 138.8     | 138.1 |
| 205     | 1.23 | 1.22     | 1.86        | 1.85  | 218     | 4.08  | 4.05     | 5.83      | 5.8   |
|         | 31.1 | 30.9     | 47.1        | 46.9  |         | 103.5 | 102.7    | 148.0     | 147.2 |
| 206     | 1.45 | 1.44     | 2.21        | 2.20  | 219     | 4.31  | 4.28     | 6.19      | 6.16  |
|         | 36.7 | 36.5     | 56.0        | 55.8  |         | 109.4 | 108.6    | 157.1     | 153.3 |
| 207     | 1.68 | 1.66     | 2.57        | 2.55  | 220     | 4.54  | 4.51     | 6.54      | 6.51  |
|         | 42.7 | 42.2     | 65.3        | 64.8  |         | 115.2 | 114.4    | 166.0     | 165.2 |
| 208     | 1.88 | 1.86     | 2.88        | 2.86  | 222     | 5.01  | 4.98     | 7.26      | 7.23  |
|         | 47.8 | 47.2     | 73.2        | 72.6  |         | 127.1 | 126.4    | 184.3     | 183.5 |
| 209     | 2.08 | 2.06     | 3.08        | 3.06  | 224     | 5.44  | 5.41     | 7.82      | 7.79  |
|         | 52.8 | 52.3     | 78.2        | 77.7  |         | 138.1 | 137.3    | 198.5     | 197.7 |
| 210     | 2.28 | 2.26     | 3.28        | 3.26  | 226     | 5.93  | 5.90     | 8.31      | 8.28  |
|         | 57.9 | 57.4     | 83.3        | 82.8  |         | 150.5 | 149.7    | 211.0     | 210.2 |
| 211     | 2.51 | 2.49     | 3.63        | 3.61  | 230     | 6.80  | 6.77     | 9.80      | 9.77  |
|         | 63.8 | 63.3     | 92.2        | 91.7  |         | 172.6 | 171.8    | 248.8     | 248.0 |
| 212     | 2.75 | 2.73     | 3.99        | 3.97  |         |       |          |           |       |
|         | 69.9 | 69.3     | 101.4       | 100.8 |         |       |          |           |       |

**E20** 102800

# **MEDIUM 300 SERIES**

| Basic<br>Bearing |      | Shoulder | Diameters |       | Basic<br>Bearing |       | Shoulder | Diameters |       |
|------------------|------|----------|-----------|-------|------------------|-------|----------|-----------|-------|
| Number           | Sh   | aft      | Hou       | using | Number           | 5     | Shaft    | Hou       | using |
|                  | max. | min.     | max.      | min.  |                  | max.  | min.     | max.      | min.  |
|                  | inch | inch     | inch      | inch  |                  | inch  | inch     | inch      | inch  |
|                  | mm   | mm       | mm        | mm    |                  | mm    | mm       | mm        | mm    |
| 301              | 0.70 | 0.69     | 1.27      | 1.26  | 311              | 2.65  | 2.63     | 4.28      | 4.26  |
|                  | 17.7 | 17.4     | 32.1      | 31.9  |                  | 67.3  | 66.8     | 108.7     | 108.2 |
| 302              | 0.88 | 0.87     | 1.41      | 1.40  | 312              | 2.88  | 2.86     | 4.64      | 4.62  |
|                  | 22.2 | 22.0     | 35.7      | 35.4  |                  | 43.2  | 72.6     | 117.9     | 117.3 |
| 303              | 0.90 | 0.89     | 1.66      | 1.65  | 313              | 3.16  | 3.14     | 4.99      | 4.97  |
|                  | 22.7 | 22.5     | 42.0      | 41.8  |                  | 80.3  | 79.8     | 126.8     | 126.2 |
| 304              | 1.19 | 1.18     | 1.84      | 1.83  | 314              | 3.36  | 3.34     | 5.34      | 5.32  |
|                  | 30.1 | 29.9     | 46.6      | 46.4  |                  | 85.3  | 84.8     | 135.6     | 135.1 |
| 305              | 1.27 | 1.26     | 2.20      | 2.19  | 315              | _     | _        | _         | _     |
|                  | 32.1 | 31.9     | 55.8      | 55.5  |                  | _     | _        | _         | _     |
| 306              | 1.49 | 1.48     | 2.57      | 2.56  | 316              | _     | _        | _         | _     |
|                  | 37.7 | 37.5     | 65.2      | 64.9  |                  | _     | _        | _         | _     |
| 307              | 1.72 | 1.70     | 2.84      | 2.82  | 317              | _     | _        | _         | _     |
|                  | 43.7 | 43.2     | 72.1      | 71.6  |                  | _     | _        | _         | _     |
| 308              | 1.96 | 1.94     | 3.20      | 3.18  | 318              | _     | _        | _         | _     |
|                  | 49.8 | 49.3     | 81.3      | 80.8  |                  | _     | _        | _         | _     |
| 309              | 2.20 | 2.18     | 3.55      | 3.53  | 319              | 4.46  | 4.43     | 7.22      | 7.19  |
|                  | 55.9 | 55.4     | 90.2      | 89.7  |                  | 113.2 | 112.4    | 183.3     | 182.5 |
| 310              | 2.41 | 2.39     | 3.93      | 3.91  |                  |       |          |           |       |
|                  | 61.2 | 60.7     | 99.8      | 99.3  |                  |       |          |           |       |

# **Locknut Torque**

Locknut torques are standardized regardless of the type of locknut used. Acceptable locknut torques for dry thread engagement are shown in the following table. Bearing locknuts shall be tightened using a torque wrench and a two-point locknut wrench or other suitable torque wrench adapter.

Reference MIL-B-17931F

| Bearing<br>Bore<br>(mm) | Locknut<br>Torque<br>(ft-lb) | Approximate Clamping Force (lb) |
|-------------------------|------------------------------|---------------------------------|
| 10                      | 10-20                        | 1,620-3,240                     |
| 12                      | 10-20                        | 1,340-2,680                     |
| 15                      | 10-20                        | 1,070-2,140                     |
| 17                      | 10-20                        | 940-1,880                       |
| 20                      | 12-35                        | 950-2,770                       |
| 25                      | 23-50                        | 1,450-3,170                     |
| 30                      | 32-60                        | 1,690-3,170                     |
| 35                      | 39-70                        | 1,750-3,140                     |
| 40                      | 50-80                        | 1,970-3,140                     |
| 45                      | 64-90                        | 2,220-3,120                     |
| 50                      | 67-100                       | 2,090-3,120                     |
| 55                      | 82-125                       | 2,330-3,540                     |
| 60                      | 99-150                       | 2,560-3,880                     |
| 65                      | 131-175                      | 3,130-4,190                     |
| 70                      | 152-200                      | 3,360-4,430                     |
| 75                      | 173-250                      | 3,610-5,220                     |
| 80                      | 197-275                      | 3,840-5,350                     |
| 85                      | 222-325                      | 4,060-5,940                     |
| 90                      | 248-375                      | 4,280-6,480                     |
| 95                      | 277-425                      | 4,520-6,950                     |
| 100                     | 345-475                      | 5,360-7,380                     |
| 105                     | 380-550                      | 5,620-8,120                     |
| 110                     | 380-550                      | 5,340-7,740                     |
| 120                     | 380-550                      | 4,900-7,080                     |
| 130                     | 380-550                      | 4,510-6,540                     |
| 140                     | 380-550                      | 4,190-6,070                     |
| 150                     | 380-550                      | 3,910-5,660                     |
| 160                     | 380-550                      | 3,680-5,330                     |

E22 102800

# Micron Bore & O.D. coding

To better match machine tool bearings to spindles, Torrington offers micron coding. Micron coding is standard on all products except ball screw support bearings and Ex-Cell-O bearings.

Micron coding is based on average bore and O.D. diameters. This type of coding indicates the deviation from the nominal size in microns.

The coding is marked on the faces of the inner and outer rings and on the box label.

# **DEVIATION FROM NOMINAL**

| Over | Micron<br>Incl. | ı         | Inch      | Micron<br>Coding |
|------|-----------------|-----------|-----------|------------------|
| 0    | -1              | 0.000000  | -0.000039 | 1                |
| -1   | -2              | -0.000039 | -0.000079 | 2                |
| -2   | -3              | -0.000079 | -0.000118 | 3                |
| -3   | -4              | -0.000118 | -0.000157 | 4                |
| -4   | -5              | -0.000157 | -0.000197 | 5                |
| -5   | -6              | -0.000197 | -0.000236 | 6                |
| -6   | -7              | -0.000236 | -0.000276 | 7                |
| -7   | -8              | -0.000276 | -0.000315 | 8                |
| -8   | -9              | -0.000315 | -0.000354 | 9                |
| -9   | -10             | -0.000354 | -0.000394 | 10               |
| -10  | -11             | -0.000394 | -0.000433 | 11               |
| -11  | -12             | -0.000433 | -0.000472 | 12               |
| -12  | -13             | -0.000472 | -0.000512 | 13               |

# Recommended Ballscrew (inch series) Shaft and Housing Tolerances

# **Shaft and Housing Diameters (Inch Series)**

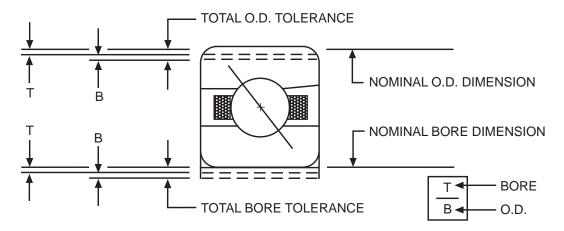
| Bearing<br>Number |         | ng Bore<br>meter |         | Shaft<br>Diameter |         | g O.D.<br>neter |         | using<br>meter  |
|-------------------|---------|------------------|---------|-------------------|---------|-----------------|---------|-----------------|
|                   | max.    | min.             | max.    | min.              | max.    | min.            | max.    | min.            |
|                   | inch    | inch             | inch    | inch              | inch    | inch            | inch    | inch            |
|                   | mm      | <mark>mm</mark>  | mm      | mm                | mm      | mm              | mm      | <mark>mm</mark> |
| MM9306WI2H        | 0.7874  | 0.7872           | 0.7872  | 0.7870            | 1.8504  | 1.8501          | 1.8507  | 1.8504          |
|                   | 20.000  | 19.995           | 19.995  | 19.990            | 47.000  | 46.994          | 47.006  | 47.000          |
| MM9308WI2H        | 0.9385  | 0.9383           | 0.9383  | 0.9381            | 2.4409  | 2.4406          | 2.4412  | 2.4409          |
|                   | 23.838  | 23.833           | 23.833  | 23.828            | 62.000  | 61.993          | 62.007  | 62.000          |
| MM9310WI2H        | 1.5000  | 1.4997           | 1.4997  | 1.4994            | 2.8346  | 2.8343          | 2.8349  | 2.8346          |
|                   | 38.100  | 38.094           | 38.094  | 38.088            | 72.000  | <b>71.993</b>   | 72.007  | 72.000          |
| MM9311WI3H        | 1.7510  | 1.7507           | 1.7507  | 1.7504            | 3.0000  | 2.9997          | 3.0003  | 3.0000          |
|                   | 44.475  | 44.469           | 44.469  | 44.463            | 76.200  | 76.193          | 76.207  | 76.200          |
| MM9313WI5H        | 2.2500  | 2.2497           | 2.2497  | 2.2494            | 3.5433  | 3.5430          | 3.5436  | 3.5433          |
|                   | 57.150  | <b>57.143</b>    | 57.143  | 57.136            | 90.000  | 89.992          | 90.008  | 90.000          |
| MM9316WI3H        | 3.0000  | 2.9997           | 2.9997  | 2.9994            | 4.3307  | 4.3304          | 4.3310  | 4.3307          |
|                   | 76.200  | <b>76.193</b>    | 76.193  | <b>76.186</b>     | 110.000 | 109.992         | 110.008 | 110.000         |
| MM9321WI3         | 4.0000  | 3.9997           | 3.9997  | 3.9994            | 5.7087  | 5.7083          | 5.7091  | 5.7087          |
|                   | 101.600 | 101.592          | 101.592 | 101.584           | 145.000 | 144.991         | 145.009 | <b>145.000</b>  |
| MM9326WI6H        | 5.0000  | 4.9997           | 4.9997  | 4.9994            | 7.0866  | 7.0862          | 7.0870  | 7.0866          |
|                   | 127.000 | 126.992          | 126.992 | 126.984           | 180.000 | 179.990         | 180.010 | 180.000         |

E24 102800

# **Recommended Ballscrew (metric series) Shaft and Housing Tolerances**

# **Shaft and Housing Diameters (Metric Series)**

| Bearing<br>Number |         | ng Bore<br>neter |        | naft<br>neter  | Bearin<br>Diam |         |               | using<br>meter |
|-------------------|---------|------------------|--------|----------------|----------------|---------|---------------|----------------|
|                   | max.    | min.             | max.   | min.           | max.           | min.    | max.          | min.           |
|                   | inch    | inch             | inch   | inch           | inch           | inch    | inch          | inch           |
|                   | mm      | mm               | mm     | mm             | mm             | mm      | mm            | mm             |
| MM17BS47          | 0.6693  | 0.6691           | 0.6691 | 0.6689         | 1.8504         | 1.8501  | 1.8507        | 1.850-         |
|                   | 17.000  | 16.996           | 16.996 | 16.992         | 47.000         | 46.994  | 47.006        | 47.000         |
| MM20BS47          | 0.7874  | 0.7872           | 0.7872 | 0.7870         | 1.8504         | 1.8501  | 1.8507        | 1.850          |
|                   | 20.000  | 19.995           | 19.995 | 19.990         | 47.000         | 46.994  | 47.006        | 47.000         |
| MM25BS52          | 0.9843  | 0.9841           | 0.9841 | 0.9839         | 2.0472         | 2.0469  | 2.0475        | 2.047          |
|                   | 25.000  | 24.995           | 24.995 | 24.990         | 52.000         | 51.993  | 52.007        | 52.000         |
| MM25BS62          | 0.9843  | 0.9841           | 0.9841 | 0.9839         | 2.4409         | 2.4406  | 2.4412        | 2.440          |
|                   | 25.000  | 24.995           | 24.995 | 24.990         | 62.000         | 61.993  | 62.007        | 62.000         |
| MM30BS62          | 1.1811  | 1.1809           | 1.1809 | 1.1807         | 2.4409         | 2.4406  | 2.4412        | 2.440          |
|                   | 30.000  | 29.995           | 29.995 | 29.990         | 62.000         | 61.993  | 62.007        | 62.000         |
| MM30BS72          | 1.1811  | 1.1809           | 1.1809 | 1.1807         | 2.8346         | 2.8343  | 2.8349        | 2.834          |
|                   | 30.000  | 29.995           | 29.995 | 29.990         | <b>72.000</b>  | 71.993  | <b>72.007</b> | <b>72.000</b>  |
| MM35BS72          | 1.3780  | 1.3777           | 1.3777 | 1.3774         | 2.8346         | 2.8343  | 2.8349        | 2.834          |
|                   | 35.000  | 34.994           | 34.994 | 34.988         | <b>72.000</b>  | 71.993  | 72.007        | 72.000         |
| MM40BS72          | 1.5748  | 1.5745           | 1.5745 | 1.5742         | 2.8346         | 2.8343  | 2.8349        | 2.834          |
|                   | 40.000  | 39.994           | 39.994 | 39.988         | 72.000         | 71.993  | 72.007        | 72.000         |
| MM45BS75          | 1.7717  | 1.7714           | 1.7714 | 1.7711         | 2.9528         | 2.9525  | 2.9531        | 2.952          |
|                   | 45.000  | 44.994           | 44.994 | 44.988         | 75.000         | 74.993  | 75.007        | 75.000         |
| MM40BS90          | 1.5748  | 1.5745           | 1.5745 | 1.5742         | 3.5433         | 3.5430  | 3.5436        | 3.543          |
|                   | 40.000  | 39.994           | 39.994 | 39.988         | 90.000         | 89.992  | 90.008        | 90.000         |
| MM50BS90          | 1.9685  | 1.9682           | 1.9682 | 1.9679         | 3.5433         | 3.5430  | 3.5436        | 3.543          |
|                   | 50.000  | 49.994           | 49.994 | <b>49</b> .988 | 90.000         | 89.992  | 90.008        | 90.000         |
| MM55BS90          | 2.1654  | 2.1651           | 2.1651 | 2.1648         | 3.5433         | 3.5430  | 3.5436        | 3.543          |
|                   | 55.000  | 54.993           | 54.993 | 54.986         | 90.000         | 89.992  | 90.008        | 90.000         |
| MM35BS100         | 1.3780  | 1.3777           | 1.3777 | 1.3774         | 3.9370         | 3.9367  | 3.9373        | 3.937          |
|                   | 35.000  | 34.994           | 34.994 | 34.988         | 100.000        | 99.992  | 100.008       | 100.000        |
| MM40BS100         | 1.5748  | 1.5745           | 1.5745 | 1.5742         | 3.9370         | 3.9367  | 3.9373        | 3.937          |
|                   | 40.000  | 39.994           | 39.994 | 39.988         | 100.000        | 99.992  | 100.008       | 100.000        |
| MM45BS100         | 1.7717  | 1.7714           | 1.7714 | 1.7711         | 3.9370         | 3.9367  | 3.9373        | 3.937          |
|                   | 45.000  | 44.994           | 44.994 | 44.988         | 100.000        | 99.992  | 100.008       | 100.000        |
| MM50BS100         | 1.9685  | 1.9683           | 1.9683 | 1.9680         | 3.9370         | 3.9367  | 3.9373        | 3.937          |
|                   | 50.000  | 49.994           | 49.994 | 49.988         | 100.000        | 99.992  | 100.008       | 100.000        |
| MM75BS110         | 2.9528  | 2.9525           | 2.9525 | 2.9522         | 4.3307         | 4.3304  | 4.3310        | 4.330          |
|                   | 75.000  | <b>74.993</b>    | 74.993 | <b>74.986</b>  | 110.000        | 109.992 | 110.008       | 110.000        |
| MM55BS120         | 2.1654  | 2.1651           | 2.1651 | 2.1648         | 4.7244         | 4.7241  | 4.7247        | 4.724          |
|                   | 55.000  | 54.993           | 54.993 | 54.986         | 120.000        | 119.992 | 120.008       | 120.000        |
| MM60BS120         | 2.3622  | 2.3619           | 2.3619 | 2.3616         | 4.7244         | 4.7241  | 4.7247        | 4.724          |
|                   | 60.000  | 59.993           | 59.993 | 59.986         | 120.000        | 119.992 | 120.008       | 120.000        |
| MM100BS150        | 3.9370  | 3.9367           | 3.9367 | 3.9364         | 5.9055         | 5.9052  | 5.9059        | 5.905          |
|                   | 100.000 | 99.992           | 99.992 | 99.984         | 150.000        | 149.991 | 150.009       | 150.000        |


# **Bore and O.D. Coding**

To better match machine tool bearings to spindles, Torrington currently offers Bottom/Top bore and O.D. coding as standard for angular contact superprecision bearings.

The code is a mark on the box label with the bore code shown above the O.D. code. The tolerances are split in half as shown in the figure below. If the bore and O.D. sizes fall in the half closest to nominal, this is

considered the top half and the set will be marked with a T/T. With a T/T code, the bore and O.D. tolerances would meet ABEC 9 requirements. If the bore and O.D sizes fall in the half farthest from the nominal, this is considered the bottom half and the set will be marked with a B/B. If the bore is in the top half and O.D. is in the bottom half, the set will be marked T/B and vice versa B/T.

# BOTTOM/TOP BORE & O.D. CODING

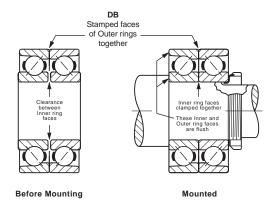


Offering bore and O.D. coding makes it easier to obtain the optimum recommended fits for spindles. Each bearing in a set is matched to within half the bore and O.D. tolerance to insure equal load sharing. It also enables our customers to use pairs of bearings with same bore and O.D. codes to make triplex and quadruplex sets.

E26 102800

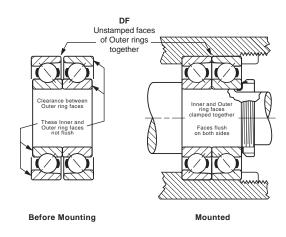
# **Lube Inlet Diameters**

| 200 \$         | Series                             | 9100           | Series                             | 99100          | Series                             |
|----------------|------------------------------------|----------------|------------------------------------|----------------|------------------------------------|
| Bore<br>Number | Lube Inlet<br>Diameter<br>(inches) | Bore<br>Number | Lube Inlet<br>Diameter<br>(inches) | Bore<br>Number | Lube Inlet<br>Diameter<br>(inches) |
| 00             | 0.6950                             | 00             | 0.6290                             | 00             | _                                  |
| 01             | 0.7660                             | 01             | 0.7200                             | 01             | _                                  |
| 02             | 0.8850                             | 02             | 0.8490                             | 02             | _                                  |
| 03             | 1.1015                             | 03             | 0.9420                             | 03             | 0.9370                             |
| 04             | 1.1893                             | 04             | 1.1200                             | 04             | 1.1080                             |
| 05             | 1.3938                             | 05             | 1.3120                             | 05             | 1.3050                             |
| 06             | 1.6608                             | 06             | 1.5690                             | 06             | 1.5955                             |
| 07             | 1.9313                             | 07             | 1.7840                             | 07             | 1.8108                             |
| 08             | 2.1623                             | 08             | 1.9953                             | 08             | 2.0635                             |
| 09             | 2.3593                             | 09             | 2.2248                             | 09             | 2.2495                             |
| 10             | 2.5558                             | 10             | 2.4218                             | 10             | 2.4465                             |
| 11             | 2.8263                             | 11             | 2.6918                             | 11             | 2.7283                             |
| 12             | 3.0963                             | 12             | 2.8888                             | 12             | 2.9258                             |
| 13             | 3.3793                             | 13             | 3.0858                             | 13             | 3.1218                             |
| 14             | 3.5638                             | 14             | 3.3558                             | 14             | 3.4033                             |
| 15             | 3.7608                             | 15             | 3.5533                             | 15             | 3.6413                             |
| 16             | 4.0308                             | 16             | 3.8233                             | 16             | 3.8810                             |
| 17             | 4.3010                             | 17             | 4.0285                             | 17             | 4.0868                             |
| 18             | 4.5705                             | 18             | 4.2900                             | 18             | 4.3453                             |
| 19             | 4.8410                             | 19             | 4.4870                             | 19             | 4.5403                             |
| 20             | 5.1115                             | 20             | 4.7135                             | 20             | 4.7813                             |
| 21             | 5.4061                             | 21             | 4.9610                             | 22             | 5.3008                             |
| 22             | 5.6540                             | 22             | 5.2360                             | 24             | 5.6948                             |
| 24             | 6.1190                             | 24             | 5.6325                             | 26             | 6.3210                             |
| 26             | 6.3850                             | 26             | 6.1710                             |                |                                    |
| 30             | 7.8160                             | 28             | 6.5750                             |                |                                    |
|                |                                    | 30             | 7.0320                             |                |                                    |
|                |                                    | 32             | 7.5000                             |                |                                    |
|                |                                    | 34             | 7.8460                             |                |                                    |
|                |                                    | 40             | 9.5150                             |                |                                    |


| 300 SI         | ERIES                              | 9300 SI        | ERIES                              | 9100 HX        | SERIES                             |
|----------------|------------------------------------|----------------|------------------------------------|----------------|------------------------------------|
| Bore<br>Number | Lube Inlet<br>Diameter<br>(inches) | Bore<br>Number | Lube Inlet<br>Diameter<br>(inches) | Bore<br>Number | Lube Inlet<br>Diameter<br>(inches) |
| 00             | _                                  | 00             | _                                  | 00             | _                                  |
| 01             | 0.8520                             | 01             | _                                  | 01             | _                                  |
| 02             | 1.0120                             | 02             | 0.7840                             | 02             | _                                  |
| 03             | 1.0910                             | 03             | 0.8630                             | 03             | _                                  |
| 04             | 1.2328                             | 04             | 1.0458                             | 04             | 1.114                              |
| 05             | 1.5238                             | 05             | 1.2093                             | 05             | 1.306                              |
| 06             | 1.7908                             | 06             | 1.4393                             | 06             | 1.549                              |
| 07             | 2.0363                             | 07             | 1.6828                             | 07             | 1.785                              |
| 08             | 2.3043                             | 08             | 1.9063                             | 08             | 2.001                              |
| 09             | 2.5768                             | 09             | 2.0308                             | 09             | 2.212                              |
| 10             | 2.8473                             | 10             | 2.2998                             | 10             | 2.408                              |
| 11             | 3.1173                             | 11             | 2.5418                             | 11             | 2.730                              |
| 12             | 3.3848                             | 12             | 2.7383                             | 12             | 2.926                              |
| 13             | 3.6573                             | 13             | 2.9363                             | 13             | 3.111                              |
| 14             | 3.9268                             | 14             | 3.2068                             | 14             | 3.393                              |
|                |                                    | 15             | 3.4033                             | 15             | 3.590                              |
|                |                                    | 16             | 3.5993                             | 16             | 3.861                              |
|                |                                    | 17             | 3.8828                             | 18             | 4.355                              |
|                |                                    | 18             | 4.0683                             | 20             | 4.745                              |
|                |                                    | 28             | 6.1985                             | 22             | 5.335                              |
|                |                                    |                |                                    | 24             | 5.708                              |

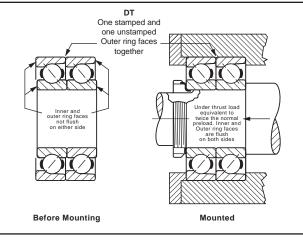
E28 102800

# TYPICAL MOUNTINGS OF DUPLEX BEARINGS Back-to-Back Mounting, DB or ("O")


# (Contact angles diverging toward shaft centerline)

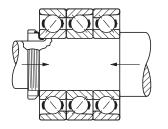
Before mounting, there is clearance between the two adjacent inner ring faces the bearings. After mounting, these faces are clamped together to provide an internal preload on each bearing. This arrangement is well suited for pulleys, sheaves, and in other applications where there are overturning loads, and also in all floating positions where thermal expansion of shaft occurs. It also provides axial and radial rigidity and equal thrust capacity in either direction when used in a fixed location. Back-to-back is the most commonly used of all duplex arrangements. Specify bearing number followed by suffix DU. Examples: 7207W-DU, 2MM207WI-DU. Also available as two single flush-ground bearings, i.e., 7207W SU (2 bearings).




# Face-to-Face Mounting, DF or ("X") (Contact angles converging toward shaft centerline)

Before mounting, there is clearance between the two adjacent outer ring faces. After mounting, these faces are clamped together between the housing shoulder and cover plate shoulder, providing an internal preload on each bearing. This arrangement provides equal thrust capacity in either direction as well as radial and axial rigidity. Since the face-to-face mounting has inherent disadvantages of low resistance to moment loading and thermal instability, it should not be considered unless a significantly more convenient method of assembly or disassembly occurs from its use. Fafnir pairs for face-to-face mounting should be ordered as DU. Examples: 7212W-DU, 2M212WI-DU. Also available as two single flush-ground bearings, i.e., 7212W SU (2 bearings).




### Tandem Mounting, DT

Before mounting, the inner ring faces of each bearing are offset from the outer ring faces. After mounting, when a thrust load is applied equal to that of twice the normal preload, the inner and outer ring faces are brought into alignment on both sides. This arrangement provides double thrust capacity in one direction only. More than two bearings can be used in tandem if additional thrust capacity is required. Fafnir pairs for tandem mounting should be specified as DU. Examples: 7205W-DU, 2M205WI-DU. Also available as two single flush-ground bearings with suffix SU, i.e., 7210W SU (2 bearings).



### Other Mountings

Flush ground (DU) pairs may be mounted in combination with a single flush-ground bearing as a "triplex" (TU) set shown in Figure A. Figure B illustrates a "quadruplex" (QU) set where three bearings in tandem are mounted back-to-back with a single bearing. These arrangements provide high capacity in one direction and also a positively rigid mounting capable of carrying a moderate amount of reverse thrust.



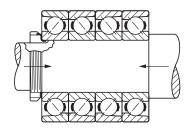



Figure A Figure B

# Back-To-Back Versus Face-To-Face Mountings

Mountings having bearings applied in any of the face-to-face (DF) arrangements are objectionable because they provide the least rigidity. Furthermore, when the operating speeds are comparatively high, such mountings may build up bearing preload excessively because the temperature gradient between the housings, bearings, and shafts. As this gradient increases, the bearing preload builds up, starting a vicious cycle which may lead to premature spindle failure.

In spindle mountings, the shaft temperature usually changes at a faster rate than the housing, creating temperature differentials between the two members. These are due to their difference in mass and their respective abilities to act as heat sinks. Thus, the shaft and the inner-ring spacer expand at a faster rate rather than the housing and the outer-ring spacer. As the shaft expands longitudinally and the inner-ring spacer lengthens, a thrust load builds up on each bearing and continues to increase until the equilibrium temperature is reached. This occurs when the temperature at the housing levels off and the heat transferred from the bearings balances the heat generated in them. Therefore, if the housing attains an excessively high temperature, the initial bearing is built up considerably.

In a face-to-face mounting, Figure 5, the shaft expands radially and longitudinally and the inner-ring spacer lengthens, but at a faster rate than the outer-ring spacer. This thermal expansion causes an additional thrust to be imposed on both inner rings, increasing the preload of the bearings. Conversely, in back-to-back mounting, Figure 6, the longitudinal expansion of the inner-ring spacer tends to relieve, rather than build up, the bearing preload.

The two back-to back pairs, shown in Figure 7, are mounted so that the two middle bearings are face-to-face. As previously observed, temperature differentials cause the preload of these inside bearings to increase during operation. This mounting operation is **not** recommended. In bearing mountings of the type seen in Figure 8, undue thrust loads are put on the two outside bearings as the temperature along the shaft becomes higher than at the housing. The two inside bearings unload, starting a vicious cycle of increasing temperature, preload build-up, and lubricant depletion. This is also an unacceptable mounting arrangement, and is not recommended. The same bearings are shown correctly mounted in tandem and arranged back-to-back in Figure 9. Lateral expansion of the shaft and inner-ring spacer of such mountings increase neither thrust loading nor bearing preload.

Therefore, in order to prevent increases in preload due to the thermal expansion, back-to-back mountings are preferred for bearings on machine tool spindles. When two pairs are used, each pair should be mounted in tandom but the combination should be arranged back-to-back as in Figure 9.

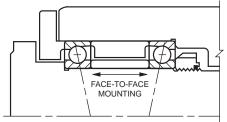



Figure 5 - DF Mounting, Fixed

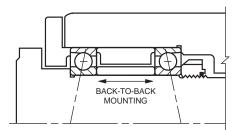



Figure 6 - DB Mounting, Fixed

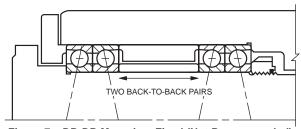



Figure 7 – DB-DB Mounting, Fixed (Not Recommended)

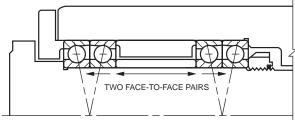



Figure 8 - DF-DF Mounting, Fixed (Not Recommended)

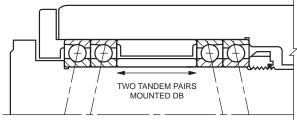



Figure 9 – DT-DB Mounting, Fixed

E30 102800

# **Spring Loaded Mountings**

For high speed applications, radial and axial rigidity and smooth spindle performance may be obtained by spring loading the ball bearings with a predetermined thrust load. Spring loading allows the spindle to float laterally during temperature changes without appreciably increasing or decreasing the original spring thrust load.

As the inner ring heats up during operation it expands radially. This radial expansion applies an increasing load through the ball and outer ring and finally to the preload springs. The preload springs deflect slightly to compensate for the loads due to thermal expansion and maintain a consistent load on the spindle system.

In some applications, single, spring-loaded bearings are employed at the front and rear locations, mounted in back-to-back arrangement. Other mountings, similarly spring loaded, have a pair of bearings installed in tandem at each end of the spindle in back-to-back arrangement (DT-DB). In either case, the spring pressure is applied to the pulley-end or rear bearing position, placing the shaft in tension between the two bearing locations.

High Contact Angle • High Axial Rigidity

Moderate Radial Rigidity

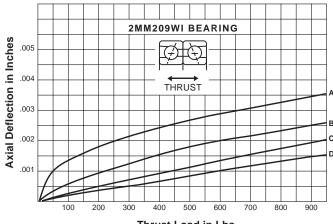
Low Contact Angle • High Radial Rigidity

Moderate Axial Rigidity

# **Preloading**

Preloading of precision ball bearings to a predetermined thrust load for universal mounting is accomplished by grinding off a certain amount of stock off faces of the inner and outer rings so that before mounting the bearing on faces on the abutting side are offset an amount equal to the deflection under "preload". When mounted, these faces are clamped together, the opposite bearing faces become flush and the bearing parts are subjected to compressive forces, bringing the balls into contact with their respective raceways, to take up the initial clearances of the bearings. Thus, the preload built into the bearings is automatically obtained. The condition of a preloaded ball bearing is similar to that of one in operation under thrust load. This initial thrust load serves to decrease markedly the axial and radial deflections when subsequent operational loads are imposed on the bearing assembly.

Bearings are preloaded no more than necessary. Excessive preload adds little to the rigidity of the spindle but appreciably reduces the range of operating speeds by causing bearings to run hot at higher speeds. To meet conditions of speed, mounting arrangement and maximum rigidity consistent with low operating temperatures, Fafnir precision ball bearings are designed and produced with preloads varying from heavy to zero and, in some instances, with negative preload.

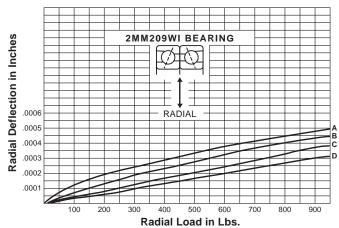

In many cases, the amount of bearing preload is a trade-off between having the desired degree of rigidity and reducing any adverse effect preloading has on the equipment. If the operating speed is high, a heavy preload can lead to excessively high operating temperatures, resulting in early bearing failure. For these reasons, three classes of ball bearing preloads are used – Light, Medium and Heavy.

In certain applications, such as high-speed motorized router spindles, specially preloaded, superprecision ball bearings are required. Such bearings are "zero" preloaded – that is, the faces of the inner and outer rings are ground flush under negligible load.

The Light, Medium and Heavy standard preload values for Fafnir superprecision angular-contact ball bearings and for both high and low contact angles in "Physical Characteristics".

Axial deflection curves of various preload conditions for duplex pairs of 2MM209WI superprecision ball bearings are shown in figure 10 and the radial deflection curves for the same bearings are shown in Figure 11.

# Effect of Preload on Axial Deflection




Thrust Load in Lbs.

- A No Preload
- B Light Preload 40 lbs.
- C Medium Preload 125 lbs.
- D Heavy Preload 250 lbs.

Figure 10 - Axial Deflection Curves

# **Effect of Preload on Radial Deflection**



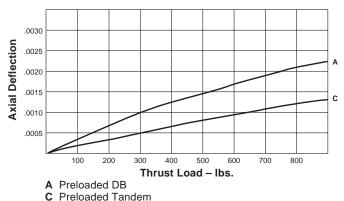
- A No Preload
- B Light Preload 40 lbs.
- C Medium Preload 125 lbs.
- D Heavy Preload 250 lbs.

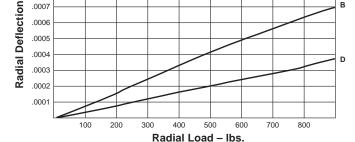
Figure 11 - Radial Deflection Curves

# **Bearing Selection**

Fafnir angular-contact precision ball bearings are available with high (25°) and low (15° - 18°) contact angles. Each type has inherent characteristics that are desirable for machine tool spindles. Low contact angle bearings are more rigid radially and less rigid axially than high contact angle bearings. A bearing having a low contact angle allows more axial yield and less radial deflection than one having a high contact angle.

In selecting the proper size and type of bearing, consideration is given to the size and construction of the spindle and the kind of mounting, since the latter relates directly to the spindle rigidity and the deflection characteristics. In general, where the operating load is principally radial, low contact angle type bearings are selected, but where the loading is chiefly in thrust and a high degree of axial rigidity is required, higher contact angle type bearings are recommended. Therefore, for the majority of applications, superprecision ball bearings with low contact angles are used. However, when maximum axial rigidity is required in combination with heavy thrust loads or when high ambient temperatures are involved, bearings having the higher contact angles are preferred. The three established preload values are necessarily higher for high contact angle bearings than for those having low contact angles. The axial and radial deflection characteristics of low angular-contact, light series, preloaded ball bearings of a standard size are shown in figure 12. Curves C and D, which are for a preloded tandem pair of such bearings, indicate the greatly reduced axial and radial deflections as compared to those for a preloded single


bearing of the same size (Curves A and B). For example, a tandem pair of bearings under a thrust load of 600 pounds would have an axial defection of 0.0010 inch, while that for a single bearing would be about 0.0017 inch. Similarly, the radial deflections for these bearings operated under 600 pounds radial loads would be 0.00024 inch and 0.00049 inch.


Axial deflection curves for the standard preload levels for both the 2MM (15° contact angle) and the 3MM (25° contact angle) are shown in Figure 13. Please note the force for the equivalent preload level for a 2MM bearing is about one-half that of the preload level for a 3MM bearing. Preload values for all Fafnir machine toll grade angular-contact bearings have been calculated to give optimum performance by machine designers.

A comparison of the curves in Figure 13 shows the 25° contact angle bearing to be more rigid under axial loads than the 15° contact angle bearing. Note that the axial deflection for the 2MM 15° contact angle preloaded pair of bearings with a medium preload (60 pounds) is 0.0013" under a 300 pound thrust load. The 3MM 25° contact angle preloaded pair with a light preload (60 pounds) deflects 0.0008" under the same 300 pound thrust load.

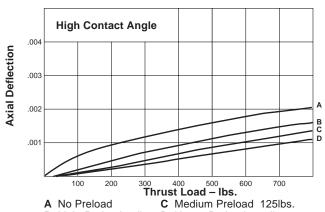
|        | 2MM 15° Contact Angle<br>Preload Force in Pounds | 3MM 25° Contact Angle<br>Preload Force in Pounds |
|--------|--------------------------------------------------|--------------------------------------------------|
| Light  | 30                                               | 60                                               |
| Medium | 60                                               | 120                                              |
| Heavy  | 120                                              | 240                                              |

# EFFECT OF SINGLE AND TANDEM MOUNTING ON AXIAL AND RADIAL RIGIDITY





B Preloaded DBD Preloaded Tandem


Figure 12 - Axial vs Radial Deflections

### **EFFECTS OF CONTACT ANGLE ON AXIAL DEFLECTION**

# Less Axial Rigidity Low Contact Angle .004 .003 .002 .001 .002 .001 Thrust Load – Ibs. A No Preload C Medium Preload 125lbs.

B Light Preload 40lbs.

E32



D Heavy Preload 250lbs.

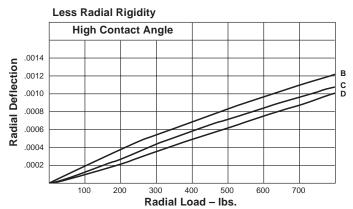

B Light Preload 40lbs. D Heavy Preload 250lbs.

Figure 13 – Avial Deflections

Figure 13 – Axial Deflections

Similar comparisons of the radial deflection characteristics of the same two types of angular-contact ball bearings can be made from the two graphs shown in Figure 14. These curves show that increased radial deflections result when bearings having the higher contact angle are used. The indicated radial deflections are for one bearing. When employing duplex pairs of bearings under equal, applied loads, the radial deflections would be approximately one-half of the values shown.

# EFFECT OF CONTACT ANGLE ON RADIAL DEFLECTION



- **B** LIGHT PRELOAD 40 LBS.
- C MEDIUM PRELOAD 125 LBS.
- D HEAVY PRELOAD 250 LBS.

D HEAVY PRELOAD 250 LBS.

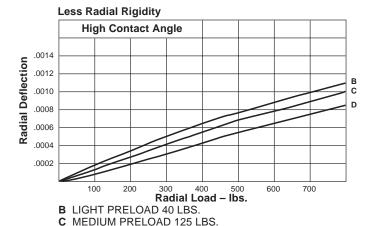



Figure 14 - Radial Deflections

# Width Tolerances

The width tolerance for individual inner and outer rings is shown on pages E4, E5 but, to allow for the face grinding on two bearings for various preloads, the total width tolerances of duplex pairs of bearings are as follows:

| Nominal bore<br>Millimeters |           | Wic<br>Tolera |         |
|-----------------------------|-----------|---------------|---------|
| Over                        | Inclusive | Maximum       | Minimum |
| 0                           | 200       | .000"         | .010"   |
|                             |           | .00mm         | .25mm   |

If other than a pair of bearings is involved, the total width tolerance is in proportion to the number of bearings. If closer than standard width tolerances are required specify by adding FS732 as a suffix to the part number.

# Recommended Shaft and Housing Tolerances Shaft Fits

The main purpose of the shaft fit is to assure a proper attachment of the inner ring to the shaft. Under normal conditions of shaft rotation, a loosely fitted inner ring will creep on the shaft, leading to wear and peening. This condition will be further aggravated by increase of load or speed. To prevent creeping or slipping, the inner ring should be mounted firmly in place and held securely against the shaft shoulder. However, it is important that the shaft fit should not result in any undue tightening of the bearing. An excessive tension would be established in the ring, resulting in a proportionate expansion which would disturb the internal fit of the bearing and lead to heating and increased power consumption.

As a general rule, it is recommended that the shaft size and tolerance for seating superprecision bearings (ABEC-7 and 9) be the same as the bearing bore. In the case of preloaded bearings, the ideal shaft fit to strive for is line-to-line fit, since an excessively tight fit expands the bearing inner ring and increases the bearing preload which can lead to over-heating. For example, a duplex pair of 2MM9111WI-DUL bearings, with 35 pounds built-in preload, when mounted on a shaft that provides an interference fit of .0004 inch, will increase the preload to approximately 180 pounds which could result in elevated operating temperatures.

# **EXAMPLE: ABEC 7**

| Bore size<br>Inches | Shaft Diameter<br>Inches | Resulting Mounting<br>Fit, Inches | Average Fit  |
|---------------------|--------------------------|-----------------------------------|--------------|
| max. 2.1654         | min. 2.1652              | .0002 loose                       | line-to-line |
| min. 2.1652         | max. 2.1654              | .0002 tight                       |              |

### **EXAMPLE: ABEC 9**

| • | Bore size<br>Inches | Shaft Diameter<br>Inches | Resulting Mounting<br>Fit, Inches | Average Fit  |
|---|---------------------|--------------------------|-----------------------------------|--------------|
|   | max. 2.16540        | min. 2.16525             | .00015 loose                      | line-to-line |
|   | min. 2.16525        | max. 2.16540             | .00015 tight                      |              |

# **Housing Fits**

Under normal conditions of rotating shaft, the outer ring is stationary and should be mounted with a hand push to a light tapping fit. Should the housing be the rotating member, the same fundamental considerations apply in mounting the outer race as in the case of an inner ring mounted on a rotating shaft.

As a general rule, the minimum housing bore dimension for superprecision bearings (ABEC-7 and 9) may be established as the same as the maximum bearing outside diameter. If the bearing O.D. tolerance is .0003 inch (.0008mm), the maximum housing bore should be established as .0003 inch (.0008mm) larger than the minimum housing bore dimensions.

### **EXAMPLE: ABEC 7**

| Outside Diameter<br>Inches | Housing Bore<br>Inches | 3   3 3 |             |
|----------------------------|------------------------|---------|-------------|
| max. 3.5433<br>min. 3.5430 |                        |         | .0003 loose |

### **EXAMPLE: ABEC 9**

| Outside Diameter | Housing Bore | Resulting Mounting Fit Inches | Average Fit |
|------------------|--------------|-------------------------------|-------------|
| Inches           | Inches       |                               | Inches      |
| max. 3.54330     | min. 3.54330 | .0000 tight                   | .0002 loose |
| min. 3.54310     | max. 3.54350 | .0004 loose                   |             |

Tables covering recommended shaft and housing seat dimensions for superprecision (ABEC-7) ball bearings are shown on pages E8 through E15.

The "average" mounting fit is usually considered the ideal mounting condition and should be obtained.

To accomplish this, it is important to follow the tabulated tolerances, except when deviations are recommended by the Engineering Department. It is equally important that all shaft and housing shoulders be square and properly relieved to assure accurate seating and positioning of the bearings in the mounting.

On high-speed applications where nearby heat input is along the shaft, it is extremely important that the floating bearings can move axially to compensate for thermal changes. Ball bearings cannot float longitudinally if they are restricted by tight housing bores or by the radial expansion of the bearing itself due to temperature differentials. Therefore, in such cases, the housing mounting fit for the floating bearings is slightly looser than the tabulated average fit. Likewise, in spring-loaded ball bearing applications the housing mounting fit must be free enough to permit axial movement of the bearings under the spring pressure, during all conditions of operation. The recommended housing dimensions to ensure proper "float" of the bearings under average conditions are tabulated on pages E13 and E15.

# **Shafts**

Shafts are preferably made from steel hardened and ground all over; and where not otherwise unsuitable, a hardness of 45-50 Rockwell C has been successful. When designing a spindle or shaft it is highly desirable to plan so that it can be ground all over in one setting as a final operation. This promotes true balance and running accuracy, which is critical in high-speed work.

# **Bearing Spacers**

Spacers are used to increase shaft rigidity, moment stiffness and decrease deflection. Spacers, mounted between units of a pair of bearings, are preferably made of alloy steel, hardened and ground and should be sturdy in cross-section and equal in length. Equal lengths can be produced by grinding the inner-ring spacer and outer-ring spacer together. It is important that the faces of the spacers be square and that their parallelism be the best possible. All corners should be rounded to remove sharp edges and burrs.

The inside diameter of the inner-ring spacers should clear the shaft but not be so loose as to make it possible to mount and run them eccentrically. For short spacers and high operating speeds add clearance of not more than .0010 inch (.025mm) over the maximum shaft diameter has been found generally acceptable. For long spacers and low speeds, this clearance may be increased to prevent the shaft from disturbing the face parallelism of the spacer. The spacer outside diameter should not be less than the outside diameter of the inner ring of the bearing.

The outside diameter of the outer-ring spacers should be about .0010 inch (.025mm) smaller than the minimum bore of the housing. These should have lubricant holes and grooves where necessary and are usually centrally located. Spacer end parallelism should be the same as the parallelism tolerance for the adjacent bearing.

# **Selective Assembly**

Under certain conditions it may be desirable to control fits more accurately without the added expense of using closer tolerance bearings and assembly parts. This can be accomplished by selective assembly of the bearings, shafts and housings after they have been sized and sorted according to bores and outside diameters. At the customer's request, we can provide bearings with bore's and O.D.'s coded in inch or metric dimensions from nominal size. A nominal charge is required for this additional inspection. This improved fit-up at assembly provides a higher degree of precision in the spindle. Generally, however, it is quite satisfactory for production and field servicing to use closer shaft and housing tolerances with bearings having a higher degree of precision.

# **Housing Design**

Housings are usually made of cast iron or steel and generally heat treated to lessen possible distortion. For the smaller highspeed applications, steel housings are preferable.

The bore of the housing should be ground or bored and checked at a number of points throughout its length and diameter to assure that it is round and does not taper.

It is preferable to mount the bearings in one casting; this permits machining the two housing bores in one setting and assures accurate alignment of the bearings.

In many cases of housing design, it is advantageous to employ a sub-housing or a steel sleeve between the outer ring of the bearing and the machine frame, thus allowing assembly of the bearings on the shaft and insertion of the entire unit in to the machine frame. This method also provides a surface of proper hardness where machine frames are made of a material that has a low Brinell value, such as aluminum and other soft metals.

Shaft shoulders and housing shoulders should be square and true, and should be of such diameters as to meet the recommendations given on page E17 through E21. The choice between fillets and undercut reliefs rests with the individual shaft design and conditions surrounding its normal use.

Where screws are used to fasten end caps into the main housing, adequate section should be left between the screw hole and the hosing bore. This is required to prevent distortion of the housing bore when the screws are tightened and the covers or others parts pulled tightly into place.

Prior to assembly, shafts and housings, as well as all lubricant holes and channels, should be cleaned thoroughly, in order to remove all chips and particles which may be carried by the lubricant into the bearings to cause bearing damage.

E34 102800

# **Housing Seals**

A labyrinth combination of slinger and end cover provides a highly effective seal against the intrusion of foreign matter. This seal is recommended for use over a wide range of speeds. For exceptionally slow-speed applications, a combination of slinger and commercial contact-type seal is usually employed.

Slingers should be machined all over to assure truerunning. Their diameters should be concentric with the bore. The outside diameter of the slinger is often tapered to throw off cutting compounds, coolants, etc., from the point at which such liquids may enter the spindle. A drip or run-off groove adjacent to the open lip of the end cover is highly desirable and practical.

The axial clearances of the internal faces between slinger and end cover should be about  $^{1}/_{16}$  inch (1.6mm). The first radial clearance opening on any design through which liquid may pass should be made very close, about .007 inch (.18mm) on the diameter .0035 inch (.089mm) on a side. The inner radial clearances should be between 0.15 inch (.38mm) and .0075 inch (.190mm). These are figures actually used in successful practice.

# **Bearing Locknuts**

To position precision ball bearings on spindle shafts, precision manufactured self locking bearing locknuts are recommended rather than the conventional locknuts and lockwashers used for bearings made to ABEC-1 tolerances.

This precision bearing nut incorporates a locking feature in its design. The nut threads deform slightly as the locking setscrews are tightened. This slight deformation creates an interference with the shaft threads which prevents further rotation of the locknut. The precision threads of this locknut are cut square with the face to provide the necessary truerunning clamping surface against the inner-ring face of the ball bearings.

# **Successful Applications**

Detailed assembly drawings on pages E45 to E48, are representative of successful applications of Fafnir precision bearings on such equipment as gear drive assemblies; automatic screw machines; high-cycle wheel heads; high-speed internal grinding spindles; superprecision work heads; and high-speed router spindles. It is hoped that these arrangements will stimulate questions regarding your particular application problems. They will gladly be examined by our Engineering Department.

# **Special Requirements**

High-speed grease-lubricated spindles and heavy precision work heads requiring unusual rigidity and running accuracy are a few of the many special problems involving precision bearings. These and many other applications generally require design features which will be recommended by the Engineering Department on request.

# Lubrication

Even though ball bearings have the least amount of friction of any of the so-called anti-friction bearings, lubrication is required to minimize rolling resistance due to deformation or kneading action of the balls in the raceways under load, and to minimize any sliding friction that occurs between the balls, the raceway and the retainer. Lubrication also serves to protect the accurately ground and polished surfaces from corrosion. In addition, lubrication, in general, dissipates generated heat and helps protect the bearing moving parts from the entry of foreign matter.

Only enough lubrication to accomplish these purposes should be used since another source of heat may become present, namely friction between the lubricant and the moving parts, in the form of churning or internal shear of the lubricant itself.

Regardless of the method of lubrication or type of lubricant, it is important that quality lubricants be used to minimize oxidation, gumming or sludging and that the lubricant be clean and free of moisture to minimize wear.

In the lubrication of ball bearings, it is important to realize that a small quantity of oil or grease will, if constantly present in the bearing, suffice for its requirements. More trouble can result from excessive lubrication than from too little, although either condition should be avoided. Excessive oil or grease will result in high temperature and possibly failure. When grease is used, it is especially necessary to take into consideration the maximum operating temperature. Also particular attention must be given the housing design relating to the proximity of the grease to the bearing, in order to assure adequate purge room and grease retention.

Depending upon operating speeds, loads and temperatures, machine-tool ball bearings are lubricated with grease, oil or oil mist. In general, oils are required when bearings operate at high speeds and to provide greater cooling than is possible with grease.

### **Heat Generation**

When ball bearing spindles are grease lubricated, the heat generated is removed only by conduction through the surrounding parts. With jet or circulating oil lubrication, generated heat is dissipated by the oil passing through the bearings as well as by conduction through the shaft and housing. Both means of removing heat from the bearings are important but, generally, dissipation through conduction is less obvious.

As an example, in an oil mist lubricated grinding spindle the nose or wheel-end bearings are fixed and close to the grinding coolant. The pulley-end or rear bearings are secured axially on the shaft but permitted to float laterally in the housing to compensate for size variations due to thermal changes. Heat is conducted away from the front bearings at a faster rate because of the mass of the spindle nose and the intimate contact of the outer rings with the housing shoulder, the end cover, and the housing bore. This condition, coupled with oil mist lubrication and the proximity of the grinding coolant, takes away generated heat efficiently.

The rear or floating pair of bearings are not so favored. Usually, the mass of the shaft at the pulley-end is not so great. The pulley possesses some heat-conduction ability but also receives heat generated by belt friction. The absence of grinding coolant and the reduced area of conduction usually results in a slightly higher operating temperature.

Low operating temperatures, combined with adequate spindle rigidity, are important and highly desirable for precision machine tools. This is particularly true for high-speed grinding spindles where the preload of the bearings is the principle load imposed upon them. Some of the benefits derived from low operating temperatures and better dimensional stability of the processed work, less need for bearing lubrication, prevention of objectionable heat at the external surfaces of the spindle housing, and elimination of troubles due to thermal effects on mounting fits and preloads.

The heat developed at the ball bearings under load is a function of the operating speed and the bearing preload. Preloading is necessary for maximum axial and radial rigidity. Unfortunately, if speeds are increased, the bearing preload may have to be lessened to maintain proper operating temperatures at the bearing.

For high-speed operation, the bearing preload should be sufficient to maintain proper rolling friction for the balls but not so high as to generate excessive heat. In cases where lower operating speeds are desired, bearing preloads may be increased to obtain additional bearing rigidity, provided the proper operating temperatures are maintained. Thus, a balance between heat generation and spindle rigidity dictates the amount of bearing preload that is used, commensurate with the operational speed and the bearing life required.

How bearing preload affects the operating temperature is illustrated in Figure 15. This graph applies to 207 size, angular-contact, duplexed superprecision ball bearings, mounted back-to-back. Curve **A** is a plot of operating temperature at the bearing outside diameter for the speeds indicated, using bearings with a 150 pound built-in preload. Curve **B** is for bearings having a 30 pound preload. The slope of Curve **A** is much steeper than that of Curve **B**. Using bearings with a 150 pound preload, the temperature rise at the bearing outside diameter is 60° F when operating at 3600 rpm. For the same temperature rise, using bearings with 30 pounds preload, an operating speed of 15,300 rpm is indicated. Therefore it is evident that for higher-speed operation the bearing preload should be kept to the minimum necessary to assure sufficient bearing rigidity.

For workhead spindles, the operating speeds are generally low and the loading conditions heavy. Maximum radial and axial spindle rigidity is required under these loads, making increased bearing preload mandatory.

# EFFECT OF PRELOAD ON TEMPERATURE RISE 100 **Temperature Rise Above Room** 90 80 70 60 50 40 30 20 8 10 11 12 13 2 9 Speed in RPM 1 = 1000 A High Preload

Figure 15 — Temperature vs Speed

# **Permissible Operating Speed**

When determining the permissible operating speeds corresponding to the bearing preloads used in machine tool spindles, many influencing factors are involved. Among those considered are spindle mass and construction; type of mounting; spindle rigidity and accuracy requirements; spindle loads' service life; type of service, (intermittent or continuous); and method of lubrication.

Bearing temperatures, generally, vary directly with both speed and load. However, high speed applications must have sufficient thrust loading on the bearings to prevent heat generation from ball skidding. The amount of bearing preload is determined primarily from these operating conditions. At lower speeds, the operating loads are heavier and the bearing deflections are greater. Therefore, the bearing preload must be high enough to provide adequate bearing rigidity under the heaviest loads and still maintain reasonable temperatures when the spindle is operated at high speeds.

The following relationship may be used to estimate the effect of preload and lubrication method on the Permissible Operating Speed.  $(S_P)$ 

$$S_P = F_L \times F_P \times F_B \times N_G$$

Where

F<sub>I</sub> is Lubrication Factor

F<sub>P</sub> is Preload Factor

F<sub>B</sub> is Ball Material Factor

 $N_G$  is Permissible Speed for single grease lubricated bearing with inner ring rotation. This value is found in the **Physical Characteristics** sections.

Factors are as follows:

# LUBRICATION FACTOR (FL)

| ,        |                |
|----------|----------------|
| Grease   | $F_{L} = 1.00$ |
| Oil Bath | $F_{L} = 1.50$ |
| Oil Mist | $F_{L} = 1.70$ |
| Oil Jet  | $F_{L} = 2.00$ |
|          |                |

### BEARING PRELOAD FACTORS = (FP)

| ,                                                                                               |       |             |       |            |
|-------------------------------------------------------------------------------------------------|-------|-------------|-------|------------|
| Bearing Mounting Arrangement                                                                    |       | Bearir<br>L | ng Pr | eload<br>H |
| ØØ <b></b> ØØ                                                                                   | <br>} | 0.85        | 0.70  | 0.50       |
| Ø <b>0</b> ØØ                                                                                   | )     | 0.80        | 0.60  | 0.40       |
| ØØ                                                                                              | 5     | 0.65        | 0.50  | 0.30       |
| $\emptyset$ $\emptyset$ $\emptyset$ $\emptyset$ $\emptyset$ $\emptyset$ $\emptyset$ $\emptyset$ | )     | 0.65        | 0.50  | 0.30       |
| $\emptyset \emptyset - \emptyset - \emptyset - \emptyset \emptyset \emptyset$                   | )     | 0.70        | 0.60  | 0.35       |
| $\Diamond \Diamond \Diamond \Diamond \bigcirc \longrightarrow \Diamond \Diamond$                | )     | 0.60        | 0.40  | 0.20       |
|                                                                                                 | )     | 0.65        | 0.45  | 0.25       |

## BALL MATERIAL FACTOR = $(F_R)$

| Steel Balls *Ceramic Balls | F <sub>B</sub> = 1.00<br>F <sub>B</sub> = 1.20 |
|----------------------------|------------------------------------------------|
| Octamic Dalis              | 1 B = 1.20                                     |

If a cage other than one shown in this catalog is used, contact the Engineering Department for recommendations.

**B** Low Preload

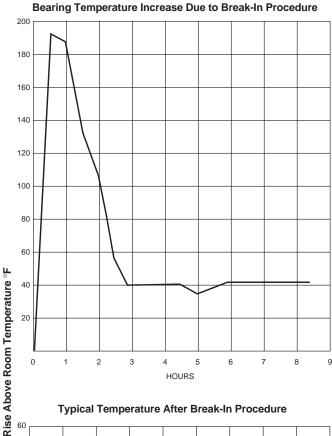
<sup>\*</sup> Ceramic balls allow 20% increase to speed factor.

# LUBRICATION

### **Grease**

The use of grease as a lubricant for our precision bearings on various spindle applications is becoming more popular due to the development of better ball bearing greases, simplification of design and elimination of the "human maintenance factor" which is frequently responsible for too much lubrication, not enough lubrication, or the wrong kind of lubrication. Prelubricating the bearings at assembly with the correct amount of the right grease and thus eliminating all grease fittings has increased precision production in many instances.

For successful lubrication, grease for ball bearings should have good mechanical and chemical stability with low torque characteristics. Two different types of grease, one soft and the other heavier, have proved to be suitable lubricants for machine tool spindle bearings. The "soft" greases have a worked penetration factor of about 300. The heavier grease has a worked penetration factor of about 200 and is of the channeling type. All greases show a very slight change in consistency after operation in a bearing. As the softer grease has a tendency to churn, particular attention should be given to the quantity packed into the bearing. Because the heavier grease is of the channeling type, the amount used is not critical.


Below a 400,000 DN value, which is equivalent to a 40mm bore bearing rotating at 10,000 rpm, either a light consistency grease or the channeling grease may be used. When using grease of a channeling type **at low speeds**, the bearing may be packed full and will operate at no appreciable rise in temperature. Bearings may also be packed full of the lighter grease, but a greater rise in temperature will be noticeable until the excess lubricant is expelled from the bearings.

At continuous speeds above a DN value of 400,000, the operating temperature is generally lower when the bearings are lubricated with a lower consistency grease. However, the grease quantity in each bearing must be limited. At these high speeds, an excessive amount of grease in the bearing may result in greatly increased operating temperatures, due to churning action. This condition, if uncontrolled, may lead to premature bearing failure.

The top graph in Figure 16 shows bearing temperature increase due to break-in procedure. The peaking temperature followed by the leveling off is a result of the new grease being worked and then stabilized for a particular condition of load and speed.

It is important that the peak temperature not exceed  $100^{\circ}F$  above room temperature since the chemical consistency and characteristics of the grease can be permanently altered. Thus, the proper break-in procedure is to run the machine until the spindle temperature rises to  $150^{\circ}F$  and then turn it off to allow the grease to cool. Repeat until the spindle temperature stabilizes at a temperature below  $130^{\circ}F$ .

The bottom graph in Figure 16 shows the typical temperature rise of the bearing once the grease has been worked in for the specific speed and load.



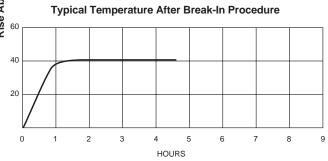



Figure 16 - Temperature vs Time

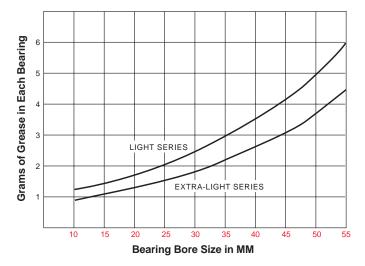



Figure 17 - Grease Quantity Chart

It is generally recognized that only the grease which is immediately adjacent to and in contact with the bearing contributes to its lubrication. In most applications, unless the speed is exceptionally low, a large quantity of grease can be objectionable. An excessive amount increases churning action, which may lead to overheating and possible breakdown of the grease. The tendency to churn depends upon the consistency of the grease, the bearing design, the housing construction and the quantity of grease that is used.

Ordinarily, bearings need to be packed only about 25% to 30% full of grease. As a guide, the chart shown in Figure 17 may be used to determine the approximate amount of grease which should be used in each bearing. The chart covers the extra-light series bearings for bore sizes of 10 to 55 mm's inclusive.

Prior to mounting, each bearing is carefully packed with the required quantity of clean, suitable grease using a flat steel scale for inserting the grease into the bearing and around the balls. Grease voids within the bearing are eliminated and even distribution of the grease is accomplished by revolving the bearing slowly in the hands until the torque throughout the bearing becomes noticeably constant.

### Oil

Although several grease products have been successful at DN values as high as one million, oils are generally required for bearings operating at high speeds or to provide more cooling and dissipation of heat than is possible with grease. High-grade spindle oil having a viscosity of 100 seconds Saybolt at 100°F is recommended for use in drip-feed oilers, oil bath lubrication arrangements and oil mist systems. In heavily-loaded applications, oil in relatively large quantities must be supplied, and where temperatures run higher than normal, oil coolers will be required. Churning of a large pool of oil is to be avoided if speed is appreciable.

# Oil Bath

The conventional oil-bath system for lubricating the bearings is satisfactory for low and moderate speeds. The static oil level must never be higher than the center of the lowermost ball. When the shaft is rotating, the running level may drop considerably below the standstill level, depending on the speed of the revolving parts. A sight gauge or other suitable means should be provided to permit an easy check.

# **Drip-Feed Oil**

Where the speeds are considered high for oil bath and the bearings are moderately loaded, oil, introduced through a filter-type, sight-feed oiler, is recommended. This assures a constant supply of lubricant. The feed in drops per minute is determined by closely observing the operating temperatures.

### Oil Jet

In applications where the ball bearing is heavily loaded and operating at high speed and high temperatures or where the operating conditions are severe with high ambient temperatures encountered, oil jet lubrication may be required. In such cases it is necessary to lubricate each bearing location individually, and to provide adequately large drain openings to prevent excessive accumulation of oil after it has passed through the bearings.

### Oil Mist

Oil mist lubrication is recommended for spindles running continuously at high speeds. With this method of lubrication, oil of the proper viscosity is atomized into finely divided particles, mixed with clean, filtered, dry compressed air and directed to pass through the bearings in a constant stream. This oil is metered into the air under pressure. Thus, the system not only lubricates the bearings but it affords some cooling due to the air flow. This continuous passage of air and oil through the bearings and the labyrinth seals also serves to prevent the entrance of contaminants into the bearings.

To insure the "wetting" of the bearings and to prevent possible damage to the balls and raceways, it is imperative that the oil mist system be turned on for several minutes before the spindle is started. The importance of wetting the bearings before starting cannot be over stressed and has particular significance for spindles that have been idle for extended periods of time. To avoid such effects, most oil mist systems have interlocks which make it impossible to start the spindle until the lubricating system is working properly and the bearings are thoroughly wetted.

### **Metered Oil**

This method is similar to the oil mist; however, the oil is fed by periodic pulses to the lubrication line providing a higher air to oil ratio. Therefore, this method lowers the operating bearing temperature and lubricant shear effects, enabling higher operating speeds.

# **LUBE SYSTEM COMPARISON**

|             | System<br>Cost | Typical *<br>Speed (DN) |
|-------------|----------------|-------------------------|
| Grease      | Low            | 500,000                 |
| Oil Bath    | Low            | 400,000                 |
| Oil Drip    | Low            | 600,000                 |
| Oil Mist    | Medium         | 1,000,000               |
| Metered Oil | High           | >1,000,000              |
| Oil Jet     | High           | >1,000,000              |

<sup>\*</sup> Speed value is an approximation and assumes proper mounting and preload techniques along with average loading conditions. For more specific guidance contact your local sales engineer.

The Speed, "DN", value is obtained by multiplying the bearing bore size in millimeters by the shaft RPM.

E38 102800

# **Grease and Speed Capability**

Before selecting a grease, it is important to define a relative speed capability of the application. There is no precise method that can be applied to determine the operating speed of a bearing. Over the years, designers of machine tool systems have been guided by their own experiences from which many basic "rules of thumb" have been established. One such rule is the "DN" speed value.

# DN = Bore in millimeters \* RPM

The four most common spindle greases that Torrington recommends are:

**Exxon Andok C** – Vertical applications

< 500,000 DN

Mobil 28 – Light loads < 600,000 DN

Chevron SRI – Medium to heavy loads

< 350,000 DN

Kluber Isoflex NBU 15 – Light loads, vertical or Kluber Isoflex NCA 15 horizontal applications

> 500,000 DN

These are the greases that Torrington would recommend,

# **LUBE SPECS**

| LUBE CODE | LUBE                | FS SPEC  |
|-----------|---------------------|----------|
| 160       | AEROSHELL 22        | FS381B-P |
| 044       | ANDOK 260           | FS167E   |
| 049       | ANDOK B             | FS104A   |
| 023       | ANDOK C             | FS118    |
| 436       | ANTICORIT L-245XBF  | FS890    |
| 078       | CHEVRON SRI         | FS545    |
| 037       | DOW CORNING 44      | FS137A   |
| 004       | DRY                 | _        |
| 125       | FERROCOTE 5856 BF   | FS639    |
| 162       | ISOFLEX NBU 15      | FS637    |
| 443       | ISOFLEX NCA 15      | FS905    |
| 422       | ISOFLEX SUPERLDS18  | FS735    |
| 115       | ISOFLEX TOPAS NB52  | FS737    |
| 149       | ISOFLEX TOPAS NCA15 | FS883    |
| 076       | KRYTOX 240AB        | FS452    |
| 161       | KRYTOX 240AC        | FS433    |
| _         | LUBCON L252         | FS915    |
| 086       | MOBIL 28            | FS381A   |
| 456       | MOBILITH SHC15      | FS919    |
| 095       | MOBILTEMP SHC 32    | FS612    |
| 169       | PQ CORROSION PREV.  | FS216    |
| 067       | RHEOTEMP 500        | FS208    |
| 012       | WINSOR LUBE L-245X  | FS171A   |
| 167       | WINSOR LUBE L1018   | FS179A   |

equivalents to the above greases could be substituted.

# **Quantity of Grease:**

25% to 40% pack for Normal Speed (< 500,000 DN)

15% to 20% pack for High Speed (> 500,000 DN)

### **RUN-IN PROCEDURE FOR GREASED BEARINGS**

A proper run-in procedure will provide the following results:

- Expel the excess grease found in the system
- Orient the lubricating film on each contact surface
- Establish a low equilibrium operating temperature
- Achieve a sealed-for-life lubrication condition

### **Run-In Procedure**

- Start at a reasonable low speed, typically 10% of the maximum operating speed.
- Increase speed incrementally when a stable temperature is reached.
- Continue incremental increase in speed as described. If a rapid temperature increase occurs, stop the run-in process. This temperature spike indicates a preload due to thermal expansion.

Maximum bearing temperatures should not exceed 70°C (158°F). Temperatures in excess of 70°C will cause excessive bearing preloads and possible permanent grease bearing damage.

- 4. Allow the system to cool to room temperature.
- Restart procedure at the last speed prior to the temperature spike.
- Continue repeating the above cycle until an equilibrium temperature is reached at the maximum operating speed of the application. The ideal equilibrium operating temperature is 35°C to 40°C (95°F to 105°F).

# **Alternative Run-In Procedure**

Run-in at constant speed is also possible. In this operation, the bearing should run at full speed for about 30 seconds. After stopping, the heat in the bearing dissipates. In this way, a dangerous temperature rise is prevented. The non-running time depends on the various design factors, but it should be at least 5 times greater than the running time. This process is repeated until the bearing temperature becomes constant.

E40 102800

# Life Calculations

# Load Ratings – Radial Ball Bearings

The load ratings published in this catalog are based on ABMA Standard Section 9, but are increased to reflect improvements in materials and processing. These ratings are referred to as EXTENDED BASIC DYNAMIC LOAD RATINGS, CE. Care must be taken that the EXTENDED BASIC DYNAMIC LOAD RATINGS only be used in equations containing C<sub>F</sub>, and should not be used in any equations in prior published catalogs.

# **Fatigue Life**

Because of the dispersion in life of identical bearings operating under identical conditions, a statistical result will be obtained for bearing fatigue life. For most calculations life is expressed as the number of hours that 90% of a group of identical bearings will exceed under a given set of conditions, and is referred to as the L<sub>10</sub> life. For life values of greater reliability than 90% refer to Table 4.

The basic equation for radial ball bearings is:

$$L_n = \frac{16667 \times a_1 \times a_2 \times a_3}{N} \left[ \frac{f_B \times C_E}{P} \right]^3$$
 Hours

Calculate EQUIVALENT RADIAL LOAD (P) by using Table 1 and required Y factors from Table 2.

# **Notations Used in this Section:**

- = Basic Dynamic Load Rating Radial Roller bearings С Pounds or Newtons
- = Extended Basic Dynamic Load Rating Radial Ball CE bearings Pounds or Newtons
- $C_{o}$ = Basic Static load Rating - Radial Bearings Pounds or Newtons
- $C_{oa}$ = Basic Static Thrust Load Rating Pounds or Newtons = Basic Thrust Dynamic Load Rating - Ball and Roller  $C_t$ **Bearings**
- Κ = Thrust Rating Calculation Factor
- = Relative Thrust Load Factor Ball Bearings  $K_T$
- = Life factor  $L_f$
- = Fatigue Life for Reliability Level "r" Hours Ln
- Ν = Operating Speed - R.P.M.
- $N_{f}$ = Speed Factor
- = Applied Radial Load on Bearing Pounds or Newtons R
- Ρ = Equivalent Radial Load on Bearing Pounds or Newtons
- $T_{e}$ = Equivalent Thrust Load - Thrust Ball and Roller Bearings Pounds or Newtons
- Τ = Applied Thrust Load on Bearings Pounds or Newtons
- Χ = Radial Load Factors Y, Y<sub>1</sub>, = Thrust load Factors

 $Y_2, Y_3$ 

= Life adjustment Factor for reliability  $a_1$ 

= Life adjustment Factor for Bearing Material  $a_2$ = Life adjustment Factor for Application Conditions  $a_3$ 

= Dynamic Load rating Adjustment factor for Number  $f_B$ of Adjacently Mounted Bearings

= Number of Adjacently Mounted Bearings

P<sub>1</sub>...P<sub>n</sub> = Proportion of time at Load/Speed Conditions 1 through n

= Percent reliability of Survival Life = Operating Viscosity - Centistokes μ = Reference Viscosity - Centistokes  $\mu_R$ 

<sup>\*</sup> Bearings with TDC plated races may use an a2 factor of 3 for calculating life.









Table 1

| Bearing Description                                        | Single Row Bearings and Tandem Mountings    | Double Row Bearings<br>and Preload Pair Mountings    |
|------------------------------------------------------------|---------------------------------------------|------------------------------------------------------|
| Bearing Type<br>and/or Series                              | $KT = \frac{T}{i_B C_o}$                    | $KT = \frac{T}{C_0}$                                 |
| RADIAL TYPE BALL BEARINGS                                  | Use larger of Res                           | sulting "P" Value                                    |
| MM9300K<br>MM9100K<br>MM200K<br>MM300K                     | P = R<br>or<br>P = 0.56R + Y <sub>1</sub> T | $P = R + 1.20Y_1T$<br>or<br>$P = 0.78R + 1.625Y_1T$  |
| ANGULAR CONTACT BALL BEARINGS                              |                                             |                                                      |
| 2MM9100WI 2MMV99100WN<br>2MM9300WI<br>2MM200WI<br>2MM300WI | $P = R$ or $P = 0.44R + Y_2T$               | $P = R + 1.124Y_2T$<br>or<br>$P = 0.72R + 1.625Y_2T$ |
| 2MM9100WO                                                  | P = R<br>or<br>P = 0.44R + Y <sub>3</sub> T | $P = R + 1.124Y_3T$ or $P = 0.72R + 1.625Y_3T$       |
| 3MM9100WI<br>3MM200WI<br>3MM300WI                          | P = R<br>or<br>P = 0.41R + 0.87T            | P = R + 0.92T<br>or<br>P = 0.67R + 1.41T             |

Table 2

| K <sub>T</sub> | Y <sub>1</sub> | Y <sub>2</sub> | Y <sub>3</sub> |
|----------------|----------------|----------------|----------------|
| 0.015          | 2.30           | 1.47           | 1.60           |
| 0.020          | 2.22           | 1.44           | 1.59           |
| 0.025          | 2.10           | 1.41           | 1.57           |
| 0.030          | 2.00           | 1.39           | 1.56           |
| 0.040          | 1.86           | 1.35           | 1.55           |
| 0.050          | 1.76           | 1.32           | 1.53           |
| 0.060          | 1.68           | 1.29           | 1.51           |
| 0.080          | 1.57           | 1.25           | 1.49           |
| 0.100          | 1.48           | 1.21           | 1.47           |
| 0.120          | 1.42           | 1.19           | 1.45           |
| 0.150          | 1.34           | 1.14           | 1.42           |
| 0.200          | 1.25           | 1.09           | 1.39           |
| 0.250          | 1.18           | 1.05           | 1.35           |
| 0.300          | 1.13           | 1.02           | 1.33           |
| 0.400          | 1.05           | 1.00           | 1.29           |
| 0.500          | 1.00           | 1.00           | 1.25           |
| 0.600          | _              | _              | 1.22           |
| 0.800          | _              | _              | 1.17           |
| 1.000          | _              | _              | 1.13           |
| 1.200          | _              | _              | 1.10           |

Obtain the DYNAMIC LOAD RATING ADJUSTMENT FACTOR,  $f_{\text{B}}$ , from Table 3. This factor accounts for the number of active bearings ( $i_{\text{B}}$ ) mounted adjacent to one another.

$$f_B = (i_B)^{0.7}$$

Table 3

| İR             | 1    | 2    | 3    | 4    | 5    |
|----------------|------|------|------|------|------|
| f <sub>B</sub> | 1.00 | 1.62 | 2.16 | 2.64 | 3.09 |

The load ratings published in this catalog are based on ABMA Standard 9, but are increased to reflect improvements in materials and processing. These ratings are referred to as EXTENDED BASIC DYNAMIC LOAD RATINGS, C<sub>E</sub>. Care must be taken that the EXTENDED BASIC DYNAMIC LOAD RATINGS only be used in equations containing C<sub>E</sub>, and should not be used in any equations in prior published catalogs.

NOTE:  $C_E$  does not represent the maximum permissible radial load which in general is equal to  $C_o$  the Static Radial Load Ratings.

**E42** 102800

### Life Calculations

Determine the Life Adjustment Factors a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>:

### a<sub>1</sub>, Life Adjustment Factor for Reliability

The most commonly used reliability level for bearing life calculations is 90%. This is referred to as,  $L_{10}$ , or rating life, and is the life based upon 90% survival of a group of bearings at the specified load and speed. Should the application require a higher degree of reliability, the  $a_1$  life adjustment factors can be selected from Table 4.

Table 4

| Reliability<br>%<br>(r) | L <sub>n</sub>                | Life Adjustment<br>Factor For<br>Reliability: a <sub>1</sub> |
|-------------------------|-------------------------------|--------------------------------------------------------------|
| 90                      | L <sub>10</sub> (RATING LIFE) | 1                                                            |
| 95                      | L <sub>5</sub>                | 0.62                                                         |
| 96                      | $L_4$                         | 0.53                                                         |
| 97                      | L <sub>3</sub>                | 0.44                                                         |
| 98                      | L <sub>2</sub>                | 0.33                                                         |
| 99                      | L <sub>1</sub>                | 0.21                                                         |

### a<sub>2</sub>, Life Adjustment Factor for Bearing Material

In previous catalogs Fafnir used a Factor of 3 for material and processing for Fafnir Superior Steel. This factor has now been incorporated in the  $C_E$  value and accordingly, the  $a_2$  factor for Fafnir superior steel now is 1. Factors for other materials are given in Table 5.

Table 5

| Bearing Steel                             | Life Adjustment Factor<br>For Material: a <sub>2</sub> |
|-------------------------------------------|--------------------------------------------------------|
| Fafnir Superior Steel (standard material) | 1                                                      |
| Vacuum Melted (VIM-VAR) 52100             | 4*                                                     |

<sup>\*</sup>In certain applications this factor can exceed 4. Consult our Engineering Department.

# a<sub>3</sub>, Life Adjustment Factor for Application Conditions

Many bearing users will find that they are able to calculate bearing life with acceptable accuracy using an Application Factor  $(a_3)$  of 1. The  $a_3$  factor can be made up of any number of application factors based upon the degree of detail the user wishes to employ in analysis. Such factors as lubrication, alignment, mounting stiffness, and temperature can be considered. The factors are multiplied together to develop the final  $a_3$  factor.

The Engineering Department will assist in developing various application factors when requested by the user. The following may be used as a guide to determine the a<sub>3</sub> factor based on lubrication considerations.

In order to obtain  $a_3$ , it is necessary to compare the actual lubricant operating viscosity,  $\mu$ , centistokes (mm²/sec.) to a Reference Viscosity,  $\mu_R$ , which is based on requirements determined by the application speed and bearing pitch diameter.

Determine the Reference Viscosity from Figure 1 (page E44) by entering the bearing pitch diameter, which is equal to the outer diameter plus the bore divided by 2 and the bearing speed.

In order to obtain the value of,  $a_3$ , the Life Adjustment factor for Lubrication, from Fig. 2 by entering the value of,  $\mu/\mu_R$ . The value of,  $\mu$ , the actual viscosity of the lubricant in the bearing must be obtained from the lubricant manufacturers viscosity index specification for the temperature of the oil in the bearing at operating conditions. Where the operating temperature of the oil is unknown considerable care is necessary to estimate this temperature, since it depends on loading, speed, lubricant flow and heat transfer characteristics of the shaft and housing.

The factor,  $a_3$ , is a multiplier of the bearing life,  $L_n$ , reflecting lubricant effectiveness in an adequately filtered lubrication system. The values of,  $a_3$ , are a consequence of the direct contact between the bearing rolling elements and the bearing rings. Contaminants in the lubricant, exceeding lubricant film thickness, result in shorter lives than would be computed using the values of,  $a_3$ . The use of the  $a_3$  factor is also based on the adequate supply of lubricant which will not deteriorate over the life of the bearing.

When bearings are grease lubricated determine the  $a_3$  factor using the specifications for the oil used in the grease, however, the maximum value of  $a_3$  should not exceed 1. One reason for this limitation is the question on grease maintenance over long periods which is out of control of the designer.

### **Bearing Life Under Varying Loads and Speeds**

In many applications, bearings are required to run at a number of different loads and speeds. If the different loads and speeds and the portions of time they are in effect are known, the life can be found from the following relation:

$$L_{r} = \frac{1}{\frac{p_{1}}{L_{n_{1}}} + \frac{p_{2}}{L_{n_{2}}} + \frac{p_{3}}{L_{n_{3}}} + \dots + \frac{p_{n}}{L_{n_{n}}}}$$

Note:  $p_1 + p_2 + p_3 + ... + p_n = 1.0$ 

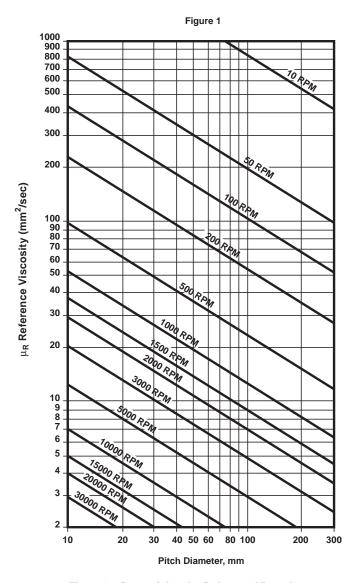



Figure 1 – Determining the Reference Viscosity

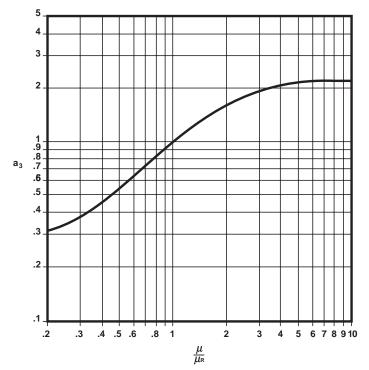



Figure 2 – Determining the Value of  $a_3$  the Life adjustment Factor for Lubrication.

**E44** 102800

## **Applications**

### **High-Speed Internal Grinding Spindle**

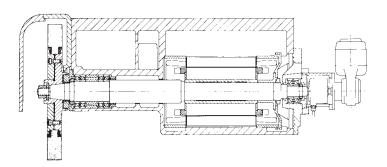
Designed for internal precision grinding, this spindle incorporates 2MM9106WO-CR superprecision bearings, preloaded by a nest of coiled helical springs mounted in a cartridge. Thrust load exerted by the springs assures intimate contact of the balls with the bearing raceways under all operating conditions. The sealed construction provides highly effective protection against intrusion of coolant and foreign matter. Grease, packed in each bearing prior to assembly, is sealed-in for life. Operating speed of this spindle is 25,000 rpm.

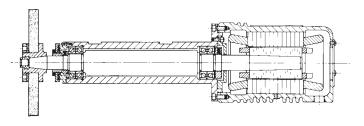
### **Ultra-Precision Surface Grinding Spindle**

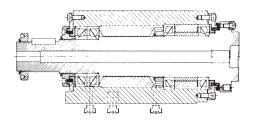
2MMX9122WI-DUM superprecision bearings, produced to ABEC-9 tolerances, are employed in this horizontal surface grinding spindle for maximum rigidity and accuracy. A back-to-back pair of 2MM312WI-CR-DUL superprecision bearings are used as the floating location. This spindle grinds surfaces that are accurate within .000025 inch, flat, parallel and square within .000010 inch, and to a surface finish of 5 rms, or better. The spindle, driven by a 30 hp motor, operates at 900 rpm. Bearings are packed with grease prior to assembly.

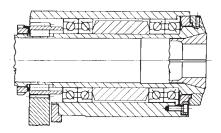
### **Precision Surface Grinding Spindle**

This motorized surface grinding spindle, operating at 3600 rpm, uses 2MM9107WI-DUM duplex superprecision preloaded bearings at both locations, mounted back-to-back, with one pair floating. Labyrinth slinger-type sealing prevents entry of contaminants and seals in the lubrication. Bearings are grease lubricated for life.


### **Heavy-Duty Precision Boring Spindle**


Superprecision, duplexed, preloaded bearings mounted back-to-back are used at each location in this boring spindle to assure smooth performance and a high degree of radial and axial rigidity. Operating speeds vary between 200 and 3000 rpm. Equal-length spacers between the bearings at the workend increase spindle rigidity. When the bearings are properly positioned on the shaft and the respective rings securely clamped, the preload is reproduced and no subsequent adjustment is required. Just prior to assembly, each bearing is packed with grease for life.


### Six-Spindle Automatic Screw Machine


This bearing arrangement meets the demand for a high-speed, heavy-duty, multiple-spindle screw machine to operate with constant accuracy at maximum production. Because of the hollow shaft construction and the short distance between bearings, extra-light series duplex pairs are used at each location. This affords a high degree of radial rigidity and adds stiffness to the shaft. By mounting a duplex pair of flanged (3MMF) bearing with a 2MM superprecision bearing, back-to-back, under a predetermined preload at the front end, accuracy and rigidity of the spindle are assured and permit a straight housing bore. The rear pair of back-to-back bearings is allowed to float in the housing, making an outer-ring spacer unnecessary. Lubrication is by pressure-feed oil circulation.







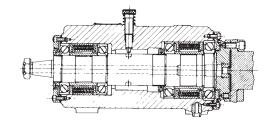


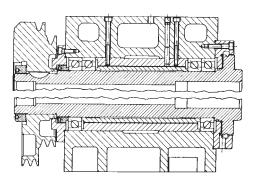


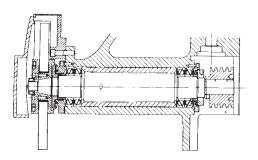
### **High-Speed Precision Boring Head**

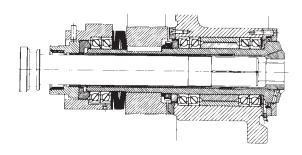
This high-speed boring head operates at 2500 to 3000 rpm, employing angular-contact, superprecision bearings. The front bearings are of different sizes. The outer ring of the larger bearing abuts and is clamped against the housing shoulder. The inboard bearing is permitted to move axially in its housing under spring load. At the rear location two bearings, of the same size and spring loaded, are allowed to float in the housing as temperature differentials occur in the operation spindle. With this head, interference shafts may be permitted without affecting bearing preload. Excessive heat generation is prevented, resulting in low operating temperatures. Bearings are grease lubricated.




This workhead must maintain straightness and roundness accuracy within ten millionths (.000010) of an inch. To meet such rigid requirements for extremely close dimensional control, ultra-precision ball bearings and a shaft of extra stiffness are used. The bearings for such applications are manufactured to tolerances closer than those for ABEC-9 specifications. Equally important is the high degree of workmanship and accuracy with which the shaft, housing and component parts of the workhead must be made. Upper section shows a four-bearing arrangement for heavy work. Lower half shows a two-bearing mounting for lighter work. In either case, the bearings are packed with grease, prior to mounting.


# **Precision Toolroom Surface Grinder Spindle**


Fafnir duplexed, superprecision, preloaded bearings used in this spindle provide the high degree of rigidity in both directions necessary to meet requirements for modern surface grinding and to assure efficient performance at a low operating temperature. The housing is bored straight-through to assure true alignment – the housing shoulders are eliminated. The precision ground outer sleeve is doweled to the housing to provide the means for stabilizing the spindle axially at the work end bearing location. The rear pair of bearings floats to compensate for thermal changes. Bearings are grease lubricated for life just prior to assembly.


### **Single Bar Machine**

This spindle is supported by two pairs of 2MM9124WI-DUM superprecison bearings, mounted back-to-back in tandem pairs. Operating speeds vary from 78 to 1500 rpm. A pair of 2MM9122WI-DUM bearings mounted in tandem carry a 25,000 pound thrust load during the unchucking operation. The bearings are grease packed for life prior to assembly.

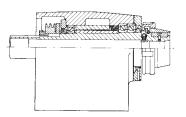








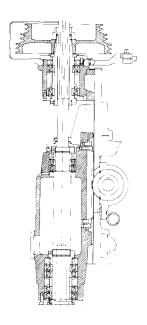
E46 102800


### 100,000 RPM High-Cycle Wheelhead

Superprecision 2MMX9101WO-CR bearings produced to ABEC-9 tolerances are spring-loaded in this wheelhead which operates at 100,000 rpm at 1660 cycles. Oil mist lubrication is employed and the motor is water cooled.

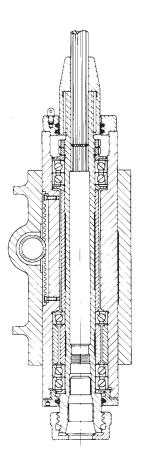


### **Superprecision Lathe Headstock**


This lathe spindle produces work held to a roundness of 35 millionths (.000035) of an inch. Maximum operating speed is 4800 rpm. Tandem pair of 3MM9114WI-DUL bearings is opposed by a spring-loaded 3MM9113WI bearing, resulting in excellent spindle rigidity. Bearings are prelubricated with grease.

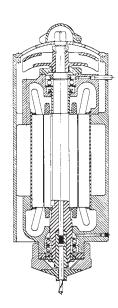


### **Precision Vertical Milling Spindle**


This spindle operates at 12 different speeds ranging from 260 to 6200 rpm under a wide variety of conditions. At the work end, two duplex pairs of Fafnir 2MM212WI-DUL preloaded bearings are mounted in tandem pairs in a back-to-back arrangement, separated by spacers of equal length. This affords extremely high radial and axial rigidity. At the center, a pair of Fafnir 2MM210WI-DUL bearings mounted back-to-back permit axial float of the spindle to compensate for thermal changes.

The driving pulley shaft is rigidly supported by a widely spaced duplex pair of Fafnir 2MM212WI-DUL preloaded bearings. All bearings are grease packed for life.




### **Precision Jig-Boring Spindle**

This jig-boring spindle delivers extreme accuracy over a wide range of speeds. Excellently designed, it is supported with 2MM210WI-DUM grease-lubricated superprecision Bearings. With this spindle, holes located to an accuracy of one ten-thousandth (.0001) of an inch are bore round straight and to size limits of better than two ten-thousandths (.0002) of an inch.



### **High Speed Motorized Router**

A specially matched duplex pair of Fafnir 2MM210WI-DU-FS223 superprecision ball bearings, mounted back-to-back at the work-end, affords the necessary bearing rigidity to permit routing through aluminum plate one inch thick with a single pass. The upper bearing is spring -loaded and permitted to float. Router is driven by a 30 hp motor at speeds up to 15,000 rpm, and uses oil mist lubrication.



E48 102800

### **Radial Internal Clearance**

Deep groove radial type bearings may be matched to various radial internal clearances to meet specific design and performance requirements. The following chart lists the clearances options available.

Conrad bearings ordered without a prefix for clearance specification will be supplied with a "P" fit as standard.

### VALUES SHOWN IN TEN-THOUSANDTHS INCHES (.0001") AND MICROMETERS (μm)

| Bearing<br>Size | H" F<br>Snu<br>(C2 | ıg   | R"<br>regu<br>(C | ılar  | P" I<br>Loo<br>(C: | se    | J" F<br>Extra-l<br>(C4 | loose |
|-----------------|--------------------|------|------------------|-------|--------------------|-------|------------------------|-------|
|                 | 0.0000"            | μm   | 0.0000"          | μm    | 0.0000"            | μm    | 0.0000"                | μm    |
| 00              | 1-3                | 3-8  | 2-5              | 5-13  | 4-8                | 10-20 | 7-10                   | 18-25 |
| 01              | 1-4                | 3-10 | 2-6              | 5-15  | 5-9                | 13-23 | 8-12                   | 20-30 |
| 02              | 1-4                | 3-10 | 2-6              | 5-15  | 5-9                | 13-23 | 8-12                   | 20-30 |
| 03              | 1-4                | 3-10 | 2-6              | 5-15  | 5-9                | 13-23 | 8-12                   | 20-30 |
| 04              | 1-4                | 3-10 | 3-7              | 8-18  | 6-10               | 15-25 | 9-13                   | 23-33 |
| 05              | 1-4                | 3-10 | 3-7              | 8-18  | 6-10               | 15-25 | 10-15                  | 25-38 |
| 06              | 1-4                | 3-10 | 3-7              | 8-18  | 6-10               | 15-25 | 10-15                  | 25-38 |
| 07              | 1-4                | 3-10 | 3-7              | 8-18  | 7-12               | 18-30 | 12-17                  | 30-43 |
| 08              | 1-4                | 3-10 | 3-7              | 8-18  | 7-12               | 18-30 | 12-17                  | 30-43 |
| 09              | 1-4                | 3-10 | 3-8              | 8-20  | 8-13               | 20-33 | 13-19                  | 33-48 |
| 10              | 1-4                | 3-10 | 3-8              | 8-20  | 8-13               | 20-33 | 13-19                  | 33-48 |
| 11              | 1-5                | 3-13 | 4-10             | 10-25 | 10-16              | 25-40 | 16-23                  | 40-58 |
| 12              | 1-5                | 3-13 | 4-10             | 10-25 | 10-16              | 25-40 | 16-23                  | 40-58 |
| 13              | 1-5                | 3-13 | 4-10             | 10-25 | 10-16              | 25-40 | 16-23                  | 40-58 |
| 14              | 1-5                | 3-13 | 5-11             | 13-28 | 11-19              | 28-48 | 19-27                  | 48-68 |
| 15              | 1-5                | 3-13 | 5-11             | 13-28 | 11-19              | 28-48 | 19-27                  | 48-68 |
| 16              | 1-5                | 3-13 | 5-11             | 13-28 | 11-19              | 28-48 | 19-27                  | 48-68 |
| 17-20           | 1-6                | 3-15 | 5-13             | 13-33 | 13-22              | 33-55 | 22-32                  | 55-80 |
| 21-24           | 1-6                | 3-15 | 7-15             | 18-38 | 15-25              | 38-63 | 25-37                  | 63-93 |
| 25-28           | 2-8                | 5-20 | 8-18             | 20-45 | 17-31              | 43-79 | 29-50                  | 74-12 |

The "R" fit is standard for M and V series bearings.

### **MAINTENANCE • MACHINE TOOL SPINDLES**

MAINTENANCE MACHINE TOOL SPINDLES

### **Forward**

Machine tools must meet the ever-increasing demands of modern industry for faster speeds, greater accuracy, smoother finishes and higher production rates at minimum costs. Such considerations are primarily influenced by the machine tool spindle with its superprecision ball bearings; and the machine tool builder, the spindle maker, and the ball bearing manufacturer are all making great advances in the achievement of these goals.

The machine tool spindle is expertly designed. It is fabricated from the best materials with the utmost care. Quality and accuracy of machining and the rate of production depend greatly on the ball bearings that support the spindle. Spindle maintenance and servicing have become a matter of prime importance and be done only by expert assemblers in meticulously clean, well-lighted and constant temperature surroundings.

### **Procedure**

In this section the basic principles involved in the proper maintenance of machine tool spindles are outlined. Although the servicing of a permanently grease-lubricated belt-driven internal grinding wheelhead, Figure 1, is described, the mounting techniques and installation procedures are typical for almost all types of ball bearing spindles.

### **Enclosed Dust-Free Working Area**

The desired results in the maintenance of machine tool spindles are achieved by an experienced mechanic working in a well organized, clean, and enclosed area set apart from the manufacturing processes or machines that propagate dust-laden air. His work bench and tools are clean and maintained in good working order. His surface plate is equipped with bench centers or parallel V-blocks and weighted end block, and test gage-blocks with 0.0001 inch dial indicators. He is equipped with outside and inside micrometers, a hole gage with 0.0001 inch indicator, a comparator gage with 0.0001 inch indicator and master discs and rings or precision blocks.

To insure dimensional accuracy and proper fitting of the spindle parts and ball bearings, all checking and assembly operations should be performed with gages, parts, and bearings that have attained a constant temperature. The equipment and all the parts to be assembled should be held in the working area long enough for them to assume thermal equilibrium before any measurements are taken.

### Inspection of Parts before Assembly

The ideal shaft bearing seat is accurately and smoothly ground and absolutely free from burrs, tool marks and rust. An indicator gage that reads 0.0001 inch is used to check the bearing seat. This gage is set to the basic diameter with a master disc or with precision blocks. Deviations from the standard dimension are indicated by rolling the shaft backward and forward in several positions, and an axial movement of the bearing seat under the indicator gage registers any taper.

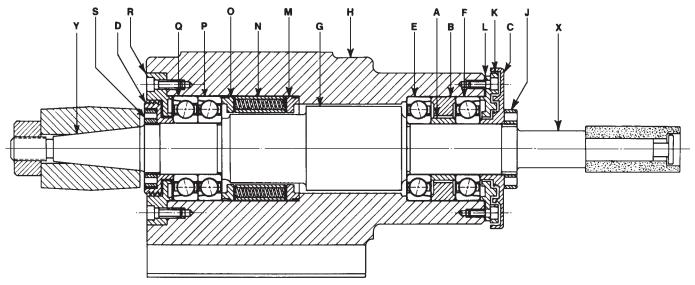



Figure 1 - Internal Grinding Wheelhead

**E52** 102800

The spindle shaft, with a steel ball located in one of its centers, is then mounted on parallel V-blocks and held against a weighted end block, Figure 2. Bench centers may be used, provided the shaft centers are free of damage and true. With the dial indicator seen at the left set at zero and contacting the bearing seat, the shaft is revolved slowly to determine runout and straightness. Both seats should be true with each other within 0.0002 inch total indicator reading (TIR), and within 0.0001 inch for very high-speed spindles. The wheel-end and pulley taper of the shaft are checked, and if the runouts do not coincide with the respective bearing seats, the high points of eccentricities are marked for identification. With the dial indicator seen at the right in Figure 2, the squareness of the bearing shoulders on the shaft is ascertained. This runout should not exceed 0.0002 inch total indicator reading.

The housing bore is checked with a two- or three-point hole gage which is set to the basic diameter with a master ring, or with precision blocks and a micrometer. By rocking the gage in several positions in the housing bore, any out-of-roundness and deviation of diameter is indicated. To discover any existing taper, the gage is moved axially. Housing bores are held within specified limits and checked for finish and freedom from burrs and tool marks.

Spacers, locknuts, and slingers carefully inspected, and all burrs are removed to insure proper seating of the ball bearings. Faces of spacers **A** and **B**, Figure 1, and slingers **C** and **D** must be flat and parallel within 0.0002 inch and square with their bores. The inner-ring and outer-ring spacers should be equal in length within 0.0002 inch.

Prior to assembly, all parts of the wheelhead, Figure 3, including housing bores are cleaned thoroughly with a solvent such as Varsol and then carefully wiped with a clean, lint-free cloth. All dirt must be removed from threads, keyways, grooves, and splines. To prevent corrosion, all parts, including shaft bearing seats and shoulders as well as the housing bores, are wiped with grease, leaving only a thin, protective film.

Figure 2 - Inspection of Shaft

# Each Bearing Packed with Three Grams of Grease

For this particular installation two pairs of 35mm bore, light series, angular -contact, duplexed superprecision ball bearings are used. In unpackaging, care is taken to prevent the entry of dirt or moisture into the bearings. The light protective oil put in the bearing by the manufacturer is removed with Varsol. Each bearing is carefully packed with about three grams of clean, suitable, ball bearing grease, using a flat steel scale for inserting the grease in to the bearing and around the balls. Grease voids within the bearing are eliminated, and even distribution of the grease is accomplished by revolving the bearing slowly in the hands until the torque throughout the bearing becomes noticeably constant.

### **Bearings Assembled in Spindle Mounting**

Proper shaft and housing mounting fits must be established and maintained in the application of ball bearings. Generally, for machine tool spindles, the ball bearing should have a line-to-line fit with the shaft bearing seat and a sliding push fit in the housing bore. Before the actual assembly operations begin, the ball bearings may be used for trial purposes to insure the desired mounting fits at final assembly. Damage to the ball bearings is avoided by taking care to mount bearings without cocking and to apply a firm hand pressure to the inner-ring face when placing the bearing on the shaft. Only thumb pressure is applied to the face of the outer ring when the bearing is pushed into the housing. Each bearing should be earmarked for its eventual position in the spindle assembly, making certain that the floating or spring-loaded bearings are slightly looser in the housing than the front or fixed bearings.

At the wheel-end or nose of the spindle, the minimum housing bore dimension for the fixed superprecision ball bearings may be established as 0.0001 inch less than the maximum outside diameter of the bearing. If the bearing outside diameter tolerance is 0.0002 inch, the maximum housing bore dimension is established at 0.0004 inch larger than the minimum housing bore.



Figure 3 - Wheelhead Parts

| Bearings<br>0.D. | Housing<br>Bore | Mounting<br>Fit |
|------------------|-----------------|-----------------|
| inches           | inches          | inches          |
| max. 2.8346      | min.2.8345      | .0001 tight     |
| min. 2.8344      | max.2.8349      | .0005 loose     |

Thus, the average mounted resultant fit is .0002 inch loose. If possible these clearances should be obtained, since it produces the ideal fit of the bearing in the housing bore.

At the drive-end of the spindle where the floating bearing is located, it is highly desirable to strive for an average fit of about 0.0001 inch looser than for the wheel-end ball bearings. For the drive-end, therefore, this ideal housing fit is 0.0003 inch loose. In operation, the bearing is itself a heat source and the housing functions as a heat sink and radiator. The equilibrium housing temperature is at some level between room temperature and the bearing. Obviously, the bearing will expand at a higher rate than the housing bore. For example: if we assume that the temperature gradient between the bearing and the housing is 10° F, the bearing will expand in diameter approximately 0.0002 inch more than the housing.

In the case of superprecision, preloaded pairs of ball bearings for high-speed wheelheads, the ideal shaft fit is a line-to-line fit to one with a looseness of 0.0001 inch. This mounted fit is attained if the bearing is assembled on the shaft under a firm thumb pressure applied to the face of the inner ring. Likewise, a good fit is indicated when the bearing can be assembled by applying gentle tapping blows on the face of a suitable mounting sleeve held against the bearing inner ring face. For these wheelhead bearings it is generally recommended that the shaft-seat diameter be the same as the bearing bore. The ideal mounting fit may be obtained by cross-matching the shafts and the bearings. The bearing bore is matched with the shaft seat that will result in a mounted fit of 0.0001 inch loose to one of line-to-line. Where single superprecision ball bearings are employed in high-speed wheelheads, and preloading is accomplished by the application of spring pressure, it is good practice to use the shaftfitting procedure.

# Bearing and Shaft Assembled with Eccentricities Opposed

With the asteric markings (\*) – denoting the high points of eccentricity – on the faces of the inner and outer rings of the bearings positioned in line, the front pair of ball bearings **E** and **F**, Figure 1, with their outer ring thrust faces toward the drive end of the shaft, are mounted in tandem on the shaft **G**. Inner-ring spacer **A** and outer ring spacer **B** are placed between them. The mounting is done in such a way that the location of the high points of eccentricity of the shaft seat and of the bearing inner rings are diametrically opposed. This practice is intended to minimize, and not compound the effects of eccentricity of the shaft and inner rings. This subassembly is placed in the housing **H**, as shown in Figure 4.

The ball bearings are then properly seated against the shaft seat shoulder by placing front slinger **C** against the bearing inner-ring face, and locknut **J**, having a right-hand thread, is tightened with a spanner wrench. With the outer ring face of the inboard bearing seated against the internal

housing shoulder, locknut J and front slinger C are removed. Next, outer-ring cap K and gasket L are assembled and secured in place, this cap being locked evenly, parallel, and firmly against the outer-ring face of the outside bearing. Front slinger C and locknut J are then replaced, temporarily securing the bearings with a spanner wrench.

After the shaft is in the housing and assembled with the front pair of bearings, thrust collar  $\mathbf{M}$  is mounted on the shaft from the drive end, as illustrated in Figure 1. This collar is placed with its wide face outward in order to support the preloaded springs. The springs, in turn, are inserted in cage unit  $\mathbf{N}$ , which is then mounted in position on the shaft. Spring washer  $\mathbf{O}$  with its greased packed cavity outward, is placed against the springs.

With the burnished spots in line, ball bearings  $\bf P$  and  $\bf Q$  are similarly assembled in tandem but with the thrust faces of the outer rings inward and toward the wheel-end of the shaft. Again, the bearings are mounted in such a way that the high points of eccentricity of the shaft seat and of the bearing inner rings are diametrically opposed. Assembly of these bearings is shown in Figure 5.



FIGURE 4 - SUB-ASSEMBLY



FIGURE 5 - MOUNTING DRIVE-END BEARINGS

E54 102800

After closure cap **R** is securely fastened to the housing, rear slinger **D** is placed in position against the inner-ring face of the ball bearing, and locknut **S**, having a left-hand thread, is screwed on the shaft with a spanner wrench handle with two sharp raps of a light hammer. The procedure is repeated from the opposite side by relocating the spanner wrench on the locknut  $180^{\circ}$  from the first position. The clearance between the closure cap **R** and the rear slinger **D** is checked with a feeler gage to make sure that no interference exists between the two parts.

Front locknut J is loosened counterclockwise about four turns and indicator readings taken at the wheel-end of the shaft, Figure 6,. If these readings correspond to the nose runout or eccentricity previously obtained when the shaft was inspected on parallel V-blocks before assembly, no inaccuracies have been introduced through installation of the bearing. Following the check, the front locknut J is screwed on the shaft until the face of the front slinger C comes to bear on the inner ring face of the ball bearing. This locknut is set with a spanner wrench to tighten the bearing inner rings together and against the shaft shoulder, Figure 7. Tightening is done evenly and securely by striking the wrench handle with two sharp raps of a light hammer and repeating this operation on the other side of the locknut, 180° from the first position. Approximately the same force should be used in tightening the locknut every time it is tightened. This is important, especially during the trial and error scraping process.

Once these bearings are locked by the locknut, they become a preloaded pair in a fixed position, and the spindle is checked for possible runout. Should runout now exist in the assembly, it can be attributed directly to the relation between the threads and the locking face of the locknut. If the shaft shows a runout of 0.0001 inch or more, it can be assumed that the trouble lies in the locknut contact with the outward face of the front slinger. If the locknut face is tightened against the bearing inner face without the locknut face being square with the threaded bore of the shaft, the shaft may be forced to bend. This shaft bending will cause a radial eccentricity (runout) as measured on the shaft. Scraping of the high points on the locknut face will eliminate this out-of-squareness condition and provide optimum running accuracy.

### **Scraping Locknut to Eliminate Runout**

To determine where to scrape, first check with an indicator over the front end of the shaft at point **X**, Figure 1, until the highest reading is noted. This shows that the tip of the indicator point is directly over the vertical diameter of the shaft. Stopping at the highest reading on the indicator, the shaft is slowly rotated from the opposite end of the spindle which, in this case, would be the drive or rear end. Stop at the lowest reading on the indicator dial and with a red pencil or metal-marking pencil scribe a line longitudinally along the shaft and on the outside diameter of the locknut **J** directly in line with the low reading.



Figure 6 - Checking Nose-End Runout



Figure 7 - Tightening with Spanner Wrench

The locknut is removed from the assembly and the line transferred to its front face. This procedure locates the area to be scraped or lapped.

Scraping may be done with a scraping tool on the high surface and approximately 90° on both sides. Care should be taken to scrape evenly and uniformly. The depth of scraping (which will always be slight) can be judged only by the amount of runout shown on the indicator dial.

When the estimated amount of metal has been removed by scraping, the locknut is washed and blown clean. It is then placed against the face of the front slinger and tightened. New readings are taken, and if the runout persists, the locknut is removed and scraped in the same manner. If scraping on the same surface area is necessary, it is obvious that not enough metal was removed the first time. If the high surface is diagonally opposite, too much metal was removed. Scraping is continued until the face shows a very close reading on the indicator. To determine and correct any inaccuracies that might exist at the drive-end of the spindle, indicator readings are taken at point Y, Figure 1. After locknut S is loosened clockwise and removed, the same basic procedures used for the wheel end of the spindle are followed. The wheelhead assembly is then ready for the run-in test and final inspection.

### Checking Temperature, Vibration and Roughness

Before starting the test run for final inspection, the spindle is started and stopped a few times to make sure the wheelhead and testing equipment are in good working order. The spindle is then brought up to operational speed, which should not exceed the maximum speed indicated on the nameplate.

Temperature readings are taken as close to the bearings as possible, every five minutes at first, for each bearing on the housing. If the wheelhead heats up rapidly, it is stopped, allowed to cool to room temperature, and then re-started. Readings are then taken about every fifteen minutes until the temperature levels off, The wheelhead should not be permitted to run hotter than 50° above room temperature or to run so that the heat becomes unbearable to the touch. Generally, temperature readings of more than 120°F are not encountered. Three to four hours should be reasonable time for running-in the wheelhead and checking for temperatures, unusual sounds, vibration, and roughness. Following the successful completion of this test, the precision-built wheelhead is ready for use in the manufacturing area.

### Cleanliness

Elaborate precautions are taken to insure that superprecision ball bearings are dirt-free and thoroughly protected when packaged. Extreme care should be exercised to keep them clean and away from moisture and contamination from the time they are unpackaged until they are mounted in spindles and running.

In servicing machine tool spindles, cleanliness cannot be overemphasized. The work area, bench and tools should be clean and well organized. Clean hands are necessary, too. Plenty of clean lint-free rags should be available to keep the hands free of moisture, grime and dust-gathering oil. The spindle parts should be washed thoroughly in cleaning solution and dried with a filtered air under pressure. In addition to the spindle parts, the inside of the housing and all oil holes and threads should be solvent cleaned and air dried. Any corrosion on the shaft should be carefully removed. This is done by stoning or with crocus cloth while rotating the shaft and must be done carefully to avoid polishing the shaft undersize. These operations are followed with solvent cleaning and air drying.

Varsol with a 10% oil mixture is a good grade of nonflammable cleaning solution and an excellent cleansing agent. Chlorinated solvents such as tetrachloride are definitely not recommended for this purpose.

Freshly unpackaged bearings that are to be in oil or oil mist lubricated in spindles need not be cleaned of their protective oil. Bearings that are grease packed at our factories should be used as received.

Often times, the user packs bearings with grease prior to mounting. In such cases, the original protective oil slush is removed from the bearings with Varsol, and the bearings are dried with air under pressure by holding the bearing firmly so that spinning is avoided. Clean grease of the correct type should be packed carefully into the bearings in recommended quantities.

E56 102800

### **MAINTENANCE • MACHINE TOOL SPINDLES**

In servicing machine tool spindles it is essential to analyze the operating troubles and probable causes of the improper performance or malfunctions of the spindle, especially if the ball bearings have failed prematurely.

Causes and conditions that indicate or lead to ball bearing replacement are:

Out-of-roundness of work:

Impossibility of maintaining tolerances;

Existence of noise and chatter;

Production of rough or poor finishes;

Accidental damage to machine spindle;

"Brinelling" of bearings;

Entry of coolant and contamination into bearings;

Faulty lubrication of bearings.

Before the spindle is removed from the machine, a check should be made to ascertain whether the trouble is with the spindle and the bearings or the result of improper tooling, roughness in the machine slides, irregular feeds or some other such cause.

When the cause of damage or failure of ball bearings is not immediately apparent, there is a tendency to suspect faulty bearing materials or defective workmanship in the product; but the materials and the manufacturing methods in the production of ball bearings, through many years of research, have reached such a state of refinement that defects in bearings are extremely remote. In most cases, ball bearings fail from preventable causes, such as faulty mounting practice, incorrect shaft and housing mounting fits, improper or unsuitable lubrication and intrusion of foreign matter.

Bearing replacements without corrective measures often result in the repetition of the trouble. It becomes very important, therefore, to determine accurately and completely, the cause of the improper functioning of the ball bearings.

Ball bearings should be pressed onto a shaft with the mounting force applied only to the inner ring. Similarly, when bearings are mounted in a housing, the mounting force should be applied solely to the outer ring. Mounting dents or 'brinells' high on the raceway are caused when the mounting force is applied to a ring which is not being mounted. They should be seated solidly against the shoulders by means of an arbor press and a tubular drift. It is important that both ends of the tube are faced square and that all corners are broken to avoid flaking. The tubes must be clean and free from scale, both inside and out, to avoid the possibility of dirt falling into the bearings.

In mounting ball bearings, particular attention should be given to the mounting fits. If the bearing seat is of the correct diameter and without serious taper, the bearing can be

pressed to the shoulder with a uniform pressure. However, if the bearing sticks and requires excessive force at any point, it may have been cocked. Continued pressure on the bearing ring that was not squarely is likely to scrape and seriously damage the bearing seat. The source of trouble, which can be a burred or tapered seat, should be determined and corrected before proceeding.

Fretting corrosion in the bearing bore can be the result of loose shaft fits. This action produces iron oxide causing free iron to be removed from the shaft. This material gets into the bearing and being abrasive causes wear in the bearing, produces noise and engenders premature bearing failure.

Misaligned bearings can be the cause of early fatigue failures. Bearing misalignment can be caused by housing bores that are not in line with each other or when the bearing seats on the shaft are not concentric. Bearings may also become misaligned if the shaft or housing shoulder is out-of-square. When considerable misalignment is present, the load track veers from one side of the raceway to the other. Highly misaligned loads could force the balls over the edge of the raceway shoulder, causing the ball surfaces to be creased and resulting in premature fatigue failures.

Foreign matter – coolant, dust, dirt or other contaminants – pressed to ball bearings is the most common cause of bearing failure. Such a condition may be caused either by the entry of dirt or moisture, by the improper handling of the bearing during the mounting procedure or from inadequate sealing of the shaft and housing. Severe cases may cause abrasion and wear of the revolving parts, generally resulting in excessive axial looseness in the bearing. Visual evidence of this would be dull, gray discoloration of the raceways and the balls. Under such conditions ball bearings become noisy and inevitably fail to perform satisfactorily.

Lubrication is essential for the proper operation of ball bearings. Greases and oils are both used over a considerable range of speeds and operating temperatures. The choice of lubrication should be made after the careful consideration of the factors involved.

Generally, ball bearings operating at moderate speeds require relatively small amounts of lubrication. Too much lubrication, accompanied by churning and excessive torque, is manifested by temperature rise and intense over-heating. Lack of lubrication causes a rise in operating temperature, coupled with a whistling sound when running. Unless such conditions are corrected, the rings, balls and cage may be seriously damaged. Discoloration of the bearing parts is evidence of excessive operating temperatures.

### **MAINTENANCE • MACHINE TOOL SPINDLES**

In taking corrective measures it is important to know the operating history of the spindle and to study a cross-sectional drawing of the mounting arrangement. This information should include the following:

Operational speed

Operating temperature

Type of lubrication

Estimate of working loads

Type of drive and horsepower

Material processed

Reason for spindle failure

In addition and before the spindle is disassembled, the runout of the spindle nose should be determined with a 0.0001 inch indicator and recorded. The bearings should be removed carefully, without further damage, and tagged 1, 2, 3, 4, etc. starting from the work-end of the spindle. Pairs of bearings should be marked DB, DF or DT to denote whether the bearings had been mounted back-to-back, face-to-face, or in tandem. The conditions of the bearings should be noted for the entry of foreign matter, lack of lubrication, excessive temperatures and the extent of damage.

Before bearing replacement is made, the spindle parts should be thoroughly cleaned with Varsol and measured carefully for wear in the housing bores and shaft seats. Housing and shaft shoulders should be checked for equal lengths and parallelism of faces. All mating parts should be free of nicks and burrs.

Typical applications of precision ball bearings to machine tool spindles, showing bearing bore sizes, speed range, type of lubrication and approximate operating temperature, are tabulated at the bottom of this page.

In their efforts to attain even smoother and finer surface finishes, many users of high-speed wheelheads, especially of the belt driven type, operate their spindles at higher speeds than those for which they were designed. Spindle failure often occurs due to the rise in operating temperature caused by the breakdown of the lubricant, and because the original spring preload on the bearings was not reduced to correspond with that recommended for the increased speed. In such cases, the induced heat expands the internal parts of the spindle, thereby tightening the mounting fits and preventing the floating of spring loaded bearings from moving axially. Thus, additional heat is generated and failure results. Wheelhead users are cautioned to consult the original equipment manufacturer when increased speeds for their spindles are contemplated.

Many factors are involved in the design, fabrication and use of high speed spindles. Among them are the selection of the ball bearings, the amount of applied preloading, the mounting fits, the accuracy of the parts and the skill with which they are assembled, the operating temperature and speed involved, and lastly, the type of lubricant - grease, oil, or oil mist. Adequate lubrication, low operating temperatures, accurate and smooth operation, low friction, and a high degree of axial and radial rigidity are all extremely important qualities for successful machine tool spindle performance. The attainment of these qualities will continue to require the cooperation of the ball bearing manufacturer and the machine tool builder, as well as the machine tool user.

### TYPICAL APPLICATIONS OF BALL BEARINGS TO MACHINE TOOL SPINDLES

| Application                       | Bearing Bore, mm | Speed Range, rpm | Lubrication          | Approximate Operating<br>Degrees F. |
|-----------------------------------|------------------|------------------|----------------------|-------------------------------------|
| Cylindrical and Internal Grinders |                  |                  |                      |                                     |
| Wheelheads                        |                  |                  |                      |                                     |
| Belt Drive                        | 17-50            | Up to 100,000    | Oil mist- grease-oil | 100-120                             |
| High-Frequency motor Drive        | 8-50             | 10,000-150,000   | Oil mist- grease     | 95-120                              |
| Workheads                         | Wide Range       | Up to 5,000      | Grease               | 95-110                              |
| Surface Grinders                  | Wide Range       | 1,800-6,000      | Grease               | 110                                 |
| Tool and Cutter Grinders          | 20-35            | 5,000-10,000     | Grease               | 100-115                             |
| Gear and Thread Grinders          | 60-80            | 3,000 - 5,000    | Grease               | 100-115                             |
| Boring Heads                      | Wide Range       | Up to 10,000     | Oil mist-grease-oil  | 105-120                             |
| Jig Bores                         | 25-75            | Up to 3,000      | Grease               | 85-100                              |
| Lathes                            | Wide Range       | Up to 10,000     | Oil-grease           | 100-120                             |
| Drilling Machines                 | 15-40            | Up to 30,000     | Oil-grease           | 100-115                             |
| Milling Machines                  | Wide Range       | Up to 12,500     | Oil mist-grease-oil  | 100-115                             |
| Routers                           | 20-60            | 12,000-30,000    | Oil mist-grease      | 110-125                             |

E58 102800

# **Fractional/Decimal/Metric Equivalents**

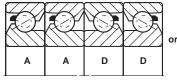
To convert inches to millimeters, multiply the inches by 25.4. To convert millimeters to inches, divide the millimeters by 25.4. (As established by the American Standards Association.)

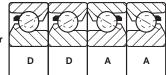
| ractional | decimal<br>inches | mm | fractional | decimal<br>inches | mm   | decimal<br>inches | mm  | decimal<br>inches | mn  |
|-----------|-------------------|----|------------|-------------------|------|-------------------|-----|-------------------|-----|
|           | 0.0156            |    |            | 0.5156            |      | 1.0236            | 26  | 2.7953            | 71  |
| 1/32      |                   |    |            | 0.5312            |      | 1.0630            | 27  | 2.8346            | 72  |
| .732      | 0.0394            | 1  |            | 0.5469            |      | 1.1024            | 28  | 2.8740            | 73  |
|           | 0.0394            |    | 33/64      |                   |      |                   |     |                   |     |
| 24.       |                   |    |            | 0.5512            | 14   | 1.1417            | 29  | 2.9134            | 74  |
|           | 0.0469            |    | 0.         |                   |      | 1.1811            | 30  | 2.9528            | 75  |
| 1/16      | 0.0625            |    | 9/16       | 0.5625            |      |                   |     |                   |     |
| 5/6       | 0.0781            |    | 37/64      | 0.5781            |      | 1.2205            | 31  | 2.9921            | 76  |
|           | 0.0787            | 2  |            | 0.5906            | 15   | 1.2598            | 32  | 3.0315            | 77  |
|           |                   |    |            |                   |      | 1.2992            | 33  | 3.0709            | 78  |
| 3/32      | 0.0938            |    | 19/32      | 0.5938            |      | 1.3386            | 34  | 3.1102            | 79  |
| 7/6       | 0.1094            |    | 39/64      | 0.6094            |      | 1.3780            | 35  | 3.1496            | 80  |
|           | 0.1181            | 3  | 5/8        | 0.6250            |      |                   |     |                   |     |
| 1/8       | 0.1250            |    |            | 0.6299            | 16   | 1.4173            | 36  | 3.1890            | 81  |
|           | 0.1406            |    |            |                   |      | 1.4567            | 37  | 3.2283            | 82  |
|           | 0.1562            |    | 41/64      | 0.6406            |      | 1.4961            | 38  | 3.2677            | 83  |
| -732      | 0.1575            |    |            | 0.6562            |      | 1.5354            | 39  | 3.3071            | 84  |
|           | 0.1373            | 4  | 2.732      | 0.6693            | 17   |                   |     |                   |     |
| 11,,      | 0.1719            |    |            | 0.0093            | 17   | 1.5748            | 40  | 3.3465            | 85  |
|           |                   |    | 13//4      | 0 (710            |      | 1 (14)            | 41  | 2 2050            | 0.4 |
| 3/16      | 0.1875            |    |            | 0.6719            |      | 1.6142            | 41  | 3.3858            | 86  |
|           | 0.1969            | 5  | 11/16      | 0.6875            |      | 1.6535            | 42  | 3.4252            | 87  |
|           |                   |    | 45/64      | 0.7031            |      | 1.6929            | 43  | 3.4646            | 88  |
|           | 0.2031            |    |            | 0.7087            | 18   | 1.7323            | 44  | 3.5039            | 89  |
| 7/32      | 0.2188            |    | 23/32      | 0.7188            |      | 1.7717            | 45  | 3.5433            | 90  |
| 15/6      | 0.2344            |    | 47/64      | 0.7344            |      |                   |     |                   |     |
|           | 0.2362            | 6  |            | 0.7480            | 19   | 1.8110            | 46  | 3.5827            | 91  |
|           |                   |    |            |                   |      | 1.8504            | 47  | 3.6220            | 92  |
| 1/4       | 0.2500            |    | 3/4        | 0.7500            |      | 1.8898            | 48  | 3.6614            | 93  |
|           | 0.2656            |    | 49/64      | 0.7656            |      | 1.9291            | 49  | 3.7008            | 94  |
| ,,        | 0.2756            | 7  |            | 0.7812            |      | 1.9685            | 50  | 3.7402            | 95  |
|           | 0.2750            |    | 732        | 0.7874            | 20   | 1.7003            | 30  | 3.7402            | ,   |
| 9/22      | 0.2812            |    |            | 0.7074            | 20   | 2.0079            | 51  | 3.7795            | 96  |
|           | 0.2812            |    | 51//4      | 0.7969            |      |                   |     |                   | 97  |
|           |                   |    |            |                   |      | 2.0472            | 52  | 3.8189            |     |
| 5/16      | 0.3125            |    | 13/16      |                   |      | 2.0866            | 53  | 3.8583            | 98  |
|           | 0.3150            | 8  |            | 0.8268            | 21   | 2.1260            | 54  | 3.8976            | 99  |
|           |                   |    |            |                   |      | 2.1654            | 55  | 3.9370            | 100 |
| 21/6      | 0.3281            |    | 53/64      | 0.8281            |      |                   |     |                   |     |
| 11/32     | 0.3438            |    | 27/32      | 0.8438            |      | 2.2047            | 56  | 4.1339            | 105 |
|           | 0.3543            | 9  | 55/64      | 0.8594            |      | 2.2441            | 57  | 4.3307            | 110 |
|           |                   |    |            | 0.8661            | 22   | 2.2835            | 58  | 4.5276            | 115 |
| 23/6      | 0.3594            |    |            |                   |      | 2.3228            | 59  | 4.7244            | 120 |
| 3/8       | 0.3750            |    | 7/8        | 0.8750            |      | 2.3622            | 60  | 4.9213            | 125 |
|           | 0.3736            |    |            | 0.8906            |      | 2.5022            | 00  | 7.7213            | 120 |
| -70       | 0.3937            | 10 | 704        | 0.9055            | 23   | 2.4016            | 61  | 5.1181            | 130 |
|           | 0.373/            | 10 |            | 0.9000            | 23   |                   |     |                   |     |
| 10        | 0.4070            |    | 20.5-      | 0.00/0            |      | 2.4409            | 62  | 5.3150            | 135 |
| 13/32     | 0.4062            |    | 29/32      | 0.9062            |      | 2.4803            | 63  | 5.5118            | 140 |
| 2//6      | 0.4219            |    |            | 0.9219            |      | 2.5197            | 64  | 5.7087            | 145 |
|           | 0.4331            | 11 | 15/16      | 0.9375            | -0.4 | 2.5591            | 65  | 5.9055            | 150 |
| 76.       | 0.4075            |    |            | 0.9449            | 24   | 2 5004            | ,,, | ( 100 :           |     |
| 7/16      | 0.4375            |    |            | 0.5==-            |      | 2.5984            | 66  | 6.1024            | 15  |
|           | 0.4531            |    |            | 0.9531            |      | 2.6378            | 67  | 6.2992            | 160 |
| 15/32     |                   |    | 31/32      |                   |      | 2.6772            | 68  | 6.4691            | 165 |
|           | 0.4724            | 12 |            | 0.9843            | 25   | 2.7165            | 69  | 6.6929            | 170 |
| 31/6      | 0.4844            |    |            |                   |      | 2.7559            | 70  | 6.8898            | 17! |
| /2        | 0.5000            |    | 63/64      | 0.9844            |      |                   |     |                   |     |
|           | 0.5118            | 13 | 1          | 1.0000            |      |                   |     | 7.0866            | 180 |
|           |                   |    |            |                   |      |                   |     | 7.2835            | 185 |
|           |                   |    |            |                   |      |                   |     | 7.4803            | 190 |
|           |                   |    |            |                   |      |                   |     | 7.6772            | 195 |
|           |                   |    |            |                   |      |                   |     | 7.8740            | 200 |
|           |                   |    | 1          |                   |      | 1                 |     | 1 /.0/40          | 20  |

# **Quick Reference Data Sheets**

### For Ball Screw Support Bearings Only:

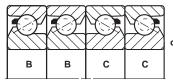
\*Procedure for making a **Quad Set** from two sets of **Duplex Bearings.** 

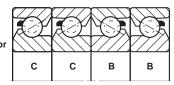

- 1. Physically remove the bearings from their boxes
- Without removing the bearings from their plastic bags, locate the laser marked code on the outer ring (O.D.).
   The marking will be a single letter. There are four possible letters, either "A, B, C, or D".


**Note:** There are two possible combinations of marking that can be on the outer rings of a **DUPLEX** set of bearings. One combination is having one bearing marked with an "A" and the other with a "D". The second combination is having one bearing marked with a "B" and the other with a "C".

- 3. Locate two sets of **DUPLEX** bearings (four bearings total) marked with "A" and "D" or two sets of bearings marked with "B" and "C".
- Quad Sets should be matched according to one of the following configurations.

I. Having two sets of bearings that are marked "A", "D".


Match as shown below.






II. Having two sets of bearings that are marked "B", "C".

Match as shown below.



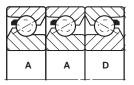


E60 102800

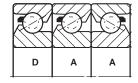
# MAINTENANCE MACHINE TOOL SPINDLES

# **Quick Reference Data Sheets**

### For Ball Screw Support Bearings Only:

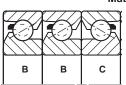

- \*Procedure for making a **Triplex Set** from two sets of **Duplex Bearings.**
- 1. Physically remove the bearings from their boxes
- Without removing the bearings from their plastic bags, locate the laser marked code on the outer ring (O.D.).
   The marking will be a single letter. There are four possible letters, either "A, B, C, or D".

**Note:** There are two possible combinations of marking that can be on the outer rings of a **DUPLEX** set of bearings. One combination is having one bearing marked with an "A" and the other with a "D". The second combination is having one bearing marked with a "B" and the other with a "C".

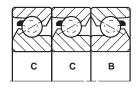

- Locate two sets of **DUPLEX** bearings (four bearings total) marked with "A" and "D" or two sets of bearings marked with "B" and "C".
- 4. **Triplex Sets** should be matched according to one of the following configurations.

I. Having two sets of bearings that are marked "A", "D".

Match as shown below.




or



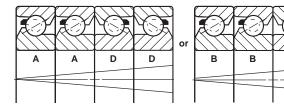

II. Having two sets of bearings that are marked "B", "C".

Match as shown below.



or

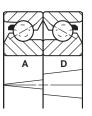



# **Quick Reference Data Sheets**

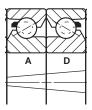
### For Ball Screw Support Bearings Only:

\*Procedure for making a **Duplex Set** from one **Quad set of bearings.** 

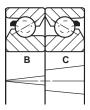
- 1. Physically remove the bearings from their box(es).
- 2. Without removing the bearing from the plastic bags, locate the laser "V,, mark and the laser marked code on the outer ring (O.D.). The laser "V" mark on the O.D. of the quad set is used to orient the bearings in a back-to-back configuration. The laser mark code will be a single letter. There are four possible letters, either "A, B, C, or D".


Note: There are two possible combinations of markings that can be on the outer rings of a QUAD set of bearings. One combination is having the two bearings in tandem marked with an "A" opposed by two bearings in tandem marked with a "D". The second combination is having two bearings in tandem marked with a "B" opposed by two bearings in tandem marked with a "C". Refer to possible combinations below.

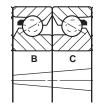



Duplex Sets should be matched according to the following procedure.

The two outer bearings should be paired together to form one set of duplex bearings and the two inner bearings will form the other pair.


(example)




or



С



01



**E62** 102800

# MAINTENANCE MACHINE TOOL SPINDLES

### FAFNIR ENGINEERING DAMAGED BEARING ANALYSIS SHEET

| GENERAL INFORMATION                                |                     |                |           |                    |             |
|----------------------------------------------------|---------------------|----------------|-----------|--------------------|-------------|
| CUSTOMER:                                          |                     | CCR/RGA #:     |           |                    |             |
| BEARING USER:                                      | QTY:                | DATE REQ'D:    |           |                    |             |
| SALES ENGINEER:                                    |                     | DISTRICT OFFI  | CE:       |                    |             |
| REASON FOR ANALYSIS REQUEST:                       |                     |                |           |                    |             |
| REPAIRABILITY AND COST TO REPAIR REQUI             | RED:                | YES            |           | NO                 |             |
| $\square$ HOLD BEARING UNTIL FURTHER NOTICE        | ☐ SCRAP 30 DA       | YS AFTER ANALY | SIS 🗆     | RETURN TO D.O      |             |
|                                                    |                     |                |           |                    |             |
| BEARING INFORMATION                                |                     |                |           |                    |             |
| BRG. NO: TYPE:                                     |                     | DATE CODE: _   |           | _ S. N.:           |             |
| $\square$ NEW BEARING $\square$ REPAIRED BEARING D | ATE INSTALLED:      |                | SERVICE I | _IFE:              |             |
|                                                    |                     |                |           |                    |             |
| APPLICATION INFORMATION                            |                     |                |           |                    |             |
| EQUIPMENT/MODEL NO.:                               |                     | JOB N          | IO.:      |                    |             |
| LOADS: RADIAL(lb) AXIAL                            | (lb) N              | MOMENT         | (ft-lb)   | ROTATION $\square$ | I.R. □ O.R. |
| SPEED: (rpm) OSCILLA                               |                     |                | •         |                    |             |
| LUBRICATION METHOD:                                |                     | BRAND:         |           |                    |             |
| TEMP: AMBIENT (°F) HOUSING                         | ∋ (°F)              | BEARING        | (°F)      | LUBRICANT          | (°F)        |
| SHAFT FIT/SIZE:                                    | HOUS                | SING FIT/SIZE: |           |                    |             |
| INSTALLATION METHOD:                               | ☐ MECHANICAL        | ☐THERMAL       | OTHER _   |                    |             |
| REMOVAL METHOD: ☐ HYDRAULIC                        | ☐ MECHANICAL        | ☐THERMAL       | OTHER _   |                    |             |
|                                                    |                     |                |           |                    |             |
| OPERATING EQUIPMENT CONDIT                         | ION                 |                |           |                    |             |
| INITIAL INDICATION OF BEARING DAMAGE:              | $\square$ VIBRATION |                | HEAT      | OTHER              |             |
| SHAFT CONDITION:                                   |                     |                |           |                    |             |
| HOUSING CONDITION:                                 |                     |                |           |                    |             |
| LUBRICANT CONDITION:                               |                     |                |           |                    |             |
| INNER RING CONDITION:                              |                     |                |           |                    |             |
| OUTER RING CONDITION:                              |                     |                |           |                    |             |
| CAGE CONDITION:                                    |                     |                |           |                    |             |
| ROLLING ELEMENTS CONDITION:                        |                     |                |           |                    |             |
| GENERAL COMMENTS:                                  |                     |                |           |                    |             |
|                                                    |                     |                |           |                    |             |
|                                                    |                     |                |           |                    |             |
|                                                    |                     |                |           |                    |             |
|                                                    |                     |                |           |                    |             |
|                                                    |                     |                |           |                    |             |
|                                                    |                     |                |           |                    |             |

| A Page                                                                | F Page                                             |
|-----------------------------------------------------------------------|----------------------------------------------------|
| ABEC Tolerances,Introduction                                          | Fafnir Superprecision Bearings4                    |
| ABEC-7 Description                                                    | Fractional, Decimal, Metric Equivalents E59        |
| ABEC-7 Housing Mounting Fits E10-E15                                  |                                                    |
| ABEC-7 Shaft Mounting Fits E8, E9                                     | G                                                  |
| ABEC-7,-9 Standard Tolerances Inner and Outer Rings E4, E5            | Grease Lubrication E37                             |
| ABEC-9 Description10                                                  | Grease Shelf Life Policy                           |
| ABMA/ISO Symbols – Inner Ring                                         | ,                                                  |
| ABMA/ISO Symbols – Outer Ring                                         | н                                                  |
| Angular Contact Bearings, Introduction12                              | Heat Generation E35                                |
| Applications                                                          | Housing Design E34                                 |
| , pp. 100 100 100 100 100 100 100 100 100 10                          | Housing Mounting Fits, ABEC-7 E10-E15              |
| В                                                                     | Housing Mounting Fits, Floating Bearings E13-E15   |
| Back-To-Back vs Face-To-Face Mounting E30                             | Housing Seals E35                                  |
| Ballscrew Support Bearings                                            | Hybrid Ceramic Bearings                            |
| Ballscrew Support Bearings                                            | Trybha ceranie Bearings                            |
| Ballscrew Support Bearings, Nomenclature Chart                        | 1                                                  |
| Ballscrew Support Bearings, Nomericating Crieft                       | Inspection of Parts Before Assembly E52            |
| Shoulder Dimensions                                                   | Introduction                                       |
| Bearing Locknuts E35                                                  | 11110ddctio11                                      |
| Bearing Selection E32                                                 | L                                                  |
| Bearing Spacers E34                                                   | Liability                                          |
| Bearing and Shaft Assembled with Eccentricities Opposed E54           | Life Adjustment Factors for Lubrication            |
| Bearings Assembled in Spindle Mounting E53                            | Life Calculations – Life Adjustment Factor         |
| Dodnings / 1000/110/04 in Opinicio Woodnang                           | Life Calculations – Load Ratings                   |
| С                                                                     | Light 2MM200WI, 3MM200WI Series                    |
| Checking Spindle Temperature, Vibration, Roughness E56                | Light MM200K Series                                |
| Cleanliness E56, E57                                                  | Limiting speed (calculation)                       |
| Conditions of Sale                                                    | Load Ratings                                       |
| Conditions of Galo                                                    | Ballscrew Support Series                           |
| D                                                                     | Extra-Light MM9100K                                |
| Distribution Service Centers E66                                      | Extra-Light 2MM9100WI, 3MM9100WI Series            |
| Drip Feed Oil Lubrication E38                                         | Extra-Light 2MMV99100WN, 3MMV99100WN Series 26, 28 |
| Dynamic Load Rating E41, E42                                          | Extra-Light 2MM9100HX Series                       |
| Dynamic Load rating 211, 212                                          | Light 2MM200WI Series                              |
| F                                                                     | Light 3MM200WI Series                              |
| Engineering E1-E49                                                    | Light MM200K Series                                |
| Engineering,Forward                                                   | Medium 2MM300WI, 3MM300WI Series                   |
| Engineering Notations                                                 | Medium MM300K Series                               |
| Engineering Sales Offices and Distribution Service Centers <b>E66</b> | Ultra-Light 2MM9300WI Series                       |
| Equivalency Tables                                                    | Ultra-Light 3MM9300WI Series                       |
| Ex-Cell-O Spindle Bearings                                            | Lubrication                                        |
| Extended Basic Dynamic Load Rating E41, E42                           | Lubrication, Types of E37-E39                      |
| Extra-Light 2MM9100WI, 3MM9100WI Series 42-51                         |                                                    |
| Extra-Light 2MMV99100WN, 3MMV99100WN Series 24-33                     | M                                                  |
| Extra-Light 2MMV9100HX Series                                         | MM-EX Replacement Bearings82                       |
|                                                                       | MM-XWO Replacement Bearings                        |
|                                                                       | Machine Tool Product Offering Range                |
|                                                                       | Maintenance Procedure                              |
|                                                                       | Maintenance Machine Tool Spindles                  |
|                                                                       | Maintenance Machine Tools, Forward E52             |
|                                                                       | Medium 2MM300WI, 3MM300WI Series                   |
|                                                                       | Medium MM300K Series                               |

**E64** 102800

| N                                              | Page  |
|------------------------------------------------|-------|
| Nomenclature Chart, Ballscrew Support Bearings | 86    |
| Nomenclature Chart, Superprecision Bearings    |       |
| Notations, Life Calculations                   |       |
| Nuclear Application                            | 5     |
|                                                |       |
| 0                                              |       |
| Oil Bath Lubrication                           | . E38 |
| Oil Jet Lubrication                            | . E38 |
| Oil                                            | . E38 |
| Oil Mist Lubrication                           | . E38 |
|                                                |       |
| Р                                              |       |
| Preloading                                     |       |
| Product Offering Range                         | 11    |
|                                                |       |
| R                                              |       |
| Recommended Shaft and Housing Tolerances       |       |
| Reference Viscosity                            | . E44 |
| Replacement Bearings                           |       |
| Ex-Cell-O Spindles, MM-EX                      |       |
| Ex-Cell-O Spindles, MM-XWO                     | 83    |
|                                                |       |
| \$                                             |       |
| Safety Recommendations                         |       |
| Scraping Locknut to Eliminate Runout           |       |
| Selective Assembly                             |       |
| Shaft Mounting Fits, ABEC-7                    |       |
| Shaft and Housing Shoulder Diameters           |       |
| Shaft and Housing Tolerances                   |       |
| Shafts, Materials                              |       |
| Special Requirements                           |       |
| Spring-Loaded Mountings                        |       |
| Standard Preloads in Pounds                    |       |
| Standard Tolerances, Inner Ring, ABEC-7,-9     |       |
| Standard Tolerances, Outer Ring, ABEC-7,-9     | E5    |
| Standard and Heavy Duty Bearings               | 00.00 |
| BSBU D Series                                  | -     |
| BSBU Q Series                                  | ,     |
| BSPB Q Series                                  | ,     |
|                                                | -     |
| Static Radial Load Capacity                    |       |
| Storage and Grease Shelf Life                  |       |
| Super High Precision MMV (HG), Introduction    |       |
| Superprecision Bearing Products                |       |
|                                                |       |
| Superprecision MM (ABEC-7), Introduction       |       |
| Superpresion, nomendature Chart                | 0     |

| Т                                          | Page  |
|--------------------------------------------|-------|
| The Torrington Commitment                  | 4     |
| The Torrington Company, Introduction       | 4     |
| Tolerances                                 | E3    |
| Typical Mountings, Duplex Bearings         | . E29 |
| U                                          |       |
| Ultra-Light Series 2MM9300WI and 3MM9300WI | 14-19 |
| Ultrapecision MMX (ABEC-9), Introduction   | 10    |
| Using This Catalog                         | 4     |
| w                                          |       |
| Warranty                                   | 5     |
| Width Tolerances                           | E4    |

### **Engineering Sales Offices**

### **NORTH AMERICA**

### **ALABAMA**

1855 Data Drive Birmingham, AL 35244-1237 Tel: (205) 987-4966 Fax: (205) 987-4933

### **CALIFORNIA**

12750 Center Court Drive Cerritos, CA 90703 Tel: (562) 865-4343 Fax: (562) 865-4361

### **COLORADO**

Academy Park Commons 7114 West Jefferson Ave. Lakewood, CO 80235-2309 Tel: (303) 986-0133 Fax: (303) 989-8485

### CONNECTICUT

197 Scott Swamp Rd. Farmington, CT 06032 Tel: (860) 677-1911 Fax: (860) 677-2024

### **FLORIDA**

3751 Maguire Blvd. Orlando, FL 32803 Tel: (407) 896-1444 Fax: (407) 896-4007

### **GEORGIA**

3200 Highlands Pkwy. Smyrna, GA 30082-5193 Tel: (770) 438-7313 Fax: (770) 438-7718

### **ILLINOIS**

1701 52nd Avenue Moline, IL 61265-6377 Tel: (309) 762-5254 Fax: (309) 762-7975

1400 Opus Place Downers Grove,IL 60515-5701 Tel: (630) 663-0290 Fax: (630) 663-0296

401 N.E. Jefferson Street Peoria, IL 61603-3725 Tel: (309) 676-9560 Fax: (309) 676-9938

### **INDIANA**

10585 North Meridian St. Indianapolis, IN 46290-1066 Tel: (317) 846-3411 Fax: (317) 846-4434

### **KANSAS**

Cloverleaf Bldg. #2 6901 West 63rd St. Overland Park, KS 66202-4005 Tel: (913) 362-4640 Fax: (913) 362-1233

### **MICHIGAN**

44670 Ann Arbor Road Plymouth, MI 48170-3908 Tel: (734) 455-7300 Fax: (734) 455-8154 38701 Seven Mile Road

Livonia, MI 48152-1058 Tel: (734) 462-4870 Fax: (734) 462-1934

### **MINNESOTA**

7901 Xerxes Ave. So. Bloomington, MN 55431-1200 Tel: (612) 887-2155 Fax: (612) 887-2163

### **NEW YORK**

349 W. Commercial St. E. Rochester, NY 14445-2404 Tel: (716) 381-3643 Fax: (716) 381-1909

### **NORTH CAROLINA**

English Oaks Bldg. 8848 Red Oak Blvd. Charlotte, NC 28217-5518 Tel: (704) 525-7710 Fax: (704) 525-9289

### OHIO

9039 Springboro Pike Miamisburg, OH 45342-4418 Tel: (937) 847-1691 Fax: (937) 847-8275

24651 Center Ridge Road Westlake, OH 44145-5628 Tel: (440) 899-2200 Fax: (440) 899-2209

### PENNSYLVANIA 210 Farm Lane

Doylestown, PA 18901 Tel: (215) 489-9099 Fax: (215) 489-9161 Pinebridge Commons 1580 McLaughlin Run F

1580 McLaughlin Run Road Pittsburgh, PA 15241 Tel: (412) 220-1134 Fax: (412) 220-1139

### **TEXAS**

9802 FM 1960 Bypass Humble, TX 77338 Tel: (281) 319-6212 Fax: (281) 319-5414

### TEXAS (cont.)

4545 Fuller Drive Irving, TX 75038-6530 Tel: (972) 717-4567 Fax: (972) 717-4448

### WASHINGTON

One Lake Bellevue Bldg. Bellevue, WA 98005-2417 Tel: (425) 455-4466 Fax: (425) 455-8304

### **WISCONSIN**

The Rosewood Bldg. 250 Bishop's Way Brookfield, WI 53005-6265 Tel: (262) 784-4844 Fax: (262) 784-8903

### CANADA (Sales Off./DSC)

4246 97th Street Edmonton, Alberta Canada T6E 5Z9 Tel: (780) 433-9590 Fax: (780) 433-9823

6700 Cote de Liesse Ville St. Laurent, Quebec Canada H4T 2B5 Tel: (514) 340-2990 Fax: (514) 340-9314

5598 McAdam Road Mississauga, Ontario Canada L4Z 1P1 Tel: (905) 890-2033 Fax: (905) 890-0086

### LATIN AMERICA

To obtain the name of nearest office or distributor, please contact:

The Torrington Company 730 N.W. 107th Ave. Miami, Florida 33166 Tel: (305) 559-0500 Fax: (305) 222-0877

### **EUROPE**

To obtain the name of nearest office or distributor, please contact:

Torrington France 8 Rue Henri Becquerel Odyssee 2000 F-92508 Rueil Malmaison CEDEX Paris, France Tel: (33) (1) 47 16 90 00 Fax: (33) (1) 47 51 29 09

TLX: 631150 TOR FAF

### To obtain the name of nearest To obtain the name

To obtain the name of nearest office or distributor, please contact:

**ASIA - PACIFIC** 

The Torrington Company 42 Benoi Rd. Singapore 629903 Tel: (65) 860-6845 Fax: (65) 860-6845

To obtain the name of nearest sales office please contact:

Tel: (800) 854-0175

### **Distribution Service Centers**

## SOUTHEAST DSC (Atlanta)

3200 Highlands Parkway Smyrna, GA 30082-5192 Tel: (800) 372-4669 Fax: (720) 438-8801

## SOUTHWEST DSC (Dallas)

4545 Fuller Drive Irving, TX 75038-6530 Tel: (800) 372-4669 Fax: (972) 717-4499

### NORTHEAST DSC (Philadelphia)

210 Farm Lane Doylestown, PA 18901 Tel: (800) 372-4669 Fax: (215) 489-9188

## MIDWEST DSC (Chicago)

1400 Opus Place Downers Grove, IL 60515-5701 Tel: (800) 372-4669

Tel: (800) 372-4669 Fax: (630) 241-0890

### **WEST COAST DSC**

(Reno)

245 E. Liberty Street Reno, NV 89501-2220 Tel: (800) 372-4669 Fax: (775) 334-4510

### INTERNATIONAL European Customer Service (ECS)

Torrington Nadellager GmbH Werkstrasse 5 D-33790 Halle (Westfalen), Germany Tel: (49) 2451-971-450

E66 102800